Files
bullet3/test/InverseDynamics/test_invdyn_jacobian.cpp
Erwin Coumans ba8964c4ac [InverseDynamics] Support for Jacobians & derivatives
This change adds support for calculating Jacobians and
dot(Jacobian)*u terms, along with the required support for
the 3xN matrices in the standalone math library.
It also adds functions to compute kinematics only (position, velocity, accel).
To facilitate tests, the Cl also adds a RandomTreeCreator to create
randomized multibody trees.
Thanks to Thomas Buschmann for this contribution!
2016-08-25 16:24:28 -07:00

327 lines
11 KiB
C++

// Test of kinematic consistency: check if finite differences of velocities, accelerations
// match positions
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <gtest/gtest.h>
#include "Bullet3Common/b3Random.h"
#include "CloneTreeCreator.hpp"
#include "CoilCreator.hpp"
#include "DillCreator.hpp"
#include "RandomTreeCreator.hpp"
#include "BulletInverseDynamics/MultiBodyTree.hpp"
#include "MultiBodyTreeDebugGraph.hpp"
using namespace btInverseDynamics;
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
// minimal smart pointer to make this work for c++2003
template <typename T>
class ptr {
ptr();
ptr(const ptr&);
public:
ptr(T* p) : m_p(p) {};
~ptr() { delete m_p; }
T& operator*() { return *m_p; }
T* operator->() { return m_p; }
T*get() {return m_p;}
const T*get() const {return m_p;}
friend bool operator==(const ptr<T>& lhs, const ptr<T>& rhs) { return rhs.m_p == lhs.m_p; }
friend bool operator!=(const ptr<T>& lhs, const ptr<T>& rhs) { return !(rhs.m_p == lhs.m_p);
}
private:
T* m_p;
};
void calculateDotJacUError(const MultiBodyTreeCreator& creator, const int nloops,
double* max_error) {
// tree1 is used as reference to compute dot(Jacobian)*u from acceleration(dot(u)=0)
ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
ASSERT_TRUE(0x0 != tree1);
CloneTreeCreator clone(tree1.get());
// tree2 is used to compute dot(Jacobian)*u using the calculateJacobian function
ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
ASSERT_TRUE(0x0 != tree2);
const int ndofs = tree1->numDoFs();
const int nbodies = tree1->numBodies();
if (ndofs <= 0) {
*max_error = 0;
return;
}
vecx q(ndofs);
vecx u(ndofs);
vecx dot_u(ndofs);
vecx zero(ndofs);
setZero(zero);
double max_lin_error = 0;
double max_ang_error = 0;
for (int loop = 0; loop < nloops; loop++) {
for (int i = 0; i < q.size(); i++) {
q(i) = b3RandRange(-B3_PI, B3_PI);
u(i) = b3RandRange(-B3_PI, B3_PI);
}
EXPECT_EQ(0, tree1->calculateKinematics(q, u, zero));
EXPECT_EQ(0, tree2->calculatePositionAndVelocityKinematics(q, u));
EXPECT_EQ(0, tree2->calculateJacobians(q, u));
for (size_t idx = 0; idx < nbodies; idx++) {
vec3 tmp1, tmp2;
vec3 diff;
EXPECT_EQ(0, tree1->getBodyLinearAcceleration(idx, &tmp1));
EXPECT_EQ(0, tree2->getBodyDotJacobianTransU(idx, &tmp2));
diff = tmp1 - tmp2;
double lin_error = maxAbs(diff);
if (lin_error > max_lin_error) {
max_lin_error = lin_error;
}
EXPECT_EQ(0, tree1->getBodyAngularAcceleration(idx, &tmp1));
EXPECT_EQ(0, tree2->getBodyDotJacobianRotU(idx, &tmp2));
diff = tmp1 - tmp2;
double ang_error = maxAbs(diff);
if (ang_error > max_ang_error) {
max_ang_error = ang_error;
}
}
}
*max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
}
void calculateJacobianError(const MultiBodyTreeCreator& creator, const int nloops,
double* max_error) {
// tree1 is used as reference to compute the Jacobian from velocities with unit u vectors.
ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
ASSERT_TRUE(0x0 != tree1);
// tree2 is used to compute the Jacobians using the calculateJacobian function
CloneTreeCreator clone(tree1.get());
ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
ASSERT_TRUE(0x0 != tree2);
const int ndofs = tree1->numDoFs();
const int nbodies = tree1->numBodies();
if (ndofs <= 0) {
*max_error = 0;
return;
}
vecx q(ndofs);
vecx zero(ndofs);
setZero(zero);
vecx one(ndofs);
double max_lin_error = 0;
double max_ang_error = 0;
for (int loop = 0; loop < nloops; loop++) {
for (int i = 0; i < q.size(); i++) {
q(i) = b3RandRange(-B3_PI, B3_PI);
}
EXPECT_EQ(0, tree2->calculatePositionKinematics(q));
EXPECT_EQ(0, tree2->calculateJacobians(q));
for (size_t idx = 0; idx < nbodies; idx++) {
mat3x ref_jac_r(3, ndofs);
mat3x ref_jac_t(3, ndofs);
ref_jac_r.setZero();
ref_jac_t.setZero();
// this re-computes all jacobians for every body ...
// but avoids std::vector<eigen matrix> issues
for (int col = 0; col < ndofs; col++) {
setZero(one);
one(col) = 1.0;
EXPECT_EQ(0, tree1->calculatePositionAndVelocityKinematics(q, one));
vec3 vel, omg;
EXPECT_EQ(0, tree1->getBodyLinearVelocity(idx, &vel));
EXPECT_EQ(0, tree1->getBodyAngularVelocity(idx, &omg));
setMat3xElem(0, col, omg(0), &ref_jac_r);
setMat3xElem(1, col, omg(1), &ref_jac_r);
setMat3xElem(2, col, omg(2), &ref_jac_r);
setMat3xElem(0, col, vel(0), &ref_jac_t);
setMat3xElem(1, col, vel(1), &ref_jac_t);
setMat3xElem(2, col, vel(2), &ref_jac_t);
}
mat3x jac_r(3, ndofs);
mat3x jac_t(3, ndofs);
mat3x diff(3, ndofs);
EXPECT_EQ(0, tree2->getBodyJacobianTrans(idx, &jac_t));
EXPECT_EQ(0, tree2->getBodyJacobianRot(idx, &jac_r));
sub(ref_jac_t,jac_t,&diff);
double lin_error = maxAbsMat3x(diff);
if (lin_error > max_lin_error) {
max_lin_error = lin_error;
}
sub(ref_jac_r, jac_r,&diff);
double ang_error = maxAbsMat3x(diff);
if (ang_error > max_ang_error) {
max_ang_error = ang_error;
}
}
}
*max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
}
void calculateVelocityJacobianError(const MultiBodyTreeCreator& creator, const int nloops,
double* max_error) {
// tree1 is used as reference to compute the velocities directly
ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
ASSERT_TRUE(0x0 != tree1);
// tree2 is used to compute the velocities via jacobians
CloneTreeCreator clone(tree1.get());
ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
ASSERT_TRUE(0x0 != tree2);
const int ndofs = tree1->numDoFs();
const int nbodies = tree1->numBodies();
if (ndofs <= 0) {
*max_error = 0;
return;
}
vecx q(ndofs);
vecx u(ndofs);
double max_lin_error = 0;
double max_ang_error = 0;
for (int loop = 0; loop < nloops; loop++) {
for (int i = 0; i < q.size(); i++) {
q(i) = b3RandRange(-B3_PI, B3_PI);
u(i) = b3RandRange(-B3_PI, B3_PI);
}
EXPECT_EQ(0, tree1->calculatePositionAndVelocityKinematics(q, u));
EXPECT_EQ(0, tree2->calculatePositionKinematics(q));
EXPECT_EQ(0, tree2->calculateJacobians(q));
for (size_t idx = 0; idx < nbodies; idx++) {
vec3 vel1;
vec3 omg1;
vec3 vel2;
vec3 omg2;
mat3x jac_r2(3, ndofs);
mat3x jac_t2(3, ndofs);
EXPECT_EQ(0, tree1->getBodyLinearVelocity(idx, &vel1));
EXPECT_EQ(0, tree1->getBodyAngularVelocity(idx, &omg1));
EXPECT_EQ(0, tree2->getBodyJacobianTrans(idx, &jac_t2));
EXPECT_EQ(0, tree2->getBodyJacobianRot(idx, &jac_r2));
omg2 = jac_r2 * u;
vel2 = jac_t2 * u;
double lin_error = maxAbs(vel1 - vel2);
if (lin_error > max_lin_error) {
max_lin_error = lin_error;
}
double ang_error = maxAbs(omg1 - omg2);
if (ang_error > max_ang_error) {
max_ang_error = ang_error;
}
}
}
*max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
}
// test nonlinear terms: dot(Jacobian)*u (linear and angular acceleration for dot_u ==0)
// from Jacobian calculation method and pseudo-numerically using via the kinematics method.
TEST(InvDynJacobians, JacDotJacU) {
const int kNumLevels = 5;
#ifdef B3_USE_DOUBLE_PRECISION
const double kMaxError = 1e-12;
#else
const double kMaxError = 5e-5;
#endif
const int kNumLoops = 20;
for (int level = 0; level < kNumLevels; level++) {
const int nbodies = BT_ID_POW(2, level);
CoilCreator coil(nbodies);
double error;
calculateDotJacUError(coil, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
DillCreator dill(level);
calculateDotJacUError(dill, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
}
const int kRandomLoops = 100;
const int kMaxRandomBodies = 128;
for (int loop = 0; loop < kRandomLoops; loop++) {
RandomTreeCreator random(kMaxRandomBodies);
double error;
calculateDotJacUError(random, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
}
}
// Jacobians: linear and angular acceleration for dot_u ==0
// from Jacobian calculation method and pseudo-numerically using via the kinematics method.
TEST(InvDynJacobians, Jacobians) {
const int kNumLevels = 5;
#ifdef B3_USE_DOUBLE_PRECISION
const double kMaxError = 1e-12;
#else
const double kMaxError = 5e-5;
#endif
const int kNumLoops = 20;
for (int level = 0; level < kNumLevels; level++) {
const int nbodies = BT_ID_POW(2, level);
CoilCreator coil(nbodies);
double error;
calculateJacobianError(coil, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
DillCreator dill(level);
calculateDotJacUError(dill, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
}
const int kRandomLoops = 20;
const int kMaxRandomBodies = 16;
for (int loop = 0; loop < kRandomLoops; loop++) {
RandomTreeCreator random(kMaxRandomBodies);
double error;
calculateJacobianError(random, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
}
}
// test for jacobian*u == velocity
TEST(InvDynJacobians, VelocitiesFromJacobians) {
const int kRandomLoops = 20;
const int kMaxRandomBodies = 16;
const int kNumLoops = 20;
#ifdef B3_USE_DOUBLE_PRECISION
const double kMaxError = 1e-12;
#else
const double kMaxError = 5e-5;
#endif
for (int loop = 0; loop < kRandomLoops; loop++) {
RandomTreeCreator random(kMaxRandomBodies);
double error;
calculateVelocityJacobianError(random, kNumLoops, &error);
EXPECT_GT(kMaxError, error);
}
}
#endif
int main(int argc, char** argv) {
b3Srand(1234);
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}