Files
bullet3/examples/pybullet/examples/testrender_np.py

71 lines
1.9 KiB
Python

#make sure to compile pybullet with PYBULLET_USE_NUMPY enabled
#otherwise use testrender.py (slower but compatible without numpy)
#you can also use GUI mode, for faster OpenGL rendering (instead of TinyRender CPU)
import numpy as np
import matplotlib.pyplot as plt
import pybullet
import time
from pylab import *
ion()
img = standard_normal((50,100))
image = imshow(img,interpolation='none',animated=True,label="blah")
#pybullet.connect(pybullet.GUI)
pybullet.connect(pybullet.DIRECT)
pybullet.loadURDF("plane.urdf",[0,0,-1])
pybullet.loadURDF("r2d2.urdf")
camTargetPos = [0,0,0]
cameraUp = [0,0,1]
cameraPos = [1,1,1]
pitch = -10.0
roll=0
upAxisIndex = 2
camDistance = 4
pixelWidth = 320
pixelHeight = 200
nearPlane = 0.01
farPlane = 100
fov = 60
main_start = time.time()
while (1):
for yaw in range (0,360,10):
start = time.time()
viewMatrix = pybullet.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex)
aspect = pixelWidth / pixelHeight;
projectionMatrix = pybullet.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane);
img_arr = pybullet.getCameraImage(pixelWidth, pixelHeight, viewMatrix,projectionMatrix, shadow=1,lightDirection=[1,1,1],renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
stop = time.time()
print ("renderImage %f" % (stop - start))
w=img_arr[0] #width of the image, in pixels
h=img_arr[1] #height of the image, in pixels
rgb=img_arr[2] #color data RGB
dep=img_arr[3] #depth data
print ('width = %d height = %d' % (w,h))
#note that sending the data to matplotlib is really slow
np_img_arr = np.reshape(rgb, (h, w, 4))
np_img_arr = np_img_arr*(1./255.)
#show
#plt.imshow(np_img_arr,interpolation='none',extent=(0,1600,0,1200))
image.set_data(np_img_arr)
#draw()
plt.pause(0.0001)
main_stop = time.time()
print ("Total time %f" % (main_stop - main_start))
pybullet.resetSimulation()