Files
bullet3/examples/Evolution/NN3DWalkers.cpp
2016-09-06 22:30:46 +02:00

655 lines
21 KiB
C++
Executable File

/*
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans
Motor Demo
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "NN3DWalkers.h"
#include <map>
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAlignedObjectArray.h"
class btBroadphaseInterface;
class btCollisionShape;
class btOverlappingPairCache;
class btCollisionDispatcher;
class btConstraintSolver;
struct btCollisionAlgorithmCreateFunc;
class btDefaultCollisionConfiguration;
#include "../CommonInterfaces/CommonRigidBodyBase.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
//TODO: Maybe add pointworldToLocal and AxisWorldToLocal etc. to a helper class
//TODO: How to detect perpetually interpenetrating btRigidBodies? (Maybe contactpoints can tell us something)
btVector3 getPointWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 point);
btVector3 getPointLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 point);
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis);
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis);
btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform);
btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform);
static btScalar gRootBodyRadius = 0.25f;
static btScalar gRootBodyHeight = 0.1f;
static btScalar gLegRadius = 0.1f;
static btScalar gLegLength = 0.45f;
static btScalar gForeLegLength = 0.75f;
static btScalar gForeLegRadius = 0.08f;
void* GROUND_ID = (void*)1;
class NN3DWalkersExample : public CommonRigidBodyBase
{
btScalar m_Time;
btScalar m_targetAccumulator;
btScalar m_targetFrequency;
btScalar m_motorStrength;
btAlignedObjectArray<class NNWalker*> m_walkers;
public:
NN3DWalkersExample(struct GUIHelperInterface* helper)
:CommonRigidBodyBase(helper), m_Time(0),m_motorStrength(0.5f),m_targetFrequency(3),m_targetAccumulator(0)
{
}
void initPhysics();
virtual void exitPhysics();
virtual ~NN3DWalkersExample()
{
}
void spawnWalker(const btVector3& startOffset, bool bFixed);
virtual bool keyboardCallback(int key, int state);
void setMotorTargets(btScalar deltaTime);
bool detectCollisions(){
bool collisionDetected = false;
if(m_dynamicsWorld){
m_dynamicsWorld->performDiscreteCollisionDetection(); // let the collisions be calculated
}
int numManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i=0;i<numManifolds;i++)
{
btPersistentManifold* contactManifold = m_dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
const btCollisionObject* obA = contactManifold->getBody0();
const btCollisionObject* obB = contactManifold->getBody1();
if(obA->getUserPointer() != GROUND_ID && obB->getUserPointer() != GROUND_ID){
int numContacts = contactManifold->getNumContacts();
for (int j=0;j<numContacts;j++)
{
collisionDetected = true;
btManifoldPoint& pt = contactManifold->getContactPoint(j);
if (pt.getDistance()<0.f)
{
const btVector3& ptA = pt.getPositionWorldOnA();
const btVector3& ptB = pt.getPositionWorldOnB();
const btVector3& normalOnB = pt.m_normalWorldOnB;
if(m_dynamicsWorld->getDebugDrawer()){
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnA(), 0.1, btVector3(0., 0., 1.));
m_dynamicsWorld->getDebugDrawer()->drawSphere(pt.getPositionWorldOnB(), 0.1, btVector3(0., 0., 1.));
}
}
}
}
}
return collisionDetected;
}
void resetCamera()
{
float dist = 11;
float pitch = 52;
float yaw = 35;
float targetPos[3]={0,0.46,0};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
virtual void renderScene();
};
static NN3DWalkersExample* nn3DWalkers = NULL;
#ifndef SIMD_PI_4
#define SIMD_PI_4 0.5 * SIMD_HALF_PI
#endif
#ifndef SIMD_PI_8
#define SIMD_PI_8 0.25 * SIMD_HALF_PI
#endif
bool RANDOM_MOVEMENT = false;
bool RANDOM_DIMENSIONS = false;
#define NUM_LEGS 6
#define BODYPART_COUNT (2 * NUM_LEGS + 1)
#define JOINT_COUNT (BODYPART_COUNT - 1)
class NNWalker
{
btDynamicsWorld* m_ownerWorld;
btCollisionShape* m_shapes[BODYPART_COUNT];
btRigidBody* m_bodies[BODYPART_COUNT];
btTypedConstraint* m_joints[JOINT_COUNT];
std::map<void*,int> m_bodyTouchSensorIndexMap;
bool m_touchSensors[BODYPART_COUNT];
float m_sensoryMotorWeights[BODYPART_COUNT*JOINT_COUNT];
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
shape->calculateLocalInertia(mass,localInertia);
btDefaultMotionState* motionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,motionState,shape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
return body;
}
public:
NNWalker(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
: m_ownerWorld (ownerWorld)
{
btVector3 vUp(0, 1, 0); // up in local reference frame
//initialize random weights
for(int i = 0;i < BODYPART_COUNT;i++){
for(int j = 0;j < JOINT_COUNT;j++){
m_sensoryMotorWeights[i+j*BODYPART_COUNT] = ((double) rand() / (RAND_MAX))*2.0f-1.0f;
}
}
//
// Setup geometry
m_shapes[0] = new btCapsuleShape(gRootBodyRadius, gRootBodyHeight); // root body capsule
int i;
for ( i=0; i<NUM_LEGS; i++)
{
m_shapes[1 + 2*i] = new btCapsuleShape(gLegRadius, gLegLength); // leg capsule
m_shapes[2 + 2*i] = new btCapsuleShape(gForeLegRadius, gForeLegLength); // fore leg capsule
}
//
// Setup rigid bodies
float rootAboveGroundHeight = gForeLegLength;
btTransform bodyOffset; bodyOffset.setIdentity();
bodyOffset.setOrigin(positionOffset);
// root body
btVector3 localRootBodyPosition = btVector3(btScalar(0.), btScalar(rootAboveGroundHeight), btScalar(0.)); // root body position in local reference frame
btTransform transform;
transform.setIdentity();
transform.setOrigin(localRootBodyPosition);
m_bodies[0] = localCreateRigidBody(btScalar(bFixed?0.:1.), bodyOffset*transform, m_shapes[0]);
m_ownerWorld->addRigidBody(m_bodies[0]);
m_bodies[0]->setUserPointer(this);
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[0], 0));
btHingeConstraint* hingeC;
//btConeTwistConstraint* coneC;
btTransform localA, localB, localC;
// legs
for ( i=0; i<NUM_LEGS; i++)
{
float footAngle = 2 * SIMD_PI * i / NUM_LEGS; // legs are uniformly distributed around the root body
float footYUnitPosition = sin(footAngle); // y position of the leg on the unit circle
float footXUnitPosition = cos(footAngle); // x position of the leg on the unit circle
transform.setIdentity();
btVector3 legCOM = btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+0.5*gLegLength)), btScalar(rootAboveGroundHeight), btScalar(footYUnitPosition*(gRootBodyRadius+0.5*gLegLength)));
transform.setOrigin(legCOM);
// thigh
btVector3 legDirection = (legCOM - localRootBodyPosition).normalize();
btVector3 kneeAxis = legDirection.cross(vUp);
transform.setRotation(btQuaternion(kneeAxis, SIMD_HALF_PI));
m_bodies[1+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[1+2*i]);
m_bodies[1+2*i]->setUserPointer(this);
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[1+2*i],1+2*i));
// shin
transform.setIdentity();
transform.setOrigin(btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+gLegLength)), btScalar(rootAboveGroundHeight-0.5*gForeLegLength), btScalar(footYUnitPosition*(gRootBodyRadius+gLegLength))));
m_bodies[2+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[2+2*i]);
m_bodies[2+2*i]->setUserPointer(this);
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[2+2*i],2+2*i));
// hip joints
localA.setIdentity(); localB.setIdentity();
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*gRootBodyRadius), btScalar(0.), btScalar(footYUnitPosition*gRootBodyRadius)));
localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1+2*i], localA, localB);
hingeC->setLimit(btScalar(-0.75 * SIMD_PI_4), btScalar(SIMD_PI_8));
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
m_joints[2*i] = hingeC;
// knee joints
localA.setIdentity(); localB.setIdentity(); localC.setIdentity();
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+gLegLength)), btScalar(0.), btScalar(footYUnitPosition*(gRootBodyRadius+gLegLength))));
localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
localC = getTransformWorldToLocal(m_bodies[2+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
hingeC = new btHingeConstraint(*m_bodies[1+2*i], *m_bodies[2+2*i], localB, localC);
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
hingeC->setLimit(btScalar(-SIMD_PI_8), btScalar(0.2));
m_joints[1+2*i] = hingeC;
m_ownerWorld->addRigidBody(m_bodies[1+2*i]); // add thigh bone
m_ownerWorld->addConstraint(m_joints[2*i], true); // connect thigh bone with root
if(nn3DWalkers->detectCollisions()){ // if thigh bone causes collision, remove it again
m_ownerWorld->removeRigidBody(m_bodies[1+2*i]);
m_ownerWorld->removeConstraint(m_joints[2*i]); // disconnect thigh bone from root
}
else{
m_ownerWorld->addRigidBody(m_bodies[2+2*i]); // add shin bone
m_ownerWorld->addConstraint(m_joints[1+2*i], true); // connect shin bone with thig
if(nn3DWalkers->detectCollisions()){ // if shin bone causes collision, remove it again
m_ownerWorld->removeRigidBody(m_bodies[2+2*i]);
m_ownerWorld->removeConstraint(m_joints[1+2*i]); // disconnect shin bone from thigh
}
}
}
// Setup some damping on the m_bodies
for (i = 0; i < BODYPART_COUNT; ++i)
{
m_bodies[i]->setDamping(0.05, 0.85);
m_bodies[i]->setDeactivationTime(0.8);
//m_bodies[i]->setSleepingThresholds(1.6, 2.5);
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
}
}
virtual ~NNWalker ()
{
int i;
// Remove all constraints
for ( i = 0; i < JOINT_COUNT; ++i)
{
m_ownerWorld->removeConstraint(m_joints[i]);
delete m_joints[i]; m_joints[i] = 0;
}
// Remove all bodies and shapes
for ( i = 0; i < BODYPART_COUNT; ++i)
{
m_ownerWorld->removeRigidBody(m_bodies[i]);
delete m_bodies[i]->getMotionState();
delete m_bodies[i]; m_bodies[i] = 0;
delete m_shapes[i]; m_shapes[i] = 0;
}
}
btTypedConstraint** getJoints() {return &m_joints[0];}
void setTouchSensor(void* bodyPointer){
m_touchSensors[m_bodyTouchSensorIndexMap.at(bodyPointer)] = true;
}
void clearTouchSensors(){
for(int i = 0 ; i < BODYPART_COUNT;i++){
m_touchSensors[i] = false;
}
}
bool getTouchSensor(int i){ return m_touchSensors[i];}
const float* getSensoryMotorWeights() const {
return m_sensoryMotorWeights;
}
};
void legMotorPreTickCallback (btDynamicsWorld *world, btScalar timeStep)
{
NN3DWalkersExample* motorDemo = (NN3DWalkersExample*)world->getWorldUserInfo();
motorDemo->setMotorTargets(timeStep);
nn3DWalkers->detectCollisions();
}
bool legContactProcessedCallback(btManifoldPoint& cp,
void* body0, void* body1)
{
btCollisionObject* o1 = static_cast<btCollisionObject*>(body0);
btCollisionObject* o2 = static_cast<btCollisionObject*>(body1);
void* ID1 = o1->getUserPointer();
void* ID2 = o2->getUserPointer();
if (ID2 != GROUND_ID || ID1 != GROUND_ID) {
// Make a circle with a 0.9 radius at (0,0,0)
// with RGB color (1,0,0).
if(nn3DWalkers->m_dynamicsWorld->getDebugDrawer() != NULL){
nn3DWalkers->m_dynamicsWorld->getDebugDrawer()->drawSphere(cp.getPositionWorldOnA(), 0.1, btVector3(1., 0., 0.));
}
if(ID1 != GROUND_ID){
((NNWalker*)ID1)->setTouchSensor(o1);
}
if(ID2 != GROUND_ID){
((NNWalker*)ID2)->setTouchSensor(o2);
}
}
return false;
}
void NN3DWalkersExample::initPhysics()
{
gContactProcessedCallback = legContactProcessedCallback;
m_guiHelper->setUpAxis(1);
// Setup the basic world
m_Time = 0;
createEmptyDynamicsWorld();
m_dynamicsWorld->setInternalTickCallback(legMotorPreTickCallback,this,true);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_targetFrequency = 3;
// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
// should be (numberOfsolverIterations * oldLimits)
m_motorStrength = 0.05f * m_dynamicsWorld->getSolverInfo().m_numIterations;
{ // create a slider to change the motor update frequency
SliderParams slider("Motor update frequency", &m_targetFrequency);
slider.m_minVal = 0;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the motor torque
SliderParams slider("Motor force", &m_motorStrength);
slider.m_minVal = 1;
slider.m_maxVal = 50;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the root body radius
SliderParams slider("Root body radius", &gRootBodyRadius);
slider.m_minVal = 0.01f;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the root body height
SliderParams slider("Root body height", &gRootBodyHeight);
slider.m_minVal = 0.01f;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the leg radius
SliderParams slider("Leg radius", &gLegRadius);
slider.m_minVal = 0.01f;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the leg length
SliderParams slider("Leg length", &gLegLength);
slider.m_minVal = 0.01f;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the fore leg radius
SliderParams slider("Fore Leg radius", &gForeLegRadius);
slider.m_minVal = 0.01f;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the fore leg length
SliderParams slider("Fore Leg length", &gForeLegLength);
slider.m_minVal = 0.01f;
slider.m_maxVal = 10;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
// Setup a big ground box
{
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.),btScalar(10.),btScalar(200.)));
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-10,0));
btRigidBody* ground = createRigidBody(btScalar(0.),groundTransform,groundShape);
ground->setFriction(5);
ground->setUserPointer(GROUND_ID);
}
for(int i = 0; i < 5 ; i++){
for(int j = 0; j < 5; j++){
float maxDimension = 0.2f;
if(RANDOM_DIMENSIONS){
// randomize the dimensions
gRootBodyRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gRootBodyHeight = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gForeLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
gForeLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
}
// Spawn one walker
btVector3 spacing(10.0f,0.8f,10.0f);
btVector3 startOffset(spacing * btVector3(i,0,j));
spawnWalker(startOffset, false);
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void NN3DWalkersExample::spawnWalker(const btVector3& startOffset, bool bFixed)
{
NNWalker* walker = new NNWalker(m_dynamicsWorld, startOffset, bFixed);
m_walkers.push_back(walker);
}
void NN3DWalkersExample::setMotorTargets(btScalar deltaTime)
{
float ms = deltaTime*1000000.;
float minFPS = 1000000.f/60.f;
if (ms > minFPS)
ms = minFPS;
m_Time += ms;
m_targetAccumulator +=ms;
if(m_targetAccumulator >= 1000000.0f /((double)m_targetFrequency))
{
m_targetAccumulator = 0;
//
// set per-frame sinusoidal position targets using angular motor (hacky?)
//
for (int r=0; r<m_walkers.size(); r++)
{
for (int i=0; i<2*NUM_LEGS; i++)
{
btScalar targetAngle = 0;
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_walkers[r]->getJoints()[i]);
if(RANDOM_MOVEMENT){
targetAngle = ((double) rand() / (RAND_MAX));//0.5 * (1 + sin(2 * SIMD_PI * fTargetPercent+ i* SIMD_PI/NUM_LEGS));
}
else{
// accumulate sensor inputs with weights
for(int j = 0; j < JOINT_COUNT;j++){
targetAngle += m_walkers[r]->getSensoryMotorWeights()[i+j*BODYPART_COUNT] * m_walkers[r]->getTouchSensor(i);
}
// apply the activation function
targetAngle = (tanh(targetAngle)+1.0f)*0.5f;
}
btScalar targetLimitAngle = hingeC->getLowerLimit() + targetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
btScalar currentAngle = hingeC->getHingeAngle();
btScalar angleError = targetLimitAngle - currentAngle;
btScalar desiredAngularVel = 1000000.f * angleError/ms;
hingeC->enableAngularMotor(true, desiredAngularVel, m_motorStrength);
}
// clear sensor signals after usage
m_walkers[r]->clearTouchSensors();
}
}
}
bool NN3DWalkersExample::keyboardCallback(int key, int state)
{
switch (key)
{
case '[':
m_motorStrength /= 1.1f;
return true;
break;
case ']':
m_motorStrength *= 1.1f;
return true;
break;
default:
break;
}
return false;
}
void NN3DWalkersExample::exitPhysics()
{
gContactProcessedCallback = NULL; // clear contact processed callback on exiting
int i;
for (i=0;i<m_walkers.size();i++)
{
NNWalker* walker = m_walkers[i];
delete walker;
}
CommonRigidBodyBase::exitPhysics();
}
void NN3DWalkersExample::renderScene()
{
m_guiHelper->syncPhysicsToGraphics(m_dynamicsWorld);
m_guiHelper->render(m_dynamicsWorld);
debugDraw(m_dynamicsWorld->getDebugDrawer()->getDebugMode());
}
class CommonExampleInterface* ET_NN3DWalkersCreateFunc(struct CommonExampleOptions& options)
{
nn3DWalkers = new NN3DWalkersExample(options.m_guiHelper);
return nn3DWalkers;
}
btVector3 getPointWorldToLocal( btTransform localObjectCenterOfMassTransform, btVector3 point) {
return localObjectCenterOfMassTransform.inverse() * point; // transforms the point from the world frame into the local frame
}
btVector3 getPointLocalToWorld( btTransform localObjectCenterOfMassTransform, btVector3 point) {
return localObjectCenterOfMassTransform * point; // transforms the point from the world frame into the local frame
}
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis) {
btTransform local1 = localObjectCenterOfMassTransform.inverse(); // transforms the axis from the local frame into the world frame
btVector3 zero(0,0,0);
local1.setOrigin(zero);
return local1 * axis;
}
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis) {
btTransform local1 = localObjectCenterOfMassTransform; // transforms the axis from the local frame into the world frame
btVector3 zero(0,0,0);
local1.setOrigin(zero);
return local1 * axis;
}
btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform) {
return localObjectCenterOfMassTransform.inverse() * transform; // transforms the axis from the local frame into the world frame
}
btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform) {
return localObjectCenterOfMassTransform * transform; // transforms the axis from the local frame into the world frame
}