Files
bullet3/Extras/BulletMultiThreaded/SpuRaycastTask/SpuSubSimplexConvexCast.cpp
johnmccutchan be0beaf7bd Refactored SpuGatheringCollisionTask to use code in SpuCollisionShapes.
More work on SpuBatchRaycaster. It is working now on the PS3 and Windows.
2008-01-14 23:44:07 +00:00

146 lines
4.6 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SpuSubSimplexConvexCast.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
SpuSubsimplexRayCast::SpuSubsimplexRayCast (void* shapeB, SpuConvexPolyhedronVertexData* convexDataB, int shapeTypeB, float marginB,
SpuVoronoiSimplexSolver* simplexSolver)
:m_simplexSolver(simplexSolver), m_shapeB(shapeB), m_convexDataB(convexDataB), m_shapeTypeB(shapeTypeB), m_marginB(marginB)
{
}
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
#ifdef BT_USE_DOUBLE_PRECISION
#define MAX_ITERATIONS 64
#else
#define MAX_ITERATIONS 32
#endif
/* Returns the support point of the minkowski sum:
* MSUM(Pellet, ConvexShape)
*
*/
btVector3 supportPoint (btTransform xform, int shapeType, const void* shape, SpuConvexPolyhedronVertexData* convexVertexData, btVector3 seperatingAxis)
{
btVector3 SupportPellet = btVector3(0.0, 0.0, 0.0);
btVector3 rotatedSeperatingAxis = seperatingAxis * xform.getBasis();
btVector3 SupportShape = xform(localGetSupportingVertexWithoutMargin(shapeType, (void*)shape, rotatedSeperatingAxis, convexVertexData));
return SupportPellet + SupportShape;
}
bool SpuSubsimplexRayCast::calcTimeOfImpact(const btTransform& fromRay,
const btTransform& toRay,
const btTransform& fromB,
const btTransform& toB,
SpuCastResult& result)
{
btTransform rayFromLocalA;
btTransform rayToLocalA;
rayFromLocalA = fromRay.inverse()* fromB;
rayToLocalA = toRay.inverse()* toB;
m_simplexSolver->reset();
btTransform bXform = btTransform(rayFromLocalA.getBasis());
//btScalar radius = btScalar(0.01);
btScalar lambda = btScalar(0.);
//todo: need to verify this:
//because of minkowski difference, we need the inverse direction
btVector3 s = -rayFromLocalA.getOrigin();
btVector3 r = -(rayToLocalA.getOrigin()-rayFromLocalA.getOrigin());
btVector3 x = s;
btVector3 v;
btVector3 arbitraryPoint = supportPoint(bXform, m_shapeTypeB, m_shapeB, m_convexDataB, r);
v = x - arbitraryPoint;
int maxIter = MAX_ITERATIONS;
btVector3 n;
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
bool hasResult = false;
btVector3 c;
btScalar lastLambda = lambda;
btScalar dist2 = v.length2();
#ifdef BT_USE_DOUBLE_PRECISION
btScalar epsilon = btScalar(0.0001);
#else
btScalar epsilon = btScalar(0.0001);
#endif //BT_USE_DOUBLE_PRECISION
btVector3 w,p;
btScalar VdotR;
while ( (dist2 > epsilon) && maxIter--)
{
p = supportPoint(bXform, m_shapeTypeB, m_shapeB, m_convexDataB, v);
w = x - p;
btScalar VdotW = v.dot(w);
if ( VdotW > btScalar(0.))
{
VdotR = v.dot(r);
if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
return false;
else
{
lambda = lambda - VdotW / VdotR;
x = s + lambda * r;
m_simplexSolver->reset();
//check next line
w = x-p;
lastLambda = lambda;
n = v;
hasResult = true;
}
}
m_simplexSolver->addVertex( w, x , p);
if (m_simplexSolver->closest(v))
{
dist2 = v.length2();
hasResult = true;
//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
//printf("DIST2=%f\n",dist2);
//printf("numverts = %i\n",m_simplexSolver->numVertices());
} else
{
dist2 = btScalar(0.);
}
}
//int numiter = MAX_ITERATIONS - maxIter;
// printf("number of iterations: %d", numiter);
result.m_fraction = lambda;
result.m_normal = n;
return true;
}