Files
bullet3/examples/ThirdPartyLibs/Eigen/src/Core/Transpositions.h
erwincoumans ae8e83988b Add preliminary PhysX 4.0 backend for PyBullet
Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng
Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py)
Fix related to TinyRenderer object transforms not updating when using collision filtering
2019-01-22 21:08:37 -08:00

408 lines
14 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRANSPOSITIONS_H
#define EIGEN_TRANSPOSITIONS_H
namespace Eigen {
template<typename Derived>
class TranspositionsBase
{
typedef internal::traits<Derived> Traits;
public:
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar StorageIndex;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Derived& operator=(const TranspositionsBase<OtherDerived>& other)
{
indices() = other.indices();
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Derived& operator=(const TranspositionsBase& other)
{
indices() = other.indices();
return derived();
}
#endif
/** \returns the number of transpositions */
Index size() const { return indices().size(); }
/** \returns the number of rows of the equivalent permutation matrix */
Index rows() const { return indices().size(); }
/** \returns the number of columns of the equivalent permutation matrix */
Index cols() const { return indices().size(); }
/** Direct access to the underlying index vector */
inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); }
/** Direct access to the underlying index vector */
inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); }
/** Direct access to the underlying index vector */
inline const StorageIndex& operator()(Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline StorageIndex& operator()(Index i) { return indices()(i); }
/** Direct access to the underlying index vector */
inline const StorageIndex& operator[](Index i) const { return indices()(i); }
/** Direct access to the underlying index vector */
inline StorageIndex& operator[](Index i) { return indices()(i); }
/** const version of indices(). */
const IndicesType& indices() const { return derived().indices(); }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return derived().indices(); }
/** Resizes to given size. */
inline void resize(Index newSize)
{
indices().resize(newSize);
}
/** Sets \c *this to represents an identity transformation */
void setIdentity()
{
for(StorageIndex i = 0; i < indices().size(); ++i)
coeffRef(i) = i;
}
// FIXME: do we want such methods ?
// might be usefull when the target matrix expression is complex, e.g.:
// object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..);
/*
template<typename MatrixType>
void applyForwardToRows(MatrixType& mat) const
{
for(Index k=0 ; k<size() ; ++k)
if(m_indices(k)!=k)
mat.row(k).swap(mat.row(m_indices(k)));
}
template<typename MatrixType>
void applyBackwardToRows(MatrixType& mat) const
{
for(Index k=size()-1 ; k>=0 ; --k)
if(m_indices(k)!=k)
mat.row(k).swap(mat.row(m_indices(k)));
}
*/
/** \returns the inverse transformation */
inline Transpose<TranspositionsBase> inverse() const
{ return Transpose<TranspositionsBase>(derived()); }
/** \returns the tranpose transformation */
inline Transpose<TranspositionsBase> transpose() const
{ return Transpose<TranspositionsBase>(derived()); }
protected:
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
{
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef TranspositionsStorage StorageKind;
};
}
/** \class Transpositions
* \ingroup Core_Module
*
* \brief Represents a sequence of transpositions (row/column interchange)
*
* \tparam SizeAtCompileTime the number of transpositions, or Dynamic
* \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
*
* This class represents a permutation transformation as a sequence of \em n transpositions
* \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices.
* Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges
* the rows \c i and \c indices[i] of the matrix \c M.
* A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange.
*
* Compared to the class PermutationMatrix, such a sequence of transpositions is what is
* computed during a decomposition with pivoting, and it is faster when applying the permutation in-place.
*
* To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example:
* \code
* Transpositions tr;
* MatrixXf mat;
* mat = tr * mat;
* \endcode
* In this example, we detect that the matrix appears on both side, and so the transpositions
* are applied in-place without any temporary or extra copy.
*
* \sa class PermutationMatrix
*/
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
{
typedef internal::traits<Transpositions> Traits;
public:
typedef TranspositionsBase<Transpositions> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar StorageIndex;
inline Transpositions() {}
/** Copy constructor. */
template<typename OtherDerived>
inline Transpositions(const TranspositionsBase<OtherDerived>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline Transpositions(const Transpositions& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the transposition indices. */
template<typename Other>
explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Transpositions& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Transpositions& operator=(const Transpositions& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** Constructs an uninitialized permutation matrix of given size.
*/
inline Transpositions(Index size) : m_indices(size)
{}
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,_PacketAccess> >
: traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex> >
{
typedef Map<const Matrix<_StorageIndex,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType;
typedef _StorageIndex StorageIndex;
typedef TranspositionsStorage StorageKind;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int PacketAccess>
class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess>
: public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndex>,PacketAccess> >
{
typedef internal::traits<Map> Traits;
public:
typedef TranspositionsBase<Map> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar StorageIndex;
explicit inline Map(const StorageIndex* indicesPtr)
: m_indices(indicesPtr)
{}
inline Map(const StorageIndex* indicesPtr, Index size)
: m_indices(indicesPtr,size)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
Map& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Map& operator=(const Map& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
IndicesType m_indices;
};
namespace internal {
template<typename _IndicesType>
struct traits<TranspositionsWrapper<_IndicesType> >
: traits<PermutationWrapper<_IndicesType> >
{
typedef TranspositionsStorage StorageKind;
};
}
template<typename _IndicesType>
class TranspositionsWrapper
: public TranspositionsBase<TranspositionsWrapper<_IndicesType> >
{
typedef internal::traits<TranspositionsWrapper> Traits;
public:
typedef TranspositionsBase<TranspositionsWrapper> Base;
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar StorageIndex;
explicit inline TranspositionsWrapper(IndicesType& indices)
: m_indices(indices)
{}
/** Copies the \a other transpositions into \c *this */
template<typename OtherDerived>
TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other)
{
return Base::operator=(other);
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
TranspositionsWrapper& operator=(const TranspositionsWrapper& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the transpositions. */
IndicesType& indices() { return m_indices; }
protected:
typename IndicesType::Nested m_indices;
};
/** \returns the \a matrix with the \a transpositions applied to the columns.
*/
template<typename MatrixDerived, typename TranspositionsDerived>
EIGEN_DEVICE_FUNC
const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct>
operator*(const MatrixBase<MatrixDerived> &matrix,
const TranspositionsBase<TranspositionsDerived>& transpositions)
{
return Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct>
(matrix.derived(), transpositions.derived());
}
/** \returns the \a matrix with the \a transpositions applied to the rows.
*/
template<typename TranspositionsDerived, typename MatrixDerived>
EIGEN_DEVICE_FUNC
const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct>
operator*(const TranspositionsBase<TranspositionsDerived> &transpositions,
const MatrixBase<MatrixDerived>& matrix)
{
return Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct>
(transpositions.derived(), matrix.derived());
}
// Template partial specialization for transposed/inverse transpositions
namespace internal {
template<typename Derived>
struct traits<Transpose<TranspositionsBase<Derived> > >
: traits<Derived>
{};
} // end namespace internal
template<typename TranspositionsDerived>
class Transpose<TranspositionsBase<TranspositionsDerived> >
{
typedef TranspositionsDerived TranspositionType;
typedef typename TranspositionType::IndicesType IndicesType;
public:
explicit Transpose(const TranspositionType& t) : m_transpositions(t) {}
Index size() const { return m_transpositions.size(); }
Index rows() const { return m_transpositions.size(); }
Index cols() const { return m_transpositions.size(); }
/** \returns the \a matrix with the inverse transpositions applied to the columns.
*/
template<typename OtherDerived> friend
const Product<OtherDerived, Transpose, AliasFreeProduct>
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trt)
{
return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt.derived());
}
/** \returns the \a matrix with the inverse transpositions applied to the rows.
*/
template<typename OtherDerived>
const Product<Transpose, OtherDerived, AliasFreeProduct>
operator*(const MatrixBase<OtherDerived>& matrix) const
{
return Product<Transpose, OtherDerived, AliasFreeProduct>(*this, matrix.derived());
}
const TranspositionType& nestedExpression() const { return m_transpositions; }
protected:
const TranspositionType& m_transpositions;
};
} // end namespace Eigen
#endif // EIGEN_TRANSPOSITIONS_H