91 lines
2.6 KiB
Python
91 lines
2.6 KiB
Python
import math
|
|
import gym
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
import numpy as np
|
|
import time
|
|
|
|
import pybullet as p
|
|
from envs.bullet.minitaur import Minitaur
|
|
|
|
class MinitaurBulletEnv(gym.Env):
|
|
metadata = {
|
|
'render.modes': ['human', 'rgb_array'],
|
|
'video.frames_per_second' : 50
|
|
}
|
|
|
|
def __init__(self):
|
|
self._timeStep = 0.01
|
|
self._observation = []
|
|
self._envStepCounter = 0
|
|
self._lastBasePosition = [0, 0, 0]
|
|
|
|
p.connect(p.GUI)
|
|
|
|
p.resetSimulation()
|
|
p.setTimeStep(self._timeStep)
|
|
p.loadURDF("plane.urdf")
|
|
p.setGravity(0,0,-10)
|
|
self._minitaur = Minitaur()
|
|
|
|
observationDim = self._minitaur.getObservationDimension()
|
|
observation_high = np.array([np.finfo(np.float32).max] * observationDim)
|
|
actionDim = 8
|
|
action_high = np.array([math.pi / 2.0] * actionDim)
|
|
self.action_space = spaces.Box(-action_high, action_high)
|
|
self.observation_space = spaces.Box(-observation_high, observation_high)
|
|
|
|
self._seed()
|
|
self.reset()
|
|
self.viewer = None
|
|
|
|
def __del__(self):
|
|
p.disconnect()
|
|
|
|
def _seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
def _step(self, action):
|
|
if len(action) != self._minitaur.getActionDimension():
|
|
raise ValueError("We expect {} continuous action not {}.".format(self._minitaur.getActionDimension(), len(actions.continuous_actions)))
|
|
|
|
for i in range(len(action)):
|
|
if not -math.pi/2 <= action[i] <= math.pi/2:
|
|
raise ValueError("{}th action should be between -1 and 1 not {}.".format(i, action[i]))
|
|
action[i] += math.pi / 2
|
|
|
|
self._minitaur.applyAction(action)
|
|
p.stepSimulation()
|
|
self._observation = self._minitaur.getObservation()
|
|
self._envStepCounter += 1
|
|
reward = self._reward()
|
|
done = self._termination()
|
|
return np.array(self._observation), reward, done, {}
|
|
|
|
def _reset(self):
|
|
p.resetSimulation()
|
|
p.setTimeStep(self._timeStep)
|
|
p.loadURDF("plane.urdf")
|
|
p.setGravity(0,0,-10)
|
|
self._minitaur = Minitaur()
|
|
self._observation = self._minitaur.getObservation()
|
|
|
|
def _render(self, mode='human', close=False):
|
|
return
|
|
|
|
def is_fallen(self):
|
|
orientation = self._minitaur.getBaseOrientation()
|
|
rotMat = p.getMatrixFromQuaternion(orientation)
|
|
localUp = rotMat[6:]
|
|
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
|
|
|
|
def _termination(self):
|
|
return self.is_fallen()
|
|
|
|
def _reward(self):
|
|
currentBasePosition = self._minitaur.getBasePosition()
|
|
reward = np.dot(np.asarray([-1, 0, 0]), np.asarray(currentBasePosition) - np.asarray(self._lastBasePosition))
|
|
self._lastBasePosition = currentBasePosition
|
|
return reward
|