Files
bullet3/Demos3/GpuDemos/rigidbody/ConcaveScene.cpp

760 lines
21 KiB
C++

#include "ConcaveScene.h"
#include "GpuRigidBodyDemo.h"
#include "Bullet3Common/b3Quickprof.h"
#include "OpenGLWindow/ShapeData.h"
#include "OpenGLWindow/GLInstancingRenderer.h"
#include "Bullet3Common/b3Quaternion.h"
#include "OpenGLWindow/b3gWindowInterface.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h"
#include "../GpuDemoInternalData.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "OpenGLWindow/OpenGLInclude.h"
#include "OpenGLWindow/GLInstanceRendererInternalData.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h"
#include "Bullet3OpenCL/RigidBody/b3GpuNarrowPhase.h"
#include "Bullet3OpenCL/RigidBody/b3Config.h"
#include "GpuRigidBodyDemoInternalData.h"
#include"../../Wavefront/objLoader.h"
#include "Bullet3Common/b3Transform.h"
#include "OpenGLWindow/GLInstanceGraphicsShape.h"
#define CONCAVE_GAPX 16
#define CONCAVE_GAPY 8
#define CONCAVE_GAPZ 16
GLInstanceGraphicsShape* createGraphicsShapeFromWavefrontObj(objLoader* obj)
{
b3AlignedObjectArray<GLInstanceVertex>* vertices = new b3AlignedObjectArray<GLInstanceVertex>;
{
// int numVertices = obj->vertexCount;
// int numIndices = 0;
b3AlignedObjectArray<int>* indicesPtr = new b3AlignedObjectArray<int>;
/*
for (int v=0;v<obj->vertexCount;v++)
{
vtx.xyzw[0] = obj->vertexList[v]->e[0];
vtx.xyzw[1] = obj->vertexList[v]->e[1];
vtx.xyzw[2] = obj->vertexList[v]->e[2];
b3Vector3 n(vtx.xyzw[0],vtx.xyzw[1],vtx.xyzw[2]);
if (n.length2()>B3_EPSILON)
{
n.normalize();
vtx.normal[0] = n[0];
vtx.normal[1] = n[1];
vtx.normal[2] = n[2];
} else
{
vtx.normal[0] = 0; //todo
vtx.normal[1] = 1;
vtx.normal[2] = 0;
}
vtx.uv[0] = 0.5f;vtx.uv[1] = 0.5f; //todo
vertices->push_back(vtx);
}
*/
for (int f=0;f<obj->faceCount;f++)
{
obj_face* face = obj->faceList[f];
//b3Vector3 normal(face.m_plane[0],face.m_plane[1],face.m_plane[2]);
if (face->vertex_count>=3)
{
b3Vector3 normal(0,1,0);
int vtxBaseIndex = vertices->size();
if (face->vertex_count<=4)
{
indicesPtr->push_back(vtxBaseIndex);
indicesPtr->push_back(vtxBaseIndex+1);
indicesPtr->push_back(vtxBaseIndex+2);
GLInstanceVertex vtx0;
vtx0.xyzw[0] = obj->vertexList[face->vertex_index[0]]->e[0];
vtx0.xyzw[1] = obj->vertexList[face->vertex_index[0]]->e[1];
vtx0.xyzw[2] = obj->vertexList[face->vertex_index[0]]->e[2];
vtx0.xyzw[3] = 0.f;//obj->vertexList[face->vertex_index[0]]->e[2];
vtx0.uv[0] = 0.5f;//obj->textureList[face->vertex_index[0]]->e[0];
vtx0.uv[1] = 0.5f;//obj->textureList[face->vertex_index[0]]->e[1];
GLInstanceVertex vtx1;
vtx1.xyzw[0] = obj->vertexList[face->vertex_index[1]]->e[0];
vtx1.xyzw[1] = obj->vertexList[face->vertex_index[1]]->e[1];
vtx1.xyzw[2] = obj->vertexList[face->vertex_index[1]]->e[2];
vtx1.xyzw[3]= 0.f;
vtx1.uv[0] = 0.5f;//obj->textureList[face->vertex_index[1]]->e[0];
vtx1.uv[1] = 0.5f;//obj->textureList[face->vertex_index[1]]->e[1];
GLInstanceVertex vtx2;
vtx2.xyzw[0] = obj->vertexList[face->vertex_index[2]]->e[0];
vtx2.xyzw[1] = obj->vertexList[face->vertex_index[2]]->e[1];
vtx2.xyzw[2] = obj->vertexList[face->vertex_index[2]]->e[2];
vtx2.xyzw[3] = 0.f;
vtx2.uv[0] = 0.5f;obj->textureList[face->vertex_index[2]]->e[0];
vtx2.uv[1] = 0.5f;obj->textureList[face->vertex_index[2]]->e[1];
b3Vector3 v0(vtx0.xyzw[0],vtx0.xyzw[1],vtx0.xyzw[2]);
b3Vector3 v1(vtx1.xyzw[0],vtx1.xyzw[1],vtx1.xyzw[2]);
b3Vector3 v2(vtx2.xyzw[0],vtx2.xyzw[1],vtx2.xyzw[2]);
normal = (v1-v0).cross(v2-v0);
normal.normalize();
vtx0.normal[0] = normal[0];
vtx0.normal[1] = normal[1];
vtx0.normal[2] = normal[2];
vtx1.normal[0] = normal[0];
vtx1.normal[1] = normal[1];
vtx1.normal[2] = normal[2];
vtx2.normal[0] = normal[0];
vtx2.normal[1] = normal[1];
vtx2.normal[2] = normal[2];
vertices->push_back(vtx0);
vertices->push_back(vtx1);
vertices->push_back(vtx2);
}
if (face->vertex_count==4)
{
indicesPtr->push_back(vtxBaseIndex);
indicesPtr->push_back(vtxBaseIndex+1);
indicesPtr->push_back(vtxBaseIndex+2);
indicesPtr->push_back(vtxBaseIndex+3);
//
GLInstanceVertex vtx3;
vtx3.xyzw[0] = obj->vertexList[face->vertex_index[3]]->e[0];
vtx3.xyzw[1] = obj->vertexList[face->vertex_index[3]]->e[1];
vtx3.xyzw[2] = obj->vertexList[face->vertex_index[3]]->e[2];
vtx3.uv[0] = 0.5;
vtx3.uv[1] = 0.5;
vtx3.normal[0] = normal[0];
vtx3.normal[1] = normal[1];
vtx3.normal[2] = normal[2];
vertices->push_back(vtx3);
}
}
}
GLInstanceGraphicsShape* gfxShape = new GLInstanceGraphicsShape;
gfxShape->m_vertices = vertices;
gfxShape->m_numvertices = vertices->size();
gfxShape->m_indices = indicesPtr;
gfxShape->m_numIndices = indicesPtr->size();
for (int i=0;i<4;i++)
gfxShape->m_scaling[i] = 1;//bake the scaling into the vertices
return gfxShape;
}
}
void ConcaveScene::createConcaveMesh(const ConstructionInfo& ci, const char* fileName, const b3Vector3& shift, const b3Vector3& scaling)
{
objLoader* objData = new objLoader();
FILE* f = 0;
char relativeFileName[1024];
{
const char* prefix[]={"./","../","../../","../../../","../../../../"};
int numPrefixes = sizeof(prefix)/sizeof(char*);
for (int i=0;i<numPrefixes;i++)
{
sprintf(relativeFileName,"%s%s",prefix[i],fileName);
f = fopen(relativeFileName,"r");
if (f)
{
break;
}
}
}
if (f)
{
fclose(f);
f=0;
}
else
return;
objData->load(relativeFileName);
int index=10;
{
GLInstanceGraphicsShape* shape = createGraphicsShapeFromWavefrontObj(objData);
b3AlignedObjectArray<b3Vector3> verts;
for (int i=0;i<shape->m_numvertices;i++)
{
for (int j=0;j<3;j++)
shape->m_vertices->at(i).xyzw[j] += shift[j];
b3Vector3 vtx(shape->m_vertices->at(i).xyzw[0],
shape->m_vertices->at(i).xyzw[1],
shape->m_vertices->at(i).xyzw[2]);
verts.push_back(vtx*scaling);
}
int colIndex = m_data->m_np->registerConcaveMesh(&verts,shape->m_indices,b3Vector3(1,1,1));
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&shape->m_vertices->at(0).xyzw[0], shape->m_numvertices, &shape->m_indices->at(0), shape->m_numIndices);
b3Quaternion orn(0,0,0,1);
b3Vector4 color(0.3,0.3,1,1.f);//0.5);//1.f
{
float mass = 0.f;
b3Vector3 position(0,0,0);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
delete objData;
}
void ConcaveScene::setupScene(const ConstructionInfo& ci)
{
if (1)
{
//char* fileName = "data/slopedPlane100.obj";
//char* fileName = "data/plane100.obj";
// char* fileName = "data/plane100.obj";
//char* fileName = "data/teddy.obj";//"plane.obj";
// char* fileName = "data/sponza_closed.obj";//"plane.obj";
//char* fileName = "data/leoTest1.obj";
char* fileName = "data/samurai_monastry.obj";
// char* fileName = "data/teddy2_VHACD_CHs.obj";
b3Vector3 shift1(0,-50,0);//0,230,80);//150,-100,-120);
b3Vector4 scaling(4,4,4,1);
// createConcaveMesh(ci,"data/plane100.obj",shift1,scaling);
//createConcaveMesh(ci,"data/plane100.obj",shift,scaling);
b3Vector3 shift2(0,0,0);//0,230,80);//150,-100,-120);
createConcaveMesh(ci,"data/teddy.obj",shift2,scaling);
b3Vector3 shift3(130,-150,-75);//0,230,80);//150,-100,-120);
// createConcaveMesh(ci,"data/leoTest1.obj",shift3,scaling);
createConcaveMesh(ci,"data/samurai_monastry.obj",shift3,scaling);
} else
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
{
b3Vector4 scaling(400,0.001,400,1);
int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
b3Vector3 position(0,-2,0);
b3Quaternion orn(0,0,0,1);
b3Vector4 color(0,0,1,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(0.f,position,orn,colIndex,index,false);
}
}
createDynamicObjects(ci);
m_data->m_rigidBodyPipeline->writeAllInstancesToGpu();
float camPos[4]={0,0,0,0};//65.5,4.5,65.5,0};
//float camPos[4]={1,12.5,1.5,0};
m_instancingRenderer->setCameraPitch(45);
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(25);
}
void ConcaveScene::createDynamicObjects(const ConstructionInfo& ci)
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
if (1)
{
int curColor = 0;
b3Vector4 colors[4] =
{
b3Vector4(1,1,1,1),
b3Vector4(1,1,0.3,1),
b3Vector4(0.3,1,1,1),
b3Vector4(0.3,0.3,1,1),
};
b3Vector4 scaling(1,1,1,1);
int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1;
//b3Vector3 position(-2*ci.gapX+i*ci.gapX,25+j*ci.gapY,-2*ci.gapZ+k*ci.gapZ);
b3Vector3 position(-(ci.arraySizeX/2)*CONCAVE_GAPX+i*CONCAVE_GAPX,150+j*CONCAVE_GAPY,-(ci.arraySizeZ/2)*CONCAVE_GAPZ+k*CONCAVE_GAPZ);
b3Quaternion orn(0,0,0,1);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}
}
void ConcaveCompoundScene::setupScene(const ConstructionInfo& ci)
{
ConcaveScene::setupScene(ci);
float camPos[4]={0,50,0,0};//65.5,4.5,65.5,0};
//float camPos[4]={1,12.5,1.5,0};
m_instancingRenderer->setCameraPitch(45);
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(40);
}
void ConcaveCompound2Scene::createDynamicObjects(const ConstructionInfo& ci)
{
objLoader* objData = new objLoader();
char* fileName = "data/teddy2_VHACD_CHs.obj";
//char* fileName = "data/cube_offset.obj";
b3Vector3 shift(0,0,0);//0,230,80);//150,-100,-120);
b3Vector4 scaling(1,1,1,1);
FILE* f = 0;
char relativeFileName[1024];
{
const char* prefix[]={"./","../","../../","../../../","../../../../"};
int numPrefixes = sizeof(prefix)/sizeof(char*);
for (int i=0;i<numPrefixes;i++)
{
sprintf(relativeFileName,"%s%s",prefix[i],fileName);
f = fopen(relativeFileName,"r");
if (f)
{
fclose(f);
break;
}
}
}
if (f)
fclose(f);
else
return;
objData->load(relativeFileName);
if (objData->objectCount>0)
{
int strideInBytes = 9*sizeof(float);
b3AlignedObjectArray<GLInstanceVertex> vertexArray;
b3AlignedObjectArray<int> indexArray;
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
int colIndex = 0;
b3AlignedObjectArray<GLInstanceVertex> vertices;
int stride2 = sizeof(GLInstanceVertex);
b3Assert(stride2 == strideInBytes);
{
b3AlignedObjectArray<b3GpuChildShape> childShapes;
int numChildShapes = objData->objectCount;
for (int i=0;i<numChildShapes;i++)
// int i=4;
{
obj_object* object = objData->objectList[i];
int numVertices = i==numChildShapes-1? objData->vertexCount-object->vertex_offset : objData->objectList[i+1]->vertex_offset - object->vertex_offset;
int numFaces = i==numChildShapes-1? objData->faceCount - object->face_offset : objData->objectList[i+1]->face_offset-object->face_offset;
//for now, only support polyhedral child shapes
b3GpuChildShape child;
b3Vector3 pos(0,0,0);
b3Quaternion orn(0,0,0,1);
for (int v=0;v<4;v++)
{
child.m_childPosition[v] = pos[v];
child.m_childOrientation[v] = orn[v];
}
b3Transform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
int baseIndex = vertexArray.size();
for (int f=0;f<numFaces;f++)
{
obj_face* face = objData->faceList[object->face_offset+f];
if (face->vertex_count==3)
{
for (int i=0;i<3;i++)
{
indexArray.push_back(face->vertex_index[i]);//-object->vertex_offset);
}
} else
{
b3Assert(0);
}
}
b3Vector3 center(0,0,0);
b3AlignedObjectArray<GLInstanceVertex> tmpVertices;
//add transformed graphics vertices and indices
b3Vector3 myScaling(1,1,1);//50,50,50);//300,300,300);
for (int v=0;v<numVertices;v++)
{
GLInstanceVertex vert;
obj_vector* orgVert = objData->vertexList[object->vertex_offset+v];
vert.uv[0] = 0.5f;
vert.uv[1] = 0.5f;
vert.normal[0]=0.f;
vert.normal[1]=1.f;
vert.normal[2]=0.f;
b3Vector3 vertPos;
vertPos[0] = orgVert->e[0]*myScaling[0];
vertPos[1] = orgVert->e[1]*myScaling[1];
vertPos[2] = orgVert->e[2]*myScaling[2];
vertPos[3] =0.f;
center+=vertPos;
}
center/=numVertices;
for (int v=0;v<numVertices;v++)
{
GLInstanceVertex vert;
obj_vector* orgVert = objData->vertexList[object->vertex_offset+v];
vert.uv[0] = 0.5f;
vert.uv[1] = 0.5f;
vert.normal[0]=0.f;
vert.normal[1]=1.f;
vert.normal[2]=0.f;
b3Vector3 vertPos;
vertPos[0] = orgVert->e[0]*myScaling[0];
vertPos[1] = orgVert->e[1]*myScaling[1];
vertPos[2] = orgVert->e[2]*myScaling[2];
vertPos[3] =0.f;
// vertPos-=center;
vert.xyzw[0] = vertPos[0];
vert.xyzw[1] = vertPos[1];
vert.xyzw[2] = vertPos[2];
tmpVertices.push_back(vert);
b3Vector3 newPos = tr*vertPos;
vert.xyzw[0] = newPos[0];
vert.xyzw[1] = newPos[1];
vert.xyzw[2] = newPos[2];
vert.xyzw[3] = 0.f;
vertexArray.push_back(vert);
}
int childColIndex = m_data->m_np->registerConvexHullShape(&tmpVertices[0].xyzw[0],strideInBytes,numVertices, scaling);
child.m_shapeIndex = childColIndex;
childShapes.push_back(child);
colIndex = childColIndex;
}
colIndex= m_data->m_np->registerCompoundShape(&childShapes);
}
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0],vertexArray.size(),&indexArray[0],indexArray.size());
b3Vector4 colors[4] =
{
b3Vector4(1,0,0,1),
b3Vector4(0,1,0,1),
b3Vector4(0,0,1,1),
b3Vector4(0,1,1,1),
};
int curColor = 0;
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1;//j==0? 0.f : 1.f;
//b3Vector3 position(i*10*ci.gapX,j*ci.gapY,k*10*ci.gapZ);
b3Vector3 position(i*10*ci.gapX,10+j*ci.gapY,k*10*ci.gapZ);
// b3Quaternion orn(0,0,0,1);
b3Quaternion orn(b3Vector3(0,0,1),1.8);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
b3Vector4 scaling(1,1,1,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}
delete objData;
}
void ConcaveCompoundScene::createDynamicObjects(const ConstructionInfo& ci)
{
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
b3AlignedObjectArray<GLInstanceVertex> vertexArray;
b3AlignedObjectArray<int> indexArray;
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int group=1;
int mask=1;
int index=0;
float scaling[4] = {1,1,1,1};
int colIndex = 0;
GLInstanceVertex* cubeVerts = (GLInstanceVertex*)&cube_vertices[0];
int stride2 = sizeof(GLInstanceVertex);
b3Assert(stride2 == strideInBytes);
{
int childColIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
b3Vector3 childPositions[3] = {
b3Vector3(0,-2,0),
b3Vector3(0,0,0),
b3Vector3(0,0,2)
};
b3AlignedObjectArray<b3GpuChildShape> childShapes;
int numChildShapes = 3;
for (int i=0;i<numChildShapes;i++)
{
//for now, only support polyhedral child shapes
b3GpuChildShape child;
child.m_shapeIndex = childColIndex;
b3Vector3 pos = childPositions[i];
b3Quaternion orn(0,0,0,1);
for (int v=0;v<4;v++)
{
child.m_childPosition[v] = pos[v];
child.m_childOrientation[v] = orn[v];
}
childShapes.push_back(child);
b3Transform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
int baseIndex = vertexArray.size();
for (int j=0;j<numIndices;j++)
indexArray.push_back(cube_indices[j]+baseIndex);
//add transformed graphics vertices and indices
for (int v=0;v<numVertices;v++)
{
GLInstanceVertex vert = cubeVerts[v];
b3Vector3 vertPos(vert.xyzw[0],vert.xyzw[1],vert.xyzw[2]);
b3Vector3 newPos = tr*vertPos;
vert.xyzw[0] = newPos[0];
vert.xyzw[1] = newPos[1];
vert.xyzw[2] = newPos[2];
vert.xyzw[3] = 0.f;
vertexArray.push_back(vert);
}
}
colIndex= m_data->m_np->registerCompoundShape(&childShapes);
}
//int shapeId = ci.m_instancingRenderer->registerShape(&cube_vertices[0],numVertices,cube_indices,numIndices);
int shapeId = ci.m_instancingRenderer->registerShape(&vertexArray[0].xyzw[0],vertexArray.size(),&indexArray[0],indexArray.size());
b3Vector4 colors[4] =
{
b3Vector4(1,0,0,1),
b3Vector4(0,1,0,1),
b3Vector4(0,0,1,1),
b3Vector4(0,1,1,1),
};
int curColor = 0;
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1;//j==0? 0.f : 1.f;
b3Vector3 position(i*ci.gapX,50+j*ci.gapY,k*ci.gapZ);
//b3Quaternion orn(0,0,0,1);
b3Quaternion orn(b3Vector3(1,0,0),0.7);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
b3Vector4 scaling(1,1,1,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(shapeId,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}
void ConcaveSphereScene::setupScene(const ConstructionInfo& ci)
{
ConcaveScene::setupScene(ci);
float camPos[4]={0,50,0,0};//65.5,4.5,65.5,0};
//float camPos[4]={1,12.5,1.5,0};
m_instancingRenderer->setCameraPitch(45);
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(40);
}
void ConcaveSphereScene::createDynamicObjects(const ConstructionInfo& ci)
{
b3Vector4 colors[4] =
{
b3Vector4(1,0,0,1),
b3Vector4(0,1,0,1),
b3Vector4(0,1,1,1),
b3Vector4(1,1,0,1),
};
int index=0;
int curColor = 0;
float radius = 1;
//int colIndex = m_data->m_np->registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
int colIndex = m_data->m_np->registerSphereShape(radius);//>registerConvexHullShape(&cube_vertices[0],strideInBytes,numVertices, scaling);
int prevGraphicsShapeIndex = registerGraphicsSphereShape(ci,radius,false);
for (int i=0;i<ci.arraySizeX;i++)
{
for (int j=0;j<ci.arraySizeY;j++)
{
for (int k=0;k<ci.arraySizeZ;k++)
{
float mass = 1.f;
b3Vector3 position(-(ci.arraySizeX/2)*8+i*8,50+j*8,-(ci.arraySizeZ/2)*8+k*8);
//b3Vector3 position(0,-41,0);//0,0,0);//i*radius*3,-41+j*radius*3,k*radius*3);
b3Quaternion orn(0,0,0,1);
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
b3Vector4 scaling(radius,radius,radius,1);
int id = ci.m_instancingRenderer->registerGraphicsInstance(prevGraphicsShapeIndex,position,orn,color,scaling);
int pid = m_data->m_rigidBodyPipeline->registerPhysicsInstance(mass,position,orn,colIndex,index,false);
index++;
}
}
}
}