Files
bullet3/examples/pybullet/gym/pybullet_envs/minitaur/envs/motor.py
Erwin Coumans ef9570c315 add yapf style and apply yapf to format all Python files
This recreates pull request #2192
2019-04-27 07:31:15 -07:00

142 lines
5.4 KiB
Python

"""This file implements an accurate motor model."""
import numpy as np
VOLTAGE_CLIPPING = 50
# TODO(b/73728631): Clamp the pwm signal instead of the OBSERVED_TORQUE_LIMIT.
OBSERVED_TORQUE_LIMIT = 5.7
MOTOR_VOLTAGE = 16.0
MOTOR_RESISTANCE = 0.186
MOTOR_TORQUE_CONSTANT = 0.0954
MOTOR_VISCOUS_DAMPING = 0
MOTOR_SPEED_LIMIT = MOTOR_VOLTAGE / (MOTOR_VISCOUS_DAMPING + MOTOR_TORQUE_CONSTANT)
NUM_MOTORS = 8
class MotorModel(object):
"""The accurate motor model, which is based on the physics of DC motors.
The motor model support two types of control: position control and torque
control. In position control mode, a desired motor angle is specified, and a
torque is computed based on the internal motor model. When the torque control
is specified, a pwm signal in the range of [-1.0, 1.0] is converted to the
torque.
The internal motor model takes the following factors into consideration:
pd gains, viscous friction, back-EMF voltage and current-torque profile.
"""
def __init__(self, torque_control_enabled=False, kp=1.2, kd=0):
self._torque_control_enabled = torque_control_enabled
self._kp = kp
self._kd = kd
self._resistance = MOTOR_RESISTANCE
self._voltage = MOTOR_VOLTAGE
self._torque_constant = MOTOR_TORQUE_CONSTANT
self._viscous_damping = MOTOR_VISCOUS_DAMPING
self._current_table = [0, 10, 20, 30, 40, 50, 60]
self._torque_table = [0, 1, 1.9, 2.45, 3.0, 3.25, 3.5]
self._strength_ratios = [1.0] * NUM_MOTORS
def set_strength_ratios(self, ratios):
"""Set the strength of each motors relative to the default value.
Args:
ratios: The relative strength of motor output. A numpy array ranging from
0.0 to 1.0.
"""
self._strength_ratios = np.array(ratios)
def set_motor_gains(self, kp, kd):
"""Set the gains of all motors.
These gains are PD gains for motor positional control. kp is the
proportional gain and kd is the derivative gain.
Args:
kp: proportional gain of the motors.
kd: derivative gain of the motors.
"""
self._kp = kp
self._kd = kd
def set_voltage(self, voltage):
self._voltage = voltage
def get_voltage(self):
return self._voltage
def set_viscous_damping(self, viscous_damping):
self._viscous_damping = viscous_damping
def get_viscous_dampling(self):
return self._viscous_damping
def convert_to_torque(self,
motor_commands,
motor_angle,
motor_velocity,
true_motor_velocity,
kp=None,
kd=None):
"""Convert the commands (position control or torque control) to torque.
Args:
motor_commands: The desired motor angle if the motor is in position
control mode. The pwm signal if the motor is in torque control mode.
motor_angle: The motor angle observed at the current time step. It is
actually the true motor angle observed a few milliseconds ago (pd
latency).
motor_velocity: The motor velocity observed at the current time step, it
is actually the true motor velocity a few milliseconds ago (pd latency).
true_motor_velocity: The true motor velocity. The true velocity is used
to compute back EMF voltage and viscous damping.
kp: Proportional gains for the motors' PD controllers. If not provided, it
uses the default kp of the minitaur for all the motors.
kd: Derivative gains for the motors' PD controllers. If not provided, it
uses the default kp of the minitaur for all the motors.
Returns:
actual_torque: The torque that needs to be applied to the motor.
observed_torque: The torque observed by the sensor.
"""
if self._torque_control_enabled:
pwm = motor_commands
else:
if kp is None:
kp = np.full(NUM_MOTORS, self._kp)
if kd is None:
kd = np.full(NUM_MOTORS, self._kd)
pwm = -1 * kp * (motor_angle - motor_commands) - kd * motor_velocity
pwm = np.clip(pwm, -1.0, 1.0)
return self._convert_to_torque_from_pwm(pwm, true_motor_velocity)
def _convert_to_torque_from_pwm(self, pwm, true_motor_velocity):
"""Convert the pwm signal to torque.
Args:
pwm: The pulse width modulation.
true_motor_velocity: The true motor velocity at the current moment. It is
used to compute the back EMF voltage and the viscous damping.
Returns:
actual_torque: The torque that needs to be applied to the motor.
observed_torque: The torque observed by the sensor.
"""
observed_torque = np.clip(
self._torque_constant * (np.asarray(pwm) * self._voltage / self._resistance),
-OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT)
# Net voltage is clipped at 50V by diodes on the motor controller.
voltage_net = np.clip(
np.asarray(pwm) * self._voltage -
(self._torque_constant + self._viscous_damping) * np.asarray(true_motor_velocity),
-VOLTAGE_CLIPPING, VOLTAGE_CLIPPING)
current = voltage_net / self._resistance
current_sign = np.sign(current)
current_magnitude = np.absolute(current)
# Saturate torque based on empirical current relation.
actual_torque = np.interp(current_magnitude, self._current_table, self._torque_table)
actual_torque = np.multiply(current_sign, actual_torque)
actual_torque = np.multiply(self._strength_ratios, actual_torque)
return actual_torque, observed_torque