Files
bullet3/examples/Importers/ImportMJCFDemo/BulletMJCFImporter.cpp
Erwin Coumans c0c4c8ba3f fix many warnings
remove btMultiSapBroadphase.*
make collisionFilterGroup/collisionFilterMark int (instead of short int)
2017-01-15 22:26:11 -08:00

1386 lines
34 KiB
C++

#include "BulletMJCFImporter.h"
#include "../../ThirdPartyLibs/tinyxml/tinyxml.h"
#include "Bullet3Common/b3FileUtils.h"
#include <string>
#include "../../Utils/b3ResourcePath.h"
#include <iostream>
#include <fstream>
#include "../ImportURDFDemo/UrdfParser.h"
#include "../ImportURDFDemo/urdfStringSplit.h"
#include "../ImportURDFDemo/urdfLexicalCast.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
enum ePARENT_LINK_ENUMS
{
BASE_LINK_INDEX=-1,
INVALID_LINK_INDEX=-2
};
static int gUid=0;
static bool parseVector4(btVector4& vec4, const std::string& vector_str)
{
vec4.setZero();
btArray<std::string> pieces;
btArray<float> rgba;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
rgba.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (rgba.size() != 4)
{
return false;
}
vec4.setValue(rgba[0],rgba[1],rgba[2],rgba[3]);
return true;
}
static bool parseVector3(btVector3& vec3, const std::string& vector_str, MJCFErrorLogger* logger, bool lastThree = false)
{
vec3.setZero();
btArray<std::string> pieces;
btArray<float> rgba;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
rgba.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (rgba.size() < 3)
{
logger->reportWarning("Couldn't parse vector3");
return false;
}
if (lastThree) {
vec3.setValue(rgba[rgba.size()-3], rgba[rgba.size()-2], rgba[rgba.size()-1]);
}
else
{
vec3.setValue(rgba[0],rgba[1],rgba[2]);
}
return true;
}
static bool parseVector6(btVector3& v0, btVector3& v1, const std::string& vector_str, MJCFErrorLogger* logger)
{
v0.setZero();
v1.setZero();
btArray<std::string> pieces;
btArray<float> values;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
values.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (values.size() < 6)
{
logger->reportWarning("Couldn't parse 6 floats");
return false;
}
v0.setValue(values[0],values[1],values[2]);
v1.setValue(values[3],values[4],values[5]);
return true;
}
struct BulletMJCFImporterInternalData
{
GUIHelperInterface* m_guiHelper;
char m_pathPrefix[1024];
std::string m_fileModelName;
btAlignedObjectArray<UrdfModel*> m_models;
int m_activeModel;
//todo: for full MJCF compatibility, we would need a stack of default values
int m_defaultCollisionGroup;
int m_defaultCollisionMask;
//those collision shapes are deleted by caller (todo: make sure this happens!)
btAlignedObjectArray<btCollisionShape*> m_allocatedCollisionShapes;
BulletMJCFImporterInternalData()
:m_activeModel(-1),
m_defaultCollisionGroup(1),
m_defaultCollisionMask(1)
{
m_pathPrefix[0] = 0;
}
const UrdfLink* getLink(int modelIndex, int linkIndex) const
{
if (modelIndex>=0 && modelIndex<m_models.size())
{
UrdfLink** linkPtrPtr = m_models[modelIndex]->m_links.getAtIndex(linkIndex);
if (linkPtrPtr && *linkPtrPtr)
{
UrdfLink* linkPtr = *linkPtrPtr;
return linkPtr;
}
}
return 0;
}
bool parseDefaults(TiXmlElement* root_xml, MJCFErrorLogger* logger)
{
bool handled= false;
//rudimentary 'default' support, would need more work for better feature coverage
for (TiXmlElement* child_xml = root_xml->FirstChildElement() ; child_xml ; child_xml = child_xml->NextSiblingElement())
{
std::string n = child_xml->Value();
if (n=="inertial")
{
}
if (n=="geom")
{
//contype, conaffinity
const char* conTypeStr = child_xml->Attribute("contype");
if (conTypeStr)
{
m_defaultCollisionGroup = urdfLexicalCast<int>(conTypeStr);
}
const char* conAffinityStr = child_xml->Attribute("conaffinity");
if (conAffinityStr)
{
m_defaultCollisionMask = urdfLexicalCast<int>(conAffinityStr);
}
}
}
handled=true;
return handled;
}
bool parseRootLevel(TiXmlElement* root_xml,MJCFErrorLogger* logger)
{
for (TiXmlElement* rootxml = root_xml->FirstChildElement() ; rootxml ; rootxml = rootxml->NextSiblingElement())
{
bool handled = false;
std::string n = rootxml->Value();
if (n=="body")
{
int modelIndex = m_models.size();
UrdfModel* model = new UrdfModel();
m_models.push_back(model);
parseBody(rootxml,modelIndex, INVALID_LINK_INDEX,logger);
initTreeAndRoot(*model,logger);
handled = true;
}
if (n=="geom")
{
int modelIndex = m_models.size();
UrdfModel* modelPtr = new UrdfModel();
m_models.push_back(modelPtr);
UrdfLink* linkPtr = new UrdfLink();
linkPtr->m_name = "anonymous";
const char* namePtr = rootxml->Attribute("name");
if (namePtr)
{
linkPtr->m_name = namePtr;
}
int linkIndex = modelPtr->m_links.size();
linkPtr->m_linkIndex = linkIndex;
modelPtr->m_links.insert(linkPtr->m_name.c_str(),linkPtr);
//don't parse geom transform here, it will be inside 'parseGeom'
linkPtr->m_linkTransformInWorld.setIdentity();
// modelPtr->m_rootLinks.push_back(linkPtr);
parseGeom(rootxml,modelIndex, linkIndex,logger);
initTreeAndRoot(*modelPtr,logger);
handled = true;
}
if (n=="site")
{
handled = true;
}
if (!handled)
{
logger->reportWarning("Unhandled root element");
logger->reportWarning(n.c_str());
}
}
return true;
}
bool parseJoint(TiXmlElement* link_xml, int modelIndex, int parentLinkIndex, int linkIndex, MJCFErrorLogger* logger, const btTransform& parentToLinkTrans, btTransform& jointTransOut)
{
const char* jType = link_xml->Attribute("type");
const char* limitedStr = link_xml->Attribute("limited");
const char* axisStr = link_xml->Attribute("axis");
const char* posStr = link_xml->Attribute("pos");
const char* ornStr = link_xml->Attribute("quat");
const char* nameStr = link_xml->Attribute("name");
const char* rangeStr = link_xml->Attribute("range");
btTransform jointTrans;
jointTrans.setIdentity();
if (posStr)
{
btVector3 pos;
std::string p=posStr;
if (parseVector3(pos,p,logger))
{
jointTrans.setOrigin(pos);
}
}
if (ornStr)
{
std::string o = ornStr;
btVector4 o4;
if (parseVector4(o4,o))
{
btQuaternion orn(o4[3],o4[0],o4[1],o4[2]);
jointTrans.setRotation(orn);
}
}
btVector3 jointAxis(1,0,0);
if (axisStr)
{
std::string ax = axisStr;
parseVector3(jointAxis,ax,logger);
} else
{
logger->reportWarning("joint without axis attribute");
}
bool isLimited = false;
double range[2] = {1,0};
if (limitedStr)
{
std::string lim = limitedStr;
if (lim=="true")
{
isLimited = true;
//parse the 'range' field
btArray<std::string> pieces;
btArray<float> sizes;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, rangeStr, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
sizes.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (sizes.size()==2)
{
range[0] = sizes[0];
range[1] = sizes[1];
} else
{
logger->reportWarning("Expected range[2] in joint with limits");
}
}
} else
{
// logger->reportWarning("joint without limited field");
}
bool jointHandled = false;
const UrdfLink* linkPtr = getLink(modelIndex,linkIndex);
btTransform parentLinkToJointTransform;
parentLinkToJointTransform.setIdentity();
parentLinkToJointTransform = parentToLinkTrans*jointTrans;
jointTransOut = jointTrans;
UrdfJointTypes ejtype;
if (jType)
{
std::string jointType = jType;
if (jointType == "fixed")
{
ejtype = URDFFixedJoint;
jointHandled = true;
}
if (jointType == "slide")
{
ejtype = URDFPrismaticJoint;
jointHandled = true;
}
if (jointType == "hinge")
{
if (isLimited)
{
ejtype = URDFRevoluteJoint;
} else
{
ejtype = URDFContinuousJoint;
}
jointHandled = true;
}
} else
{
logger->reportWarning("Expected 'type' attribute for joint");
}
if (jointHandled)
{
UrdfJoint* jointPtr = new UrdfJoint();
jointPtr->m_childLinkName=linkPtr->m_name;
const UrdfLink* parentLink = getLink(modelIndex,parentLinkIndex);
jointPtr->m_parentLinkName =parentLink->m_name;
jointPtr->m_localJointAxis=jointAxis;
jointPtr->m_parentLinkToJointTransform = parentLinkToJointTransform;
jointPtr->m_type = ejtype;
int numJoints = m_models[modelIndex]->m_joints.size();
//range
jointPtr->m_lowerLimit = range[0];
jointPtr->m_upperLimit = range[1];
if (nameStr)
{
jointPtr->m_name =nameStr;
} else
{
char jointName[1024];
sprintf(jointName,"joint%d_%d_%d",gUid++,linkIndex,numJoints);
jointPtr->m_name =jointName;
}
m_models[modelIndex]->m_joints.insert(jointPtr->m_name.c_str(),jointPtr);
return true;
}
/*
URDFRevoluteJoint=1,
URDFPrismaticJoint,
URDFContinuousJoint,
URDFFloatingJoint,
URDFPlanarJoint,
URDFFixedJoint,
*/
return false;
}
bool parseGeom(TiXmlElement* link_xml, int modelIndex, int linkIndex, MJCFErrorLogger* logger)
{
UrdfLink** linkPtrPtr = m_models[modelIndex]->m_links.getAtIndex(linkIndex);
if (linkPtrPtr==0)
{
logger->reportWarning("Invalide linkindex");
return false;
}
UrdfLink* linkPtr = *linkPtrPtr;
btTransform linkLocalFrame;
linkLocalFrame.setIdentity();
bool handledGeomType = false;
UrdfGeometry geom;
// const char* rgba = link_xml->Attribute("rgba");
const char* gType = link_xml->Attribute("type");
const char* sz = link_xml->Attribute("size");
const char* posS = link_xml->Attribute("pos");
if (posS)
{
btVector3 pos(0,0,0);
std::string p = posS;
if (parseVector3(pos,p,logger))
{
linkLocalFrame.setOrigin(pos);
}
}
const char* ornS = link_xml->Attribute("quat");
if (ornS)
{
std::string ornStr = ornS;
btQuaternion orn(0,0,0,1);
btVector4 o4;
if (parseVector4(o4,ornStr))
{
orn.setValue(o4[1],o4[2],o4[3],o4[0]);
linkLocalFrame.setRotation(orn);
}
}
if (gType)
{
std::string geomType = gType;
if (geomType == "plane")
{
geom.m_type = URDF_GEOM_PLANE;
geom.m_planeNormal.setValue(0,0,1);
btVector3 size(1,1,1);
if (sz)
{
std::string sizeStr = sz;
bool lastThree = false;
parseVector3(size,sizeStr,logger,lastThree);
}
geom.m_boxSize = size;
handledGeomType = true;
}
if (geomType == "box")
{
btVector3 size(1,1,1);
if (sz)
{
std::string sizeStr = sz;
bool lastThree = false;
parseVector3(size,sizeStr,logger,lastThree);
}
geom.m_type = URDF_GEOM_BOX;
geom.m_boxSize = size;
handledGeomType = true;
}
if (geomType == "sphere")
{
geom.m_type = URDF_GEOM_SPHERE;
if (sz)
{
geom.m_sphereRadius = urdfLexicalCast<double>(sz);
} else
{
logger->reportWarning("Expected size field (scalar) in sphere geom");
}
handledGeomType = true;
}
//todo: capsule, cylinder, meshes or heightfields etc
if (geomType == "capsule")
{
geom.m_type = URDF_GEOM_CAPSULE;
btArray<std::string> pieces;
btArray<float> sizes;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, sz, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
sizes.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
geom.m_capsuleRadius = 0;
geom.m_capsuleHalfHeight = 0.f;
if (sizes.size()>0)
{
geom.m_capsuleRadius = sizes[0];
if (sizes.size()>1)
{
geom.m_capsuleHalfHeight = sizes[1];
}
} else
{
logger->reportWarning("couldn't convert 'size' attribute of capsule geom");
}
const char* fromtoStr = link_xml->Attribute("fromto");
geom.m_hasFromTo = false;
if (fromtoStr)
{
geom.m_hasFromTo = true;
std::string fromto = fromtoStr;
parseVector6(geom.m_capsuleFrom,geom.m_capsuleTo,fromto,logger);
handledGeomType = true;
} else
{
if (sizes.size()<2)
{
logger->reportWarning("capsule without fromto attribute requires 2 sizes (radius and halfheight)");
} else
{
handledGeomType = true;
}
}
}
#if 0
if (geomType == "cylinder")
{
geom.m_type = URDF_GEOM_CYLINDER;
handledGeomType = true;
}
#endif
if (handledGeomType)
{
UrdfCollision col;
col.m_flags |= URDF_HAS_COLLISION_GROUP;
col.m_collisionGroup = m_defaultCollisionGroup;
col.m_flags |= URDF_HAS_COLLISION_MASK;
col.m_collisionMask = m_defaultCollisionMask;
//contype, conaffinity
const char* conTypeStr = link_xml->Attribute("contype");
if (conTypeStr)
{
col.m_flags |= URDF_HAS_COLLISION_GROUP;
col.m_collisionGroup = urdfLexicalCast<int>(conTypeStr);
}
const char* conAffinityStr = link_xml->Attribute("conaffinity");
if (conAffinityStr)
{
col.m_flags |= URDF_HAS_COLLISION_MASK;
col.m_collisionMask = urdfLexicalCast<int>(conAffinityStr);
}
col.m_geometry = geom;
col.m_linkLocalFrame = linkLocalFrame;
linkPtr->m_collisionArray.push_back(col);
} else
{
char warn[1024];
sprintf(warn,"Unknown/unhandled geom type: %s", geomType.c_str());
logger->reportWarning(warn);
}
} else
{
logger->reportWarning("geom requires type");
}
return handledGeomType;
}
btTransform parseTransform(TiXmlElement* link_xml, MJCFErrorLogger* logger)
{
btTransform tr;
tr.setIdentity();
const char* p = link_xml->Attribute("pos");
if (p)
{
btVector3 pos(0,0,0);
std::string pstr = p;
if (parseVector3(pos,pstr,logger))
{
tr.setOrigin(pos);
}
} else
{
// logger->reportWarning("body should have pos attribute");
}
const char* o = link_xml->Attribute("quat");
if (o)
{
std::string ornstr = o;
btVector4 o4;
btQuaternion orn(0,0,0,1);
if (parseVector4(o4,ornstr))
{
orn.setValue(o4[1],o4[2],o4[3],o4[0]);//MuJoCo quats are [w,x,y,z], Bullet uses [x,y,z,w]
tr.setRotation(orn);
}
} else
{
// logger->reportWarning("body doesn't have quat (orientation) attribute");
}
return tr;
}
double computeVolume(const UrdfLink* linkPtr,MJCFErrorLogger* logger) const
{
double totalVolume = 0;
for (int i=0;i<linkPtr->m_collisionArray.size();i++)
{
const UrdfCollision* col = &linkPtr->m_collisionArray[i];
switch (col->m_geometry.m_type)
{
case URDF_GEOM_SPHERE:
{
double r = col->m_geometry.m_sphereRadius;
totalVolume += 4./3.*SIMD_PI*r*r*r;
break;
}
case URDF_GEOM_BOX:
{
totalVolume += 8. * col->m_geometry.m_boxSize[0]*
col->m_geometry.m_boxSize[1]*
col->m_geometry.m_boxSize[2];
break;
}
case URDF_GEOM_CYLINDER:
{
//todo
break;
}
case URDF_GEOM_MESH:
{
//todo (based on mesh bounding box?)
break;
}
case URDF_GEOM_PLANE:
{
//todo
break;
}
case URDF_GEOM_CAPSULE:
{
//one sphere
double r = col->m_geometry.m_capsuleRadius;
totalVolume += 4./3.*SIMD_PI*r*r*r;
//and one cylinder of 'height'
btScalar h = (col->m_geometry.m_capsuleFrom-col->m_geometry.m_capsuleTo).length();
totalVolume += SIMD_PI*r*r*h;
break;
}
default:
{
}
}
}
return totalVolume;
}
UrdfLink* getLink(int modelIndex, int linkIndex)
{
UrdfLink** linkPtrPtr = m_models[modelIndex]->m_links.getAtIndex(linkIndex);
if (linkPtrPtr && *linkPtrPtr)
{
return *linkPtrPtr;
}
btAssert(0);
return 0;
}
int createBody(int modelIndex, const char* namePtr)
{
UrdfModel* modelPtr = m_models[modelIndex];
int orgChildLinkIndex = modelPtr->m_links.size();
UrdfLink* linkPtr = new UrdfLink();
char uniqueLinkName[1024];
sprintf(uniqueLinkName,"link%d",orgChildLinkIndex );
linkPtr->m_name = uniqueLinkName;
if (namePtr)
{
linkPtr->m_name = namePtr;
}
linkPtr->m_linkIndex = orgChildLinkIndex ;
modelPtr->m_links.insert(linkPtr->m_name.c_str(),linkPtr);
return orgChildLinkIndex;
}
bool parseBody(TiXmlElement* link_xml, int modelIndex, int orgParentLinkIndex, MJCFErrorLogger* logger)
{
int newParentLinkIndex = orgParentLinkIndex;
const char* bodyName = link_xml->Attribute("name");
int orgChildLinkIndex = createBody(modelIndex,bodyName);
// int curChildLinkIndex = orgChildLinkIndex;
std::string bodyN;
if (bodyName)
{
bodyN = bodyName;
} else
{
char anon[1024];
sprintf(anon,"anon%d",gUid++);
bodyN = anon;
}
// btTransform orgLinkTransform = parseTransform(link_xml,logger);
btTransform linkTransform = parseTransform(link_xml,logger);
UrdfLink* linkPtr = getLink(modelIndex,orgChildLinkIndex);
bool massDefined = false;
btVector3 inertialPos(0,0,0);
btQuaternion inertialOrn(0,0,0,1);
btScalar mass = 0.f;
btVector3 localInertiaDiag(0,0,0);
// int thisLinkIndex = -2;
bool hasJoint = false;
btTransform jointTrans;
jointTrans.setIdentity();
bool skipFixedJoint = false;
for (TiXmlElement* xml = link_xml->FirstChildElement() ; xml ; xml = xml->NextSiblingElement())
{
bool handled = false;
std::string n = xml->Value();
if (n=="inertial")
{
// <inertial pos="0 0 0" quat="0.5 0.5 -0.5 0.5" mass="297.821" diaginertia="109.36 69.9714 69.9714" />
const char* p = xml->Attribute("pos");
if (p)
{
std::string posStr = p;
parseVector3(inertialPos,posStr,logger);
}
const char* m = xml->Attribute("mass");
if (m)
{
mass = urdfLexicalCast<double>(m);
}
const char* i = xml->Attribute("diaginertia");
if (i)
{
std::string istr = i;
parseVector3(localInertiaDiag,istr,logger);
}
massDefined = true;
handled = true;
}
if (n=="joint")
{
if (!hasJoint)
{
const char* jType = xml->Attribute("type");
std::string jointType = jType? jType:"";
if (newParentLinkIndex!=INVALID_LINK_INDEX || jointType!="free")
{
if (newParentLinkIndex==INVALID_LINK_INDEX)
{
int newRootLinkIndex = createBody(modelIndex,0);
UrdfLink* rootLink = getLink(modelIndex,newRootLinkIndex);
rootLink->m_inertia.m_mass = 0;
rootLink->m_linkTransformInWorld.setIdentity();
newParentLinkIndex = newRootLinkIndex;
}
int newLinkIndex = createBody(modelIndex,0);
parseJoint(xml,modelIndex,newParentLinkIndex, newLinkIndex,logger,linkTransform,jointTrans);
//getLink(modelIndex,newLinkIndex)->m_linkTransformInWorld = jointTrans*linkTransform;
linkTransform = jointTrans.inverse();
newParentLinkIndex = newLinkIndex;
//newParentLinkIndex, curChildLinkIndex
hasJoint = true;
handled = true;
}
} else
{
int newLinkIndex = createBody(modelIndex,0);
btTransform joint2nextjoint = jointTrans.inverse();
btTransform unused;
parseJoint(xml,modelIndex,newParentLinkIndex, newLinkIndex,logger,joint2nextjoint,unused);
newParentLinkIndex = newLinkIndex;
//todo: compute relative joint transforms (if any) and append to linkTransform
hasJoint = true;
handled = true;
}
}
if (n == "geom")
{
parseGeom(xml,modelIndex, orgChildLinkIndex , logger);
handled = true;
}
//recursive
if (n=="body")
{
parseBody(xml,modelIndex,orgChildLinkIndex,logger);
handled = true;
}
if (n=="light")
{
handled = true;
}
if (!handled)
{
char warn[1024];
std::string n = xml->Value();
sprintf(warn,"Unknown/unhandled field: %s", n.c_str());
logger->reportWarning(warn);
}
}
linkPtr->m_linkTransformInWorld = linkTransform;
if (bodyN == "cart1")//front_left_leg")
{
printf("found!\n");
}
if ((newParentLinkIndex != INVALID_LINK_INDEX) && !skipFixedJoint)
{
//linkPtr->m_linkTransformInWorld.setIdentity();
//default to 'fixed' joint
UrdfJoint* jointPtr = new UrdfJoint();
jointPtr->m_childLinkName=linkPtr->m_name;
const UrdfLink* parentLink = getLink(modelIndex,newParentLinkIndex);
jointPtr->m_parentLinkName =parentLink->m_name;
jointPtr->m_localJointAxis.setValue(1,0,0);
jointPtr->m_parentLinkToJointTransform = linkTransform;
jointPtr->m_type = URDFFixedJoint;
char jointName[1024];
sprintf(jointName,"jointfix_%d_%d",gUid++,newParentLinkIndex);
jointPtr->m_name =jointName;
m_models[modelIndex]->m_joints.insert(jointPtr->m_name.c_str(),jointPtr);
}
//check mass/inertia
if (!massDefined)
{
double density = 1000;
double volume = computeVolume(linkPtr,logger);
mass = density * volume;
}
linkPtr->m_inertia.m_linkLocalFrame.setIdentity();// = jointTrans.inverse();
linkPtr->m_inertia.m_mass = mass;
return true;
}
void recurseAddChildLinks(UrdfModel* model, UrdfLink* link)
{
for (int i=0;i<link->m_childLinks.size();i++)
{
int linkIndex = model->m_links.size();
link->m_childLinks[i]->m_linkIndex = linkIndex;
const char* linkName = link->m_childLinks[i]->m_name.c_str();
model->m_links.insert(linkName,link->m_childLinks[i]);
}
for (int i=0;i<link->m_childLinks.size();i++)
{
recurseAddChildLinks(model,link->m_childLinks[i]);
}
}
bool initTreeAndRoot(UrdfModel& model, MJCFErrorLogger* logger)
{
// every link has children links and joints, but no parents, so we create a
// local convenience data structure for keeping child->parent relations
btHashMap<btHashString,btHashString> parentLinkTree;
// loop through all joints, for every link, assign children links and children joints
for (int i=0;i<model.m_joints.size();i++)
{
UrdfJoint** jointPtr = model.m_joints.getAtIndex(i);
if (jointPtr)
{
UrdfJoint* joint = *jointPtr;
std::string parent_link_name = joint->m_parentLinkName;
std::string child_link_name = joint->m_childLinkName;
if (parent_link_name.empty() || child_link_name.empty())
{
logger->reportError("parent link or child link is empty for joint");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink** childLinkPtr = model.m_links.find(joint->m_childLinkName.c_str());
if (!childLinkPtr)
{
logger->reportError("Cannot find child link for joint ");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink* childLink = *childLinkPtr;
UrdfLink** parentLinkPtr = model.m_links.find(joint->m_parentLinkName.c_str());
if (!parentLinkPtr)
{
logger->reportError("Cannot find parent link for a joint");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink* parentLink = *parentLinkPtr;
childLink->m_parentLink = parentLink;
childLink->m_parentJoint = joint;
parentLink->m_childJoints.push_back(joint);
parentLink->m_childLinks.push_back(childLink);
parentLinkTree.insert(childLink->m_name.c_str(),parentLink->m_name.c_str());
}
}
//search for children that have no parent, those are 'root'
for (int i=0;i<model.m_links.size();i++)
{
UrdfLink** linkPtr = model.m_links.getAtIndex(i);
btAssert(linkPtr);
if (linkPtr)
{
UrdfLink* link = *linkPtr;
link->m_linkIndex = i;
if (!link->m_parentLink)
{
model.m_rootLinks.push_back(link);
}
}
}
if (model.m_rootLinks.size()>1)
{
logger->reportWarning("URDF file with multiple root links found");
}
if (model.m_rootLinks.size()==0)
{
logger->reportError("URDF without root link found");
return false;
}
//re-index the link indices so parent indices are always smaller than child indices
btAlignedObjectArray<UrdfLink*> links;
links.resize(model.m_links.size());
for (int i=0;i<model.m_links.size();i++)
{
links[i] = *model.m_links.getAtIndex(i);
}
model.m_links.clear();
for (int i=0;i<model.m_rootLinks.size();i++)
{
UrdfLink* rootLink = model.m_rootLinks[i];
int linkIndex = model.m_links.size();
rootLink->m_linkIndex = linkIndex;
model.m_links.insert(rootLink->m_name.c_str(),rootLink);
recurseAddChildLinks(&model, rootLink);
}
return true;
}
};
BulletMJCFImporter::BulletMJCFImporter(struct GUIHelperInterface* helper)
{
m_data = new BulletMJCFImporterInternalData();
m_data->m_guiHelper = helper;
}
BulletMJCFImporter::~BulletMJCFImporter()
{
delete m_data;
}
bool BulletMJCFImporter::loadMJCF(const char* fileName, MJCFErrorLogger* logger, bool forceFixedBase)
{
if (strlen(fileName)==0)
return false;
//int argc=0;
char relativeFileName[1024];
b3FileUtils fu;
//bool fileFound = fu.findFile(fileName, relativeFileName, 1024);
bool fileFound = b3ResourcePath::findResourcePath(fileName,relativeFileName,1024);
std::string xml_string;
m_data->m_pathPrefix[0] = 0;
if (!fileFound){
std::cerr << "MJCF file not found" << std::endl;
return false;
} else
{
int maxPathLen = 1024;
fu.extractPath(relativeFileName,m_data->m_pathPrefix,maxPathLen);
std::fstream xml_file(relativeFileName, std::fstream::in);
while ( xml_file.good())
{
std::string line;
std::getline( xml_file, line);
xml_string += (line + "\n");
}
xml_file.close();
if (parseMJCFString(xml_string.c_str(), logger))
{
return true;
}
}
return false;
}
bool BulletMJCFImporter::parseMJCFString(const char* xmlText, MJCFErrorLogger* logger)
{
TiXmlDocument xml_doc;
xml_doc.Parse(xmlText);
if (xml_doc.Error())
{
logger->reportError(xml_doc.ErrorDesc());
xml_doc.ClearError();
return false;
}
TiXmlElement *mujoco_xml = xml_doc.FirstChildElement("mujoco");
if (!mujoco_xml)
{
logger->reportWarning("Cannot find <mujoco> root element");
return false;
}
const char* modelName = mujoco_xml->Attribute("model");
if (modelName)
{
m_data->m_fileModelName = modelName;
}
//<compiler>,<option>,<size>,<default>,<body>,<keyframe>,<contactpair>,
//<light>, <camera>,<constraint>,<tendon>,<actuator>,<customfield>,<textfield>
for (TiXmlElement* link_xml = mujoco_xml->FirstChildElement("default"); link_xml; link_xml = link_xml->NextSiblingElement("default"))
{
m_data->parseDefaults(link_xml,logger);
}
for (TiXmlElement* link_xml = mujoco_xml->FirstChildElement("body"); link_xml; link_xml = link_xml->NextSiblingElement("body"))
{
m_data->parseRootLevel(link_xml,logger);
}
for (TiXmlElement* link_xml = mujoco_xml->FirstChildElement("worldbody"); link_xml; link_xml = link_xml->NextSiblingElement("worldbody"))
{
m_data->parseRootLevel(link_xml,logger);
}
return true;
}
const char* BulletMJCFImporter::getPathPrefix()
{
return m_data->m_pathPrefix;
}
int BulletMJCFImporter::getRootLinkIndex() const
{
if (m_data->m_activeModel>=0 && m_data->m_activeModel<m_data->m_models.size())
{
if (m_data->m_models[m_data->m_activeModel]->m_rootLinks.size())
{
return 0;
}
}
return -1;
}
std::string BulletMJCFImporter::getLinkName(int linkIndex) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,linkIndex);
if (link)
{
return link->m_name;
}
return "";
}
bool BulletMJCFImporter::getLinkColor(int linkIndex, btVector4& colorRGBA) const
{
// UrdfLink* link = m_data->getLink(linkIndex);
return false;
}
//todo: placeholder implementation
//MuJoCo type/affinity is different from Bullet group/mask, so we should implement a custom collision filter instead
//(contype1 & conaffinity2) || (contype2 & conaffinity1)
int BulletMJCFImporter::getCollisionGroupAndMask(int linkIndex, int& colGroup, int& colMask) const
{
int flags = 0;
/*
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,linkIndex);
if (link)
{
for (int i=0;i<link->m_collisionArray.size();i++)
{
const UrdfCollision& col = link->m_collisionArray[i];
colGroup = col.m_collisionGroup;
flags |= URDF_HAS_COLLISION_GROUP;
colMask = col.m_collisionMask;
flags |= URDF_HAS_COLLISION_MASK;
}
}
*/
return flags;
}
std::string BulletMJCFImporter::getJointName(int linkIndex) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,linkIndex);
if (link)
{
if (link->m_parentJoint)
{
return link->m_parentJoint->m_name;
}
return link->m_name;
}
return "";
}
//fill mass and inertial data. If inertial data is missing, please initialize mass, inertia to sensitive values, and inertialFrame to identity.
void BulletMJCFImporter::getMassAndInertia(int urdfLinkIndex, btScalar& mass,btVector3& localInertiaDiagonal, btTransform& inertialFrame) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,urdfLinkIndex);
if (link)
{
mass = link->m_inertia.m_mass;
localInertiaDiagonal.setValue(link->m_inertia.m_ixx,
link->m_inertia.m_iyy,
link->m_inertia.m_izz);
inertialFrame.setIdentity();
inertialFrame = link->m_inertia.m_linkLocalFrame;
} else
{
mass = 0;
localInertiaDiagonal.setZero();
inertialFrame.setIdentity();
}
}
///fill an array of child link indices for this link, btAlignedObjectArray behaves like a std::vector so just use push_back and resize(0) if needed
void BulletMJCFImporter::getLinkChildIndices(int urdfLinkIndex, btAlignedObjectArray<int>& childLinkIndices) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,urdfLinkIndex);
if (link)
{
for (int i=0;i<link->m_childLinks.size();i++)
{
int childIndex = link->m_childLinks[i]->m_linkIndex;
childLinkIndices.push_back(childIndex);
}
}
}
bool BulletMJCFImporter::getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction) const
{
jointLowerLimit = 0.f;
jointUpperLimit = 0.f;
jointDamping = 0.f;
jointFriction = 0.f;
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,urdfLinkIndex);
if (link)
{
linkTransformInWorld = link->m_linkTransformInWorld;
if (link->m_parentJoint)
{
UrdfJoint* pj = link->m_parentJoint;
parent2joint = pj->m_parentLinkToJointTransform;
jointType = pj->m_type;
jointAxisInJointSpace = pj->m_localJointAxis;
jointLowerLimit = pj->m_lowerLimit;
jointUpperLimit = pj->m_upperLimit;
jointDamping = pj->m_jointDamping;
jointFriction = pj->m_jointFriction;
return true;
} else
{
parent2joint.setIdentity();
return false;
}
}
return false;
}
bool BulletMJCFImporter::getRootTransformInWorld(btTransform& rootTransformInWorld) const
{
rootTransformInWorld.setIdentity();
/*
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,0);
if (link)
{
rootTransformInWorld = link->m_linkTransformInWorld;
}
*/
return true;
}
int BulletMJCFImporter::convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& inertialFrame) const
{
return -1;
}
bool BulletMJCFImporter::getLinkContactInfo(int linkIndex, URDFLinkContactInfo& contactInfo ) const
{
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,linkIndex);
if (link)
{
contactInfo = link->m_contactInfo;
return true;
}
return false;
}
void BulletMJCFImporter::convertLinkVisualShapes2(int linkIndex, const char* pathPrefix, const btTransform& inertialFrame, class btCollisionObject* colObj, int objectIndex) const
{
}
void BulletMJCFImporter::setBodyUniqueId(int bodyId)
{
}
int BulletMJCFImporter::getBodyUniqueId() const
{
return 0;
}
class btCompoundShape* BulletMJCFImporter::convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
btCompoundShape* compound = new btCompoundShape();
m_data->m_allocatedCollisionShapes.push_back(compound);
const UrdfLink* link = m_data->getLink(m_data->m_activeModel,linkIndex);
if (link)
{
for (int i=0;i< link->m_collisionArray.size();i++)
{
const UrdfCollision* col = &link->m_collisionArray[i];
btCollisionShape* childShape = 0;
switch (col->m_geometry.m_type)
{
case URDF_GEOM_PLANE:
{
childShape = new btStaticPlaneShape(col->m_geometry.m_planeNormal,0);
break;
}
case URDF_GEOM_SPHERE:
{
childShape = new btSphereShape(col->m_geometry.m_sphereRadius);
break;
}
case URDF_GEOM_BOX:
{
childShape = new btBoxShape(col->m_geometry.m_boxSize);
break;
}
case URDF_GEOM_CYLINDER:
{
// childShape = new btCylinderShape(col->m_geometry...);
break;
}
case URDF_GEOM_MESH:
{
break;
}
case URDF_GEOM_CAPSULE:
{
//todo: convert fromto to btCapsuleShape + local btTransform
if (col->m_geometry.m_hasFromTo)
{
btVector3 f = col->m_geometry.m_capsuleFrom;
btVector3 t = col->m_geometry.m_capsuleTo;
//MuJoCo seems to take the average of the spheres as center?
//btVector3 c = (f+t)*0.5;
//f-=c;
//t-=c;
btVector3 fromto[2] = {f,t};
btScalar radii[2] = {col->m_geometry.m_capsuleRadius,col->m_geometry.m_capsuleRadius};
btMultiSphereShape* ms = new btMultiSphereShape(fromto,radii,2);
childShape = ms;
} else
{
btCapsuleShapeZ* cap = new btCapsuleShapeZ(col->m_geometry.m_capsuleRadius,
2.*col->m_geometry.m_capsuleHalfHeight);
childShape = cap;
}
break;
}
default:
{
}
}
if (childShape)
{
m_data->m_allocatedCollisionShapes.push_back(childShape);
compound->addChildShape(col->m_linkLocalFrame,childShape);
}
}
}
return compound;
}
int BulletMJCFImporter::getNumAllocatedCollisionShapes() const
{
return m_data->m_allocatedCollisionShapes.size();
}
class btCollisionShape* BulletMJCFImporter::getAllocatedCollisionShape(int index)
{
return m_data->m_allocatedCollisionShapes[index];
}
int BulletMJCFImporter::getNumModels() const
{
return m_data->m_models.size();
}
void BulletMJCFImporter::activateModel(int modelIndex)
{
if ((modelIndex>=0) && (modelIndex<m_data->m_models.size()))
{
m_data->m_activeModel = modelIndex;
}
}