Files
bullet3/src/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
ejcoumans 3fe3b11924 use Dispatcher in ConcaveConvexCollisionAlgorithm (so it uses the registered collision algorithm, not hardcoded convexconcave)
improved performance of constraint solver by precalculating the cross product/impulse arm
added collision comparison code: ODE box-box, also sphere-triangle
added safety check into GJK, and an assert for AABB's that are very large
write partid/triangle index outside of GJK
2006-10-28 02:06:19 +00:00

391 lines
11 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btSequentialImpulseConstraintSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "btContactConstraint.h"
#include "btSolve2LinearConstraint.h"
#include "btContactSolverInfo.h"
#include "LinearMath/btIDebugDraw.h"
#include "btJacobianEntry.h"
#include "LinearMath/btMinMax.h"
#ifdef USE_PROFILE
#include "LinearMath/btQuickprof.h"
#endif //USE_PROFILE
int totalCpd = 0;
int gTotalContactPoints = 0;
bool MyContactDestroyedCallback(void* userPersistentData)
{
assert (userPersistentData);
btConstraintPersistentData* cpd = (btConstraintPersistentData*)userPersistentData;
delete cpd;
totalCpd--;
//printf("totalCpd = %i. DELETED Ptr %x\n",totalCpd,userPersistentData);
return true;
}
btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver()
{
gContactDestroyedCallback = &MyContactDestroyedCallback;
//initialize default friction/contact funcs
int i,j;
for (i=0;i<MAX_CONTACT_SOLVER_TYPES;i++)
for (j=0;j<MAX_CONTACT_SOLVER_TYPES;j++)
{
m_contactDispatch[i][j] = resolveSingleCollision;
m_frictionDispatch[i][j] = resolveSingleFriction;
}
}
/// btSequentialImpulseConstraintSolver Sequentially applies impulses
float btSequentialImpulseConstraintSolver::solveGroup(btPersistentManifold** manifoldPtr, int numManifolds,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
{
btContactSolverInfo info = infoGlobal;
int numiter = infoGlobal.m_numIterations;
#ifdef USE_PROFILE
btProfiler::beginBlock("solve");
#endif //USE_PROFILE
{
int j;
for (j=0;j<numManifolds;j++)
{
int k=j;
prepareConstraints(manifoldPtr[k],info,debugDrawer);
solve(manifoldPtr[k],info,0,debugDrawer);
}
}
//should traverse the contacts random order...
int i;
for ( i = 0;i<numiter-1;i++)
{
int j;
for (j=0;j<numManifolds;j++)
{
int k=j;
if (i&1)
k=numManifolds-j-1;
solve(manifoldPtr[k],info,i,debugDrawer);
}
}
#ifdef USE_PROFILE
btProfiler::endBlock("solve");
btProfiler::beginBlock("solveFriction");
#endif //USE_PROFILE
//now solve the friction
for (i = 0;i<numiter-1;i++)
{
int j;
for (j=0;j<numManifolds;j++)
{
int k = j;
if (i&1)
k=numManifolds-j-1;
solveFriction(manifoldPtr[k],info,i,debugDrawer);
}
}
#ifdef USE_PROFILE
btProfiler::endBlock("solveFriction");
#endif //USE_PROFILE
return 0.f;
}
float penetrationResolveFactor = 0.9f;
btScalar restitutionCurve(btScalar rel_vel, btScalar restitution)
{
btScalar rest = restitution * -rel_vel;
return rest;
}
void btSequentialImpulseConstraintSolver::prepareConstraints(btPersistentManifold* manifoldPtr, const btContactSolverInfo& info,btIDebugDraw* debugDrawer)
{
btRigidBody* body0 = (btRigidBody*)manifoldPtr->getBody0();
btRigidBody* body1 = (btRigidBody*)manifoldPtr->getBody1();
//only necessary to refresh the manifold once (first iteration). The integration is done outside the loop
{
manifoldPtr->refreshContactPoints(body0->getCenterOfMassTransform(),body1->getCenterOfMassTransform());
int numpoints = manifoldPtr->getNumContacts();
gTotalContactPoints += numpoints;
btVector3 color(0,1,0);
for (int i=0;i<numpoints ;i++)
{
btManifoldPoint& cp = manifoldPtr->getContactPoint(i);
if (cp.getDistance() <= 0.f)
{
const btVector3& pos1 = cp.getPositionWorldOnA();
const btVector3& pos2 = cp.getPositionWorldOnB();
btVector3 rel_pos1 = pos1 - body0->getCenterOfMassPosition();
btVector3 rel_pos2 = pos2 - body1->getCenterOfMassPosition();
//this jacobian entry is re-used for all iterations
btJacobianEntry jac(body0->getCenterOfMassTransform().getBasis().transpose(),
body1->getCenterOfMassTransform().getBasis().transpose(),
rel_pos1,rel_pos2,cp.m_normalWorldOnB,body0->getInvInertiaDiagLocal(),body0->getInvMass(),
body1->getInvInertiaDiagLocal(),body1->getInvMass());
btScalar jacDiagAB = jac.getDiagonal();
btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData;
if (cpd)
{
//might be invalid
cpd->m_persistentLifeTime++;
if (cpd->m_persistentLifeTime != cp.getLifeTime())
{
//printf("Invalid: cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.getLifeTime());
new (cpd) btConstraintPersistentData;
cpd->m_persistentLifeTime = cp.getLifeTime();
} else
{
//printf("Persistent: cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.getLifeTime());
}
} else
{
cpd = new btConstraintPersistentData();
totalCpd ++;
//printf("totalCpd = %i Created Ptr %x\n",totalCpd,cpd);
cp.m_userPersistentData = cpd;
cpd->m_persistentLifeTime = cp.getLifeTime();
//printf("CREATED: %x . cpd->m_persistentLifeTime = %i cp.getLifeTime() = %i\n",cpd,cpd->m_persistentLifeTime,cp.getLifeTime());
}
assert(cpd);
cpd->m_jacDiagABInv = 1.f / jacDiagAB;
//Dependent on Rigidbody A and B types, fetch the contact/friction response func
//perhaps do a similar thing for friction/restutution combiner funcs...
cpd->m_frictionSolverFunc = m_frictionDispatch[body0->m_frictionSolverType][body1->m_frictionSolverType];
cpd->m_contactSolverFunc = m_contactDispatch[body0->m_contactSolverType][body1->m_contactSolverType];
btVector3 vel1 = body0->getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body1->getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar rel_vel;
rel_vel = cp.m_normalWorldOnB.dot(vel);
float combinedRestitution = cp.m_combinedRestitution;
cpd->m_penetration = cp.getDistance();
cpd->m_friction = cp.m_combinedFriction;
cpd->m_restitution = restitutionCurve(rel_vel, combinedRestitution);
if (cpd->m_restitution <= 0.) //0.f)
{
cpd->m_restitution = 0.0f;
};
//restitution and penetration work in same direction so
//rel_vel
btScalar penVel = -cpd->m_penetration/info.m_timeStep;
if (cpd->m_restitution >= penVel)
{
cpd->m_penetration = 0.f;
}
float relaxation = info.m_damping;
cpd->m_appliedImpulse *= relaxation;
//for friction
cpd->m_prevAppliedImpulse = cpd->m_appliedImpulse;
//re-calculate friction direction every frame, todo: check if this is really needed
btPlaneSpace1(cp.m_normalWorldOnB,cpd->m_frictionWorldTangential0,cpd->m_frictionWorldTangential1);
#define NO_FRICTION_WARMSTART 1
#ifdef NO_FRICTION_WARMSTART
cpd->m_accumulatedTangentImpulse0 = 0.f;
cpd->m_accumulatedTangentImpulse1 = 0.f;
#endif //NO_FRICTION_WARMSTART
float denom0 = body0->computeImpulseDenominator(pos1,cpd->m_frictionWorldTangential0);
float denom1 = body1->computeImpulseDenominator(pos2,cpd->m_frictionWorldTangential0);
float denom = relaxation/(denom0+denom1);
cpd->m_jacDiagABInvTangent0 = denom;
denom0 = body0->computeImpulseDenominator(pos1,cpd->m_frictionWorldTangential1);
denom1 = body1->computeImpulseDenominator(pos2,cpd->m_frictionWorldTangential1);
denom = relaxation/(denom0+denom1);
cpd->m_jacDiagABInvTangent1 = denom;
btVector3 totalImpulse =
#ifndef NO_FRICTION_WARMSTART
cp.m_frictionWorldTangential0*cp.m_accumulatedTangentImpulse0+
cp.m_frictionWorldTangential1*cp.m_accumulatedTangentImpulse1+
#endif //NO_FRICTION_WARMSTART
cp.m_normalWorldOnB*cpd->m_appliedImpulse;
///
{
btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
cpd->m_angularComponentA = body0->getInvInertiaTensorWorld()*torqueAxis0;
btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
cpd->m_angularComponentB = body1->getInvInertiaTensorWorld()*torqueAxis1;
}
{
btVector3 ftorqueAxis0 = rel_pos1.cross(cpd->m_frictionWorldTangential0);
cpd->m_frictionAngularComponent0A = body0->getInvInertiaTensorWorld()*ftorqueAxis0;
}
{
btVector3 ftorqueAxis1 = rel_pos1.cross(cpd->m_frictionWorldTangential1);
cpd->m_frictionAngularComponent1A = body0->getInvInertiaTensorWorld()*ftorqueAxis1;
}
{
btVector3 ftorqueAxis0 = rel_pos2.cross(cpd->m_frictionWorldTangential0);
cpd->m_frictionAngularComponent0B = body1->getInvInertiaTensorWorld()*ftorqueAxis0;
}
{
btVector3 ftorqueAxis1 = rel_pos2.cross(cpd->m_frictionWorldTangential1);
cpd->m_frictionAngularComponent1B = body1->getInvInertiaTensorWorld()*ftorqueAxis1;
}
///
//apply previous frames impulse on both bodies
body0->applyImpulse(totalImpulse, rel_pos1);
body1->applyImpulse(-totalImpulse, rel_pos2);
}
}
}
}
float btSequentialImpulseConstraintSolver::solve(btPersistentManifold* manifoldPtr, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer)
{
btRigidBody* body0 = (btRigidBody*)manifoldPtr->getBody0();
btRigidBody* body1 = (btRigidBody*)manifoldPtr->getBody1();
float maxImpulse = 0.f;
{
const int numpoints = manifoldPtr->getNumContacts();
btVector3 color(0,1,0);
for (int i=0;i<numpoints ;i++)
{
int j=i;
if (iter % 2)
j = numpoints-1-i;
else
j=i;
btManifoldPoint& cp = manifoldPtr->getContactPoint(j);
if (cp.getDistance() <= 0.f)
{
if (iter == 0)
{
if (debugDrawer)
debugDrawer->drawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.getDistance(),cp.getLifeTime(),color);
}
{
btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData;
float impulse = cpd->m_contactSolverFunc(
*body0,*body1,
cp,
info);
if (maxImpulse < impulse)
maxImpulse = impulse;
}
}
}
}
return maxImpulse;
}
float btSequentialImpulseConstraintSolver::solveFriction(btPersistentManifold* manifoldPtr, const btContactSolverInfo& info,int iter,btIDebugDraw* debugDrawer)
{
btRigidBody* body0 = (btRigidBody*)manifoldPtr->getBody0();
btRigidBody* body1 = (btRigidBody*)manifoldPtr->getBody1();
{
const int numpoints = manifoldPtr->getNumContacts();
btVector3 color(0,1,0);
for (int i=0;i<numpoints ;i++)
{
int j=i;
//if (iter % 2)
// j = numpoints-1-i;
btManifoldPoint& cp = manifoldPtr->getContactPoint(j);
if (cp.getDistance() <= 0.f)
{
btConstraintPersistentData* cpd = (btConstraintPersistentData*) cp.m_userPersistentData;
cpd->m_frictionSolverFunc(
*body0,*body1,
cp,
info);
}
}
}
return 0.f;
}