Files
bullet3/examples/pybullet/gym/pybullet_envs/bullet/kukaGymEnv.py
Erwin Coumans ef9570c315 add yapf style and apply yapf to format all Python files
This recreates pull request #2192
2019-04-27 07:31:15 -07:00

294 lines
10 KiB
Python

import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
print("current_dir=" + currentdir)
os.sys.path.insert(0, currentdir)
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import kuka
import random
import pybullet_data
from pkg_resources import parse_version
largeValObservation = 100
RENDER_HEIGHT = 720
RENDER_WIDTH = 960
class KukaGymEnv(gym.Env):
metadata = {'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50}
def __init__(self,
urdfRoot=pybullet_data.getDataPath(),
actionRepeat=1,
isEnableSelfCollision=True,
renders=False,
isDiscrete=False,
maxSteps=1000):
#print("KukaGymEnv __init__")
self._isDiscrete = isDiscrete
self._timeStep = 1. / 240.
self._urdfRoot = urdfRoot
self._actionRepeat = actionRepeat
self._isEnableSelfCollision = isEnableSelfCollision
self._observation = []
self._envStepCounter = 0
self._renders = renders
self._maxSteps = maxSteps
self.terminated = 0
self._cam_dist = 1.3
self._cam_yaw = 180
self._cam_pitch = -40
self._p = p
if self._renders:
cid = p.connect(p.SHARED_MEMORY)
if (cid < 0):
cid = p.connect(p.GUI)
p.resetDebugVisualizerCamera(1.3, 180, -41, [0.52, -0.2, -0.33])
else:
p.connect(p.DIRECT)
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
self.seed()
self.reset()
observationDim = len(self.getExtendedObservation())
#print("observationDim")
#print(observationDim)
observation_high = np.array([largeValObservation] * observationDim)
if (self._isDiscrete):
self.action_space = spaces.Discrete(7)
else:
action_dim = 3
self._action_bound = 1
action_high = np.array([self._action_bound] * action_dim)
self.action_space = spaces.Box(-action_high, action_high)
self.observation_space = spaces.Box(-observation_high, observation_high)
self.viewer = None
def reset(self):
#print("KukaGymEnv _reset")
self.terminated = 0
p.resetSimulation()
p.setPhysicsEngineParameter(numSolverIterations=150)
p.setTimeStep(self._timeStep)
p.loadURDF(os.path.join(self._urdfRoot, "plane.urdf"), [0, 0, -1])
p.loadURDF(os.path.join(self._urdfRoot, "table/table.urdf"), 0.5000000, 0.00000, -.820000,
0.000000, 0.000000, 0.0, 1.0)
xpos = 0.55 + 0.12 * random.random()
ypos = 0 + 0.2 * random.random()
ang = 3.14 * 0.5 + 3.1415925438 * random.random()
orn = p.getQuaternionFromEuler([0, 0, ang])
self.blockUid = p.loadURDF(os.path.join(self._urdfRoot, "block.urdf"), xpos, ypos, -0.15,
orn[0], orn[1], orn[2], orn[3])
p.setGravity(0, 0, -10)
self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
self._envStepCounter = 0
p.stepSimulation()
self._observation = self.getExtendedObservation()
return np.array(self._observation)
def __del__(self):
p.disconnect()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def getExtendedObservation(self):
self._observation = self._kuka.getObservation()
gripperState = p.getLinkState(self._kuka.kukaUid, self._kuka.kukaGripperIndex)
gripperPos = gripperState[0]
gripperOrn = gripperState[1]
blockPos, blockOrn = p.getBasePositionAndOrientation(self.blockUid)
invGripperPos, invGripperOrn = p.invertTransform(gripperPos, gripperOrn)
gripperMat = p.getMatrixFromQuaternion(gripperOrn)
dir0 = [gripperMat[0], gripperMat[3], gripperMat[6]]
dir1 = [gripperMat[1], gripperMat[4], gripperMat[7]]
dir2 = [gripperMat[2], gripperMat[5], gripperMat[8]]
gripperEul = p.getEulerFromQuaternion(gripperOrn)
#print("gripperEul")
#print(gripperEul)
blockPosInGripper, blockOrnInGripper = p.multiplyTransforms(invGripperPos, invGripperOrn,
blockPos, blockOrn)
projectedBlockPos2D = [blockPosInGripper[0], blockPosInGripper[1]]
blockEulerInGripper = p.getEulerFromQuaternion(blockOrnInGripper)
#print("projectedBlockPos2D")
#print(projectedBlockPos2D)
#print("blockEulerInGripper")
#print(blockEulerInGripper)
#we return the relative x,y position and euler angle of block in gripper space
blockInGripperPosXYEulZ = [blockPosInGripper[0], blockPosInGripper[1], blockEulerInGripper[2]]
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir0[0],gripperPos[1]+dir0[1],gripperPos[2]+dir0[2]],[1,0,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir1[0],gripperPos[1]+dir1[1],gripperPos[2]+dir1[2]],[0,1,0],lifeTime=1)
#p.addUserDebugLine(gripperPos,[gripperPos[0]+dir2[0],gripperPos[1]+dir2[1],gripperPos[2]+dir2[2]],[0,0,1],lifeTime=1)
self._observation.extend(list(blockInGripperPosXYEulZ))
return self._observation
def step(self, action):
if (self._isDiscrete):
dv = 0.005
dx = [0, -dv, dv, 0, 0, 0, 0][action]
dy = [0, 0, 0, -dv, dv, 0, 0][action]
da = [0, 0, 0, 0, 0, -0.05, 0.05][action]
f = 0.3
realAction = [dx, dy, -0.002, da, f]
else:
#print("action[0]=", str(action[0]))
dv = 0.005
dx = action[0] * dv
dy = action[1] * dv
da = action[2] * 0.05
f = 0.3
realAction = [dx, dy, -0.002, da, f]
return self.step2(realAction)
def step2(self, action):
for i in range(self._actionRepeat):
self._kuka.applyAction(action)
p.stepSimulation()
if self._termination():
break
self._envStepCounter += 1
if self._renders:
time.sleep(self._timeStep)
self._observation = self.getExtendedObservation()
#print("self._envStepCounter")
#print(self._envStepCounter)
done = self._termination()
npaction = np.array([
action[3]
]) #only penalize rotation until learning works well [action[0],action[1],action[3]])
actionCost = np.linalg.norm(npaction) * 10.
#print("actionCost")
#print(actionCost)
reward = self._reward() - actionCost
#print("reward")
#print(reward)
#print("len=%r" % len(self._observation))
return np.array(self._observation), reward, done, {}
def render(self, mode="rgb_array", close=False):
if mode != "rgb_array":
return np.array([])
base_pos, orn = self._p.getBasePositionAndOrientation(self._kuka.kukaUid)
view_matrix = self._p.computeViewMatrixFromYawPitchRoll(cameraTargetPosition=base_pos,
distance=self._cam_dist,
yaw=self._cam_yaw,
pitch=self._cam_pitch,
roll=0,
upAxisIndex=2)
proj_matrix = self._p.computeProjectionMatrixFOV(fov=60,
aspect=float(RENDER_WIDTH) / RENDER_HEIGHT,
nearVal=0.1,
farVal=100.0)
(_, _, px, _, _) = self._p.getCameraImage(width=RENDER_WIDTH,
height=RENDER_HEIGHT,
viewMatrix=view_matrix,
projectionMatrix=proj_matrix,
renderer=self._p.ER_BULLET_HARDWARE_OPENGL)
#renderer=self._p.ER_TINY_RENDERER)
rgb_array = np.array(px, dtype=np.uint8)
rgb_array = np.reshape(rgb_array, (RENDER_HEIGHT, RENDER_WIDTH, 4))
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _termination(self):
#print (self._kuka.endEffectorPos[2])
state = p.getLinkState(self._kuka.kukaUid, self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
#print("self._envStepCounter")
#print(self._envStepCounter)
if (self.terminated or self._envStepCounter > self._maxSteps):
self._observation = self.getExtendedObservation()
return True
maxDist = 0.005
closestPoints = p.getClosestPoints(self._kuka.trayUid, self._kuka.kukaUid, maxDist)
if (len(closestPoints)): #(actualEndEffectorPos[2] <= -0.43):
self.terminated = 1
#print("terminating, closing gripper, attempting grasp")
#start grasp and terminate
fingerAngle = 0.3
for i in range(100):
graspAction = [0, 0, 0.0001, 0, fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
fingerAngle = fingerAngle - (0.3 / 100.)
if (fingerAngle < 0):
fingerAngle = 0
for i in range(1000):
graspAction = [0, 0, 0.001, 0, fingerAngle]
self._kuka.applyAction(graspAction)
p.stepSimulation()
blockPos, blockOrn = p.getBasePositionAndOrientation(self.blockUid)
if (blockPos[2] > 0.23):
#print("BLOCKPOS!")
#print(blockPos[2])
break
state = p.getLinkState(self._kuka.kukaUid, self._kuka.kukaEndEffectorIndex)
actualEndEffectorPos = state[0]
if (actualEndEffectorPos[2] > 0.5):
break
self._observation = self.getExtendedObservation()
return True
return False
def _reward(self):
#rewards is height of target object
blockPos, blockOrn = p.getBasePositionAndOrientation(self.blockUid)
closestPoints = p.getClosestPoints(self.blockUid, self._kuka.kukaUid, 1000, -1,
self._kuka.kukaEndEffectorIndex)
reward = -1000
numPt = len(closestPoints)
#print(numPt)
if (numPt > 0):
#print("reward:")
reward = -closestPoints[0][8] * 10
if (blockPos[2] > 0.2):
reward = reward + 10000
print("successfully grasped a block!!!")
#print("self._envStepCounter")
#print(self._envStepCounter)
#print("self._envStepCounter")
#print(self._envStepCounter)
#print("reward")
#print(reward)
#print("reward")
#print(reward)
return reward
if parse_version(gym.__version__) < parse_version('0.9.6'):
_render = render
_reset = reset
_seed = seed
_step = step