Files
bullet3/examples/pybullet/gym/pybullet_envs/agents/tools/streaming_mean.py
Erwin Coumans ef9570c315 add yapf style and apply yapf to format all Python files
This recreates pull request #2192
2019-04-27 07:31:15 -07:00

66 lines
2.3 KiB
Python

# Copyright 2017 The TensorFlow Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute a streaming estimation of the mean of submitted tensors."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class StreamingMean(object):
"""Compute a streaming estimation of the mean of submitted tensors."""
def __init__(self, shape, dtype):
"""Specify the shape and dtype of the mean to be estimated.
Note that a float mean to zero submitted elements is NaN, while computing
the integer mean of zero elements raises a division by zero error.
Args:
shape: Shape of the mean to compute.
dtype: Data type of the mean to compute.
"""
self._dtype = dtype
self._sum = tf.Variable(lambda: tf.zeros(shape, dtype), False)
self._count = tf.Variable(lambda: 0, trainable=False)
@property
def value(self):
"""The current value of the mean."""
return self._sum / tf.cast(self._count, self._dtype)
@property
def count(self):
"""The number of submitted samples."""
return self._count
def submit(self, value):
"""Submit a single or batch tensor to refine the streaming mean."""
# Add a batch dimension if necessary.
if value.shape.ndims == self._sum.shape.ndims:
value = value[None, ...]
return tf.group(self._sum.assign_add(tf.reduce_sum(value, 0)),
self._count.assign_add(tf.shape(value)[0]))
def clear(self):
"""Return the mean estimate and reset the streaming statistics."""
value = self._sum / tf.cast(self._count, self._dtype)
with tf.control_dependencies([value]):
reset_value = self._sum.assign(tf.zeros_like(self._sum))
reset_count = self._count.assign(0)
with tf.control_dependencies([reset_value, reset_count]):
return tf.identity(value)