Files
bullet3/Demos3/bullet2/ConstraintDemo/ConstraintPhysicsSetup.cpp
Erwin Coumans eac8b32782 add very basic multibody vehicle
tweak finite element experiment with parameter
2014-10-31 14:14:45 -07:00

128 lines
3.7 KiB
C++

#include "ConstraintPhysicsSetup.h"
ConstraintPhysicsSetup::ConstraintPhysicsSetup()
{
}
ConstraintPhysicsSetup::~ConstraintPhysicsSetup()
{
}
static btScalar val;
static btScalar targetVel=0;
static btScalar maxImpulse=10000;
static btHingeAccumulatedAngleConstraint* spDoorHinge=0;
static btScalar actualHingeVelocity=0.f;
static btVector3 btAxisA(0,1,0);
void ConstraintPhysicsSetup::stepSimulation(float deltaTime)
{
val=spDoorHinge->getAccumulatedHingeAngle()*SIMD_DEGS_PER_RAD;
if (m_dynamicsWorld)
{
spDoorHinge->enableAngularMotor(true,targetVel,maxImpulse);
m_dynamicsWorld->stepSimulation(deltaTime,10,1./240.);
btHingeConstraint* hinge = spDoorHinge;
if (hinge)
{
const btRigidBody& bodyA = hinge->getRigidBodyA();
const btRigidBody& bodyB = hinge->getRigidBodyB();
btTransform trA = bodyA.getWorldTransform();
btVector3 angVelA = bodyA.getAngularVelocity();
btVector3 angVelB = bodyB.getAngularVelocity();
{
btVector3 ax1 = trA.getBasis()*hinge->getFrameOffsetA().getBasis().getColumn(2);
btScalar vel = angVelA.dot(ax1);
vel -= angVelB.dot(ax1);
printf("hinge velocity (q) = %f\n", vel);
actualHingeVelocity=vel;
}
btVector3 ortho0,ortho1;
btPlaneSpace1(btAxisA,ortho0,ortho1);
{
btScalar vel2 = angVelA.dot(ortho0);
vel2 -= angVelB.dot(ortho0);
printf("hinge orthogonal1 velocity (q) = %f\n", vel2);
}
{
btScalar vel0 = angVelA.dot(ortho1);
vel0 -= angVelB.dot(ortho1);
printf("hinge orthogonal0 velocity (q) = %f\n", vel0);
}
}
}
}
void ConstraintPhysicsSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge)
{
gfxBridge.setUpAxis(1);
createEmptyDynamicsWorld();
gfxBridge.createPhysicsDebugDrawer(m_dynamicsWorld);
int mode = btIDebugDraw::DBG_DrawWireframe
+btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawConstraintLimits;
m_dynamicsWorld->getDebugDrawer()->setDebugMode(mode);
{
SliderParams slider("target vel",&targetVel);
slider.m_minVal=-4;
slider.m_maxVal=4;
gfxBridge.getParameterInterface()->registerSliderFloatParameter(slider);
}
{
SliderParams slider("max impulse",&maxImpulse);
slider.m_minVal=0;
slider.m_maxVal=1000;
gfxBridge.getParameterInterface()->registerSliderFloatParameter(slider);
}
{
SliderParams slider("actual vel",&actualHingeVelocity);
slider.m_minVal=-4;
slider.m_maxVal=4;
gfxBridge.getParameterInterface()->registerSliderFloatParameter(slider);
}
val=1.f;
{
SliderParams slider("angle",&val);
slider.m_minVal=-720;
slider.m_maxVal=720;
gfxBridge.getParameterInterface()->registerSliderFloatParameter(slider);
}
{ // create a door using hinge constraint attached to the world
btCollisionShape* pDoorShape = new btBoxShape(btVector3(2.0f, 5.0f, 0.2f));
m_collisionShapes.push_back(pDoorShape);
btTransform doorTrans;
doorTrans.setIdentity();
doorTrans.setOrigin(btVector3(-5.0f, -2.0f, 0.0f));
btRigidBody* pDoorBody = createRigidBody( 1.0, doorTrans, pDoorShape);
pDoorBody->setActivationState(DISABLE_DEACTIVATION);
const btVector3 btPivotA(10.f + 2.1f, -2.0f, 0.0f ); // right next to the door slightly outside
spDoorHinge = new btHingeAccumulatedAngleConstraint( *pDoorBody, btPivotA, btAxisA );
m_dynamicsWorld->addConstraint(spDoorHinge);
spDoorHinge->setDbgDrawSize(btScalar(5.f));
}
}