Files
bullet3/BulletDynamics/ConstraintSolver/SequentialImpulseConstraintSolver.cpp

364 lines
10 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "SequentialImpulseConstraintSolver.h"
#include "NarrowPhaseCollision/PersistentManifold.h"
#include "Dynamics/RigidBody.h"
#include "ContactConstraint.h"
#include "Solve2LinearConstraint.h"
#include "ContactSolverInfo.h"
#include "Dynamics/BU_Joint.h"
#include "Dynamics/ContactJoint.h"
#include "IDebugDraw.h"
#include "JacobianEntry.h"
#include "GEN_MinMax.h"
#ifdef USE_PROFILE
#include "quickprof.h"
#endif //USE_PROFILE
int totalCpd = 0;
int gTotalContactPoints = 0;
bool MyContactDestroyedCallback(void* userPersistentData)
{
assert (userPersistentData);
ConstraintPersistentData* cpd = (ConstraintPersistentData*)userPersistentData;
delete cpd;
totalCpd--;
//printf("totalCpd = %i. DELETED Ptr %x\n",totalCpd,userPersistentData);
return true;
}
SequentialImpulseConstraintSolver::SequentialImpulseConstraintSolver()
{
gContactDestroyedCallback = &MyContactDestroyedCallback;
//initialize default friction/contact funcs
int i,j;
for (i=0;i<MAX_CONTACT_SOLVER_TYPES;i++)
for (j=0;j<MAX_CONTACT_SOLVER_TYPES;j++)
{
m_contactDispatch[i][j] = resolveSingleCollision;
m_frictionDispatch[i][j] = resolveSingleFriction;
}
}
/// SequentialImpulseConstraintSolver Sequentially applies impulses
float SequentialImpulseConstraintSolver::SolveGroup(PersistentManifold** manifoldPtr, int numManifolds,const ContactSolverInfo& infoGlobal,IDebugDraw* debugDrawer)
{
ContactSolverInfo info = infoGlobal;
int numiter = infoGlobal.m_numIterations;
#ifdef USE_PROFILE
Profiler::beginBlock("Solve");
#endif //USE_PROFILE
{
int j;
for (j=0;j<numManifolds;j++)
{
int k=j;
//interleaving the preparation with solving impacts the behaviour a lot, todo: find out why
PrepareConstraints(manifoldPtr[k],info,debugDrawer);
Solve(manifoldPtr[k],info,0,debugDrawer);
}
}
//should traverse the contacts random order...
int i;
for ( i = 0;i<numiter-1;i++)
{
int j;
for (j=0;j<numManifolds;j++)
{
int k=j;
if (i&1)
k=numManifolds-j-1;
Solve(manifoldPtr[k],info,i,debugDrawer);
}
}
#ifdef USE_PROFILE
Profiler::endBlock("Solve");
Profiler::beginBlock("SolveFriction");
#endif //USE_PROFILE
//now solve the friction
for (i = 0;i<numiter-1;i++)
{
int j;
for (j=0;j<numManifolds;j++)
{
int k = j;
if (i&1)
k=numManifolds-j-1;
SolveFriction(manifoldPtr[k],info,i,debugDrawer);
}
}
#ifdef USE_PROFILE
Profiler::endBlock("SolveFriction");
#endif //USE_PROFILE
return 0.f;
}
float penetrationResolveFactor = 0.9f;
SimdScalar restitutionCurve(SimdScalar rel_vel, SimdScalar restitution)
{
SimdScalar rest = restitution * -rel_vel;
return rest;
}
void SequentialImpulseConstraintSolver::PrepareConstraints(PersistentManifold* manifoldPtr, const ContactSolverInfo& info,IDebugDraw* debugDrawer)
{
RigidBody* body0 = (RigidBody*)manifoldPtr->GetBody0();
RigidBody* body1 = (RigidBody*)manifoldPtr->GetBody1();
//only necessary to refresh the manifold once (first iteration). The integration is done outside the loop
{
manifoldPtr->RefreshContactPoints(body0->getCenterOfMassTransform(),body1->getCenterOfMassTransform());
int numpoints = manifoldPtr->GetNumContacts();
gTotalContactPoints += numpoints;
SimdVector3 color(0,1,0);
for (int i=0;i<numpoints ;i++)
{
ManifoldPoint& cp = manifoldPtr->GetContactPoint(i);
if (cp.GetDistance() <= 0.f)
{
const SimdVector3& pos1 = cp.GetPositionWorldOnA();
const SimdVector3& pos2 = cp.GetPositionWorldOnB();
SimdVector3 rel_pos1 = pos1 - body0->getCenterOfMassPosition();
SimdVector3 rel_pos2 = pos2 - body1->getCenterOfMassPosition();
//this jacobian entry is re-used for all iterations
JacobianEntry jac(body0->getCenterOfMassTransform().getBasis().transpose(),
body1->getCenterOfMassTransform().getBasis().transpose(),
rel_pos1,rel_pos2,cp.m_normalWorldOnB,body0->getInvInertiaDiagLocal(),body0->getInvMass(),
body1->getInvInertiaDiagLocal(),body1->getInvMass());
SimdScalar jacDiagAB = jac.getDiagonal();
ConstraintPersistentData* cpd = (ConstraintPersistentData*) cp.m_userPersistentData;
if (cpd)
{
//might be invalid
cpd->m_persistentLifeTime++;
if (cpd->m_persistentLifeTime != cp.GetLifeTime())
{
//printf("Invalid: cpd->m_persistentLifeTime = %i cp.GetLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.GetLifeTime());
new (cpd) ConstraintPersistentData;
cpd->m_persistentLifeTime = cp.GetLifeTime();
} else
{
//printf("Persistent: cpd->m_persistentLifeTime = %i cp.GetLifeTime() = %i\n",cpd->m_persistentLifeTime,cp.GetLifeTime());
}
} else
{
cpd = new ConstraintPersistentData();
totalCpd ++;
//printf("totalCpd = %i Created Ptr %x\n",totalCpd,cpd);
cp.m_userPersistentData = cpd;
cpd->m_persistentLifeTime = cp.GetLifeTime();
//printf("CREATED: %x . cpd->m_persistentLifeTime = %i cp.GetLifeTime() = %i\n",cpd,cpd->m_persistentLifeTime,cp.GetLifeTime());
}
assert(cpd);
cpd->m_jacDiagABInv = 1.f / jacDiagAB;
//Dependent on Rigidbody A and B types, fetch the contact/friction response func
//perhaps do a similar thing for friction/restutution combiner funcs...
cpd->m_frictionSolverFunc = m_frictionDispatch[body0->m_frictionSolverType][body1->m_frictionSolverType];
cpd->m_contactSolverFunc = m_contactDispatch[body0->m_contactSolverType][body1->m_contactSolverType];
SimdVector3 vel1 = body0->getVelocityInLocalPoint(rel_pos1);
SimdVector3 vel2 = body1->getVelocityInLocalPoint(rel_pos2);
SimdVector3 vel = vel1 - vel2;
SimdScalar rel_vel;
rel_vel = cp.m_normalWorldOnB.dot(vel);
float combinedRestitution = cp.m_combinedRestitution;
cpd->m_penetration = cp.GetDistance();
cpd->m_friction = cp.m_combinedFriction;
cpd->m_restitution = restitutionCurve(rel_vel, combinedRestitution);
if (cpd->m_restitution <= 0.) //0.f)
{
cpd->m_restitution = 0.0f;
};
//restitution and penetration work in same direction so
//rel_vel
SimdScalar penVel = -cpd->m_penetration/info.m_timeStep;
if (cpd->m_restitution >= penVel)
{
cpd->m_penetration = 0.f;
}
float relaxation = info.m_damping;
cpd->m_appliedImpulse *= relaxation;
//for friction
cpd->m_prevAppliedImpulse = cpd->m_appliedImpulse;
//re-calculate friction direction every frame, todo: check if this is really needed
SimdPlaneSpace1(cp.m_normalWorldOnB,cpd->m_frictionWorldTangential0,cpd->m_frictionWorldTangential1);
#define NO_FRICTION_WARMSTART 1
#ifdef NO_FRICTION_WARMSTART
cpd->m_accumulatedTangentImpulse0 = 0.f;
cpd->m_accumulatedTangentImpulse1 = 0.f;
#endif //NO_FRICTION_WARMSTART
float denom0 = body0->ComputeImpulseDenominator(pos1,cpd->m_frictionWorldTangential0);
float denom1 = body1->ComputeImpulseDenominator(pos2,cpd->m_frictionWorldTangential0);
float denom = relaxation/(denom0+denom1);
cpd->m_jacDiagABInvTangent0 = denom;
denom0 = body0->ComputeImpulseDenominator(pos1,cpd->m_frictionWorldTangential1);
denom1 = body1->ComputeImpulseDenominator(pos2,cpd->m_frictionWorldTangential1);
denom = relaxation/(denom0+denom1);
cpd->m_jacDiagABInvTangent1 = denom;
SimdVector3 totalImpulse =
#ifndef NO_FRICTION_WARMSTART
cp.m_frictionWorldTangential0*cp.m_accumulatedTangentImpulse0+
cp.m_frictionWorldTangential1*cp.m_accumulatedTangentImpulse1+
#endif //NO_FRICTION_WARMSTART
cp.m_normalWorldOnB*cpd->m_appliedImpulse;
//apply previous frames impulse on both bodies
body0->applyImpulse(totalImpulse, rel_pos1);
body1->applyImpulse(-totalImpulse, rel_pos2);
}
}
}
}
float SequentialImpulseConstraintSolver::Solve(PersistentManifold* manifoldPtr, const ContactSolverInfo& info,int iter,IDebugDraw* debugDrawer)
{
RigidBody* body0 = (RigidBody*)manifoldPtr->GetBody0();
RigidBody* body1 = (RigidBody*)manifoldPtr->GetBody1();
float maxImpulse = 0.f;
{
const int numpoints = manifoldPtr->GetNumContacts();
SimdVector3 color(0,1,0);
for (int i=0;i<numpoints ;i++)
{
int j=i;
if (iter % 2)
j = numpoints-1-i;
else
j=i;
ManifoldPoint& cp = manifoldPtr->GetContactPoint(j);
if (cp.GetDistance() <= 0.f)
{
if (iter == 0)
{
if (debugDrawer)
debugDrawer->DrawContactPoint(cp.m_positionWorldOnB,cp.m_normalWorldOnB,cp.GetDistance(),cp.GetLifeTime(),color);
}
{
ConstraintPersistentData* cpd = (ConstraintPersistentData*) cp.m_userPersistentData;
float impulse = cpd->m_contactSolverFunc(
*body0,*body1,
cp,
info);
if (maxImpulse < impulse)
maxImpulse = impulse;
}
}
}
}
return maxImpulse;
}
float SequentialImpulseConstraintSolver::SolveFriction(PersistentManifold* manifoldPtr, const ContactSolverInfo& info,int iter,IDebugDraw* debugDrawer)
{
RigidBody* body0 = (RigidBody*)manifoldPtr->GetBody0();
RigidBody* body1 = (RigidBody*)manifoldPtr->GetBody1();
{
const int numpoints = manifoldPtr->GetNumContacts();
SimdVector3 color(0,1,0);
for (int i=0;i<numpoints ;i++)
{
int j=i;
//if (iter % 2)
// j = numpoints-1-i;
ManifoldPoint& cp = manifoldPtr->GetContactPoint(j);
if (cp.GetDistance() <= 0.f)
{
ConstraintPersistentData* cpd = (ConstraintPersistentData*) cp.m_userPersistentData;
cpd->m_frictionSolverFunc(
*body0,*body1,
cp,
info);
}
}
}
return 0.f;
}