Files
bullet3/Extras/BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.cpp

867 lines
31 KiB
C++

#include "SpuGatheringCollisionTask.h"
#include "SpuDoubleBuffer.h"
#include "../SpuCollisionTaskProcess.h"
#include "../SpuGatheringCollisionDispatcher.h" //for SPU_BATCHSIZE_BROADPHASE_PAIRS
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "SpuContactManifoldCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "SpuContactResult.h"
#include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
#include "BulletCollision/CollisionShapes/btTriangleIndexVertexArray.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "SpuMinkowskiPenetrationDepthSolver.h"
#include "SpuGjkPairDetector.h"
#include "SpuVoronoiSimplexSolver.h"
#include "SpuLocalSupport.h" //definition of SpuConvexPolyhedronVertexData
#ifdef WIN32
#define spu_printf printf
#include <stdio.h>
#endif
#define MAX_SHAPE_SIZE 256
//int gNumConvexPoints0=0;
///Make sure no destructors are called on this memory
struct CollisionTask_LocalStoreMemory
{
DoubleBuffer<unsigned char, MIDPHASE_WORKUNIT_PAGE_SIZE> g_workUnitTaskBuffers;
btBroadphasePair gBroadphasePairs[SPU_BATCHSIZE_BROADPHASE_PAIRS];
//SpuContactManifoldCollisionAlgorithm gSpuContactManifoldAlgo;
ATTRIBUTE_ALIGNED16(char gSpuContactManifoldAlgo[sizeof(SpuContactManifoldCollisionAlgorithm)+128]);
SpuContactManifoldCollisionAlgorithm* getlocalCollisionAlgorithm()
{
return (SpuContactManifoldCollisionAlgorithm*)&gSpuContactManifoldAlgo;
}
btPersistentManifold gPersistentManifold;
btBroadphaseProxy gProxy0;
btBroadphaseProxy gProxy1;
btCollisionObject gColObj0;
btCollisionObject gColObj1;
static const int maxShapeSize = MAX_SHAPE_SIZE;//todo: make some compile-time assert that this is value is larger then sizeof(btCollisionShape)
ATTRIBUTE_ALIGNED16(char gCollisionShape0[MAX_SHAPE_SIZE+1]);//todo: check out why leaving out '+1' causes troubles
ATTRIBUTE_ALIGNED16(char gCollisionShape1[MAX_SHAPE_SIZE+1]);
ATTRIBUTE_ALIGNED16(int spuIndices[16]);
ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh);
ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterface);
///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment
ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh);
#define MAX_SPU_SUBTREE_HEADERS 32
//1024
ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]);
ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]);
SpuConvexPolyhedronVertexData convexVertexData;
};
void* createCollisionLocalStoreMemory()
{
return new CollisionTask_LocalStoreMemory;
};
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts);
inline bool spuTestQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
bool overlap = true;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
return overlap;
}
void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex)
{
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
int escapeIndex;
bool aabbOverlap, isLeafNode;
while (curIndex < endNodeIndex)
{
//catch bugs in tree data
assert (walkIterations < subTreeSize);
walkIterations++;
aabbOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
if (isLeafNode && aabbOverlap)
{
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
nodeCallback->processNode(0,rootNode->getTriangleIndex());
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
}
if (aabbOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
}
void small_cache_read(void* buffer, uint64_t ea, size_t size)
{
#if USE_SOFTWARE_CACHE
// Check for alignment requirements. We need to make sure the entire request fits within one cache line,
// so the first and last bytes should fall on the same cache line
btAssert((ea & ~SPE_CACHELINE_MASK) == ((ea + size - 1) & ~SPE_CACHELINE_MASK));
void* ls = spe_cache_read(ea);
memcpy(buffer, ls, size);
#else
cellDmaLargeGet(buffer, ea, size, DMA_TAG(16), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(16));
#endif
}
class spuNodeCallback : public btNodeOverlapCallback
{
SpuCollisionPairInput* m_wuInput;
SpuContactResult& m_spuContacts;
CollisionTask_LocalStoreMemory* m_lsMemPtr;
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
ATTRIBUTE_ALIGNED16(int spuIndices[16]);
public:
spuNodeCallback(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr,SpuContactResult& spuContacts)
: m_wuInput(wuInput),
m_lsMemPtr(lsMemPtr),
m_spuContacts(spuContacts)
{
}
virtual void processNode(int subPart, int triangleIndex)
{
///Create a triangle on the stack, call process collision, with GJK
///DMA the vertices, can benefit from software caching
// spu_printf("processNode with triangleIndex %d\n",triangleIndex);
int* indexBasePtr = (int*)(m_lsMemPtr->gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->gIndexMesh.m_triangleIndexStride);
///DMA the indices
small_cache_read(&m_lsMemPtr->spuIndices[0],(uint64_t)&indexBasePtr[0],sizeof(int));
small_cache_read(&m_lsMemPtr->spuIndices[1],(uint64_t)&indexBasePtr[1],sizeof(int));
small_cache_read(&m_lsMemPtr->spuIndices[2],(uint64_t)&indexBasePtr[2],sizeof(int));
// spu_printf("SPU index0=%d ,",spuIndices[0]);
// spu_printf("SPU index1=%d ,",spuIndices[1]);
// spu_printf("SPU index2=%d ,",spuIndices[2]);
// spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr);
const btVector3& meshScaling = m_lsMemPtr->gTriangleMeshInterface.getScaling();
for (int j=2;j>=0;j--)
{
int graphicsindex = m_lsMemPtr->spuIndices[j];
// spu_printf("SPU index=%d ,",graphicsindex);
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->gIndexMesh.m_vertexStride);
// spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr);
///handle un-aligned vertices...
//another DMA for each vertex
small_cache_read(&spuUnscaledVertex[0],(uint64_t)&graphicsbasePtr[0],sizeof(btScalar));
small_cache_read(&spuUnscaledVertex[1],(uint64_t)&graphicsbasePtr[1],sizeof(btScalar));
small_cache_read(&spuUnscaledVertex[2],(uint64_t)&graphicsbasePtr[2],sizeof(btScalar));
spuTriangleVertices[j] = btVector3(
spuUnscaledVertex[0]*meshScaling.getX(),
spuUnscaledVertex[1]*meshScaling.getY(),
spuUnscaledVertex[2]*meshScaling.getZ());
// spu_printf("SPU:triangle vertices:%f,%f,%f\n",spuTriangleVertices[j].x(),spuTriangleVertices[j].y(),spuTriangleVertices[j].z());
}
//btTriangleShape tmpTriangleShape(spuTriangleVertices[0],spuTriangleVertices[1],spuTriangleVertices[2]);
SpuCollisionPairInput triangleConcaveInput(*m_wuInput);
triangleConcaveInput.m_spuCollisionShapes[1] = &spuTriangleVertices[0];
triangleConcaveInput.m_shapeType1 = TRIANGLE_SHAPE_PROXYTYPE;
m_spuContacts.setShapeIdentifiers(-1,-1,subPart,triangleIndex);
// m_spuContacts.flush();
ProcessSpuConvexConvexCollision(&triangleConcaveInput, m_lsMemPtr,m_spuContacts);
///this flush should be automatic
// m_spuContacts.flush();
}
};
////////////////////////
/// Convex versus Concave triangle mesh collision detection (handles concave triangle mesh versus sphere, box, cylinder, triangle, cone, convex polyhedron etc)
///////////////////
void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
{
//order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite
int sb = sizeof(btBvhTriangleMeshShape);
btAssert(sizeof(btBvhTriangleMeshShape) < MAX_SHAPE_SIZE);
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)wuInput->m_spuCollisionShapes[1];
//need the mesh interface, for access to triangle vertices
{
int dmaSize = sizeof(btTriangleIndexVertexArray);
uint64_t dmaPpuAddress2 = reinterpret_cast<uint64_t>(trimeshShape->getMeshInterface());
// spu_printf("trimeshShape->getMeshInterface() == %llx\n",dmaPpuAddress2);
cellDmaGet(&lsMemPtr->gTriangleMeshInterface, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
///now DMA over the BVH
{
int dmaSize = sizeof(btOptimizedBvh);
uint64_t dmaPpuAddress2 = reinterpret_cast<uint64_t>(trimeshShape->getOptimizedBvh());
//spu_printf("trimeshShape->getOptimizedBvh() == %llx\n",dmaPpuAddress2);
cellDmaGet(&lsMemPtr->gOptimizedBvh, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
btVector3 aabbMin(-1,-400,-1);
btVector3 aabbMax(1,400,1);
//recalc aabbs
btTransform convexInTriangleSpace;
convexInTriangleSpace = wuInput->m_worldTransform1.inverse() * wuInput->m_worldTransform0;
btConvexShape* convexShape = (btConvexShape*)wuInput->m_spuCollisionShapes[0];
//calculate the aabb, given the types...
switch (wuInput->m_shapeType0)
{
case CYLINDER_SHAPE_PROXYTYPE:
case BOX_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
btTransform& t = wuInput->m_worldTransform0;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
//add the radius to y-axis to get full height
btScalar radius = halfExtents[0];
halfExtents[1] += radius;
btTransform& t = wuInput->m_worldTransform0;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case SPHERE_SHAPE_PROXYTYPE:
{
float radius = convexShape->getImplicitShapeDimensions().getX();// * convexShape->getLocalScaling().getX();
float margin = radius + convexShape->getMarginNV();
btTransform& t = wuInput->m_worldTransform0;
const btVector3& center = t.getOrigin();
btVector3 extent(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
int dmaSize = sizeof(btConvexHullShape);
uint64_t dmaPpuAddress2 = wuInput->m_collisionShapes[0];
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
cellDmaGet(&convexHullShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0;
btTransform& t = wuInput->m_worldTransform0;
btScalar margin = convexShape->getMarginNV();
localPtr->getNonvirtualAabb(t,aabbMin,aabbMax,margin);
//spu_printf("SPU convex aabbMin=%f,%f,%f=\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ());
//spu_printf("SPU convex aabbMax=%f,%f,%f=\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ());
break;
}
default:
spu_printf("SPU: unsupported shapetype %d in AABB calculation\n");
};
//CollisionShape* triangleShape = static_cast<btCollisionShape*>(triBody->m_collisionShape);
//convexShape->getAabb(convexInTriangleSpace,m_aabbMin,m_aabbMax);
// btScalar extraMargin = collisionMarginTriangle;
// btVector3 extra(extraMargin,extraMargin,extraMargin);
// aabbMax += extra;
// aabbMin -= extra;
///quantize query AABB
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
lsMemPtr->gOptimizedBvh.quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
lsMemPtr->gOptimizedBvh.quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
QuantizedNodeArray& nodeArray = lsMemPtr->gOptimizedBvh.getQuantizedNodeArray();
//spu_printf("SPU: numNodes = %d\n",nodeArray.size());
BvhSubtreeInfoArray& subTrees = lsMemPtr->gOptimizedBvh.getSubtreeInfoArray();
spuNodeCallback nodeCallback(wuInput,lsMemPtr,spuContacts);
IndexedMeshArray& indexArray = lsMemPtr->gTriangleMeshInterface.getIndexedMeshArray();
//spu_printf("SPU:indexArray.size() = %d\n",indexArray.size());
// spu_printf("SPU: numSubTrees = %d\n",subTrees.size());
//not likely to happen
if (subTrees.size() && indexArray.size() == 1)
{
///DMA in the index info
{
int dmaSize = sizeof(btIndexedMesh);
uint64_t dmaPpuAddress2 = reinterpret_cast<uint64_t>(&indexArray[0]);
cellDmaGet(&lsMemPtr->gIndexMesh, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
//spu_printf("SPU gIndexMesh dma finished\n");
//display the headers
int numBatch = subTrees.size();
for (int i=0;i<numBatch;)
{
int remaining = subTrees.size() - i;
int nextBatch = remaining < MAX_SPU_SUBTREE_HEADERS ? remaining : MAX_SPU_SUBTREE_HEADERS;
{
int dmaSize = nextBatch* sizeof(btBvhSubtreeInfo);
uint64_t dmaPpuAddress2 = reinterpret_cast<uint64_t>(&subTrees[i]);
// spu_printf("&subtree[i]=%llx, dmaSize = %d\n",dmaPpuAddress2,dmaSize);
cellDmaGet(&lsMemPtr->gSubtreeHeaders[0], dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
// spu_printf("nextBatch = %d\n",nextBatch);
for (int j=0;j<nextBatch;j++)
{
const btBvhSubtreeInfo& subtree = lsMemPtr->gSubtreeHeaders[j];
bool overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap)
{
btAssert(subtree.m_subtreeSize);
//dma the actual nodes of this subtree
{
int dmaSize = subtree.m_subtreeSize* sizeof(btQuantizedBvhNode);
uint64_t dmaPpuAddress2 = reinterpret_cast<uint64_t>(&nodeArray[subtree.m_rootNodeIndex]);
cellDmaGet(&lsMemPtr->gSubtreeNodes[0], dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
spuWalkStacklessQuantizedTree(&nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
&lsMemPtr->gSubtreeNodes[0],
0,
subtree.m_subtreeSize);
}
// spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize);
}
// unsigned short int m_quantizedAabbMin[3];
// unsigned short int m_quantizedAabbMax[3];
// int m_rootNodeIndex;
// int m_subtreeSize;
i+=nextBatch;
}
//pre-fetch first tree, then loop and double buffer
}
}
////////////////////////
/// Convex versus Convex collision detection (handles collision between sphere, box, cylinder, triangle, cone, convex polyhedron etc)
///////////////////
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
{
#ifdef DEBUG_SPU_COLLISION_DETECTION
//spu_printf("SPU: ProcessSpuConvexConvexCollision\n");
#endif //DEBUG_SPU_COLLISION_DETECTION
//CollisionShape* shape0 = (CollisionShape*)wuInput->m_collisionShapes[0];
//CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1];
btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr;
bool genericGjk = true;
if (genericGjk)
{
//try generic GJK
SpuVoronoiSimplexSolver vsSolver;
SpuMinkowskiPenetrationDepthSolver penetrationSolver;
///DMA in the vertices for convex shapes
if (wuInput->m_shapeType0== CONVEX_HULL_SHAPE_PROXYTYPE)
{
// spu_printf("SPU: DMA btConvexHullShape\n");
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
{
int dmaSize = sizeof(btConvexHullShape);
uint64_t dmaPpuAddress2 = wuInput->m_collisionShapes[0];
cellDmaGet(&convexHullShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0;
lsMemPtr->convexVertexData.gNumConvexPoints0 = localPtr->getNumPoints();
if (lsMemPtr->convexVertexData.gNumConvexPoints0>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints0);
return;
}
{
int dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints0*sizeof(btPoint3);
uint64_t dmaPpuAddress2 = (uint64_t) localPtr->getPoints();
cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
lsMemPtr->convexVertexData.gSpuConvexShapePtr0 = wuInput->m_spuCollisionShapes[0];
lsMemPtr->convexVertexData.gConvexPoints0 = &lsMemPtr->convexVertexData.g_convexPointBuffer0[0];
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
}
if (wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE)
{
ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]);
// spu_printf("SPU: DMA btConvexHullShape\n");
{
int dmaSize = sizeof(btConvexHullShape);
uint64_t dmaPpuAddress2 = wuInput->m_collisionShapes[1];
cellDmaGet(&convexHullShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape1;
lsMemPtr->convexVertexData.gNumConvexPoints1 = localPtr->getNumPoints();
if (lsMemPtr->convexVertexData.gNumConvexPoints1>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints1);
return;
}
{
int dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints1*sizeof(btPoint3);
uint64_t dmaPpuAddress2 = (uint64_t) localPtr->getPoints();
cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer1, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
lsMemPtr->convexVertexData.gSpuConvexShapePtr1 = wuInput->m_spuCollisionShapes[1];
lsMemPtr->convexVertexData.gConvexPoints1 = &lsMemPtr->convexVertexData.g_convexPointBuffer1[0];
}
}
void* shape0Ptr = wuInput->m_spuCollisionShapes[0];
void* shape1Ptr = wuInput->m_spuCollisionShapes[1];
int shapeType0 = wuInput->m_shapeType0;
int shapeType1 = wuInput->m_shapeType1;
float marginA = wuInput->m_collisionMargin0;
float marginB = wuInput->m_collisionMargin1;
SpuClosestPointInput cpInput;
cpInput.m_convexVertexData = &lsMemPtr->convexVertexData;
cpInput.m_transformA = wuInput->m_worldTransform0;
cpInput.m_transformB = wuInput->m_worldTransform1;
float sumMargin = (marginA+marginB);
cpInput.m_maximumDistanceSquared = sumMargin * sumMargin;
uint64_t manifoldAddress = (uint64_t)manifold;
btPersistentManifold* spuManifold=&lsMemPtr->gPersistentManifold;
spuContacts.setContactInfo(spuManifold,manifoldAddress,wuInput->m_worldTransform0,wuInput->m_worldTransform1);
SpuGjkPairDetector gjk(shape0Ptr,shape1Ptr,shapeType0,shapeType1,marginA,marginB,&vsSolver,&penetrationSolver);
gjk.getClosestPoints(cpInput,spuContacts);//,debugDraw);
}
}
void processCollisionTask(void* userPtr, void* lsMemPtr)
{
SpuGatherAndProcessPairsTaskDesc* taskDescPtr = (SpuGatherAndProcessPairsTaskDesc*)userPtr;
SpuGatherAndProcessPairsTaskDesc& taskDesc = *taskDescPtr;
CollisionTask_LocalStoreMemory* colMemPtr = (CollisionTask_LocalStoreMemory*)lsMemPtr;
CollisionTask_LocalStoreMemory& lsMem = *(colMemPtr);
SpuContactResult spuContacts;
uint64_t dmaInPtr = taskDesc.inPtr;
unsigned int numPages = taskDesc.numPages;
unsigned int numOnLastPage = taskDesc.numOnLastPage;
// prefetch first set of inputs and wait
unsigned int nextNumOnPage = (numPages > 1)? MIDPHASE_NUM_WORKUNITS_PER_PAGE : numOnLastPage;
lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3));
dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE;
for (unsigned int i = 0; i < numPages; i++)
{
// wait for back buffer dma and swap buffers
unsigned char *inputPtr = lsMem.g_workUnitTaskBuffers.swapBuffers();
// number on current page is number prefetched last iteration
unsigned int numOnPage = nextNumOnPage;
unsigned int j;
// prefetch next set of inputs
if (i < numPages-1)
{
nextNumOnPage = (i == numPages-2)? numOnLastPage : MIDPHASE_NUM_WORKUNITS_PER_PAGE;
lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3));
dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE;
}
SpuGatherAndProcessWorkUnitInput* wuInputs = reinterpret_cast<SpuGatherAndProcessWorkUnitInput *>(inputPtr);
for (j = 0; j < numOnPage; j++)
{
#ifdef DEBUG_SPU_COLLISION_DETECTION
printMidphaseInput(&wuInputs[j]);
#endif //DEBUG_SPU_COLLISION_DETECTION
int numPairs = wuInputs[j].m_endIndex - wuInputs[j].m_startIndex;
// printf("startIndex=%d, endIndex = %d\n",wuInputs[j].m_startIndex,wuInputs[j].m_endIndex);
if (numPairs)
{
{
int dmaSize = numPairs*sizeof(btBroadphasePair);
uint64_t dmaPpuAddress = wuInputs[j].m_pairArrayPtr+wuInputs[j].m_startIndex * sizeof(btBroadphasePair);
cellDmaGet(&lsMem.gBroadphasePairs, dmaPpuAddress , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
for (int p=0;p<numPairs;p++)
{
//for each broadphase pair, do something
btBroadphasePair& pair = lsMem.gBroadphasePairs[p];
int userInfo = int(pair.m_userInfo);
if (userInfo == 2 && pair.m_algorithm && pair.m_pProxy0 && pair.m_pProxy1)
{
{
int dmaSize = sizeof(SpuContactManifoldCollisionAlgorithm);
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_algorithm;
cellDmaGet(&lsMem.gSpuContactManifoldAlgo, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
SpuCollisionPairInput collisionPairInput;
collisionPairInput.m_persistentManifoldPtr = (uint64_t) lsMem.getlocalCollisionAlgorithm()->getContactManifoldPtr();
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("SPU: manifoldPtr: %llx",collisionPairInput->m_persistentManifoldPtr);
#endif //DEBUG_SPU_COLLISION_DETECTION
{
int dmaSize = sizeof(btBroadphaseProxy);
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy0;
cellDmaGet(&lsMem.gProxy0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
{
int dmaSize = sizeof(btBroadphaseProxy);
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy1;
cellDmaGet(&lsMem.gProxy1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(2));
}
//btCollisionObject* colObj0 = (btCollisionObject*)gProxy0.m_clientObject;
//btCollisionObject* colObj1 = (btCollisionObject*)gProxy1.m_clientObject;
{
int dmaSize = sizeof(btCollisionObject);
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy0.m_clientObject;
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
{
int dmaSize = sizeof(btCollisionObject);
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy1.m_clientObject;
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(2));
}
///can wait on the combined DMA_MASK, or dma on the same tag
collisionPairInput.m_shapeType0 = lsMem.getlocalCollisionAlgorithm()->getShapeType0();
collisionPairInput.m_shapeType1 = lsMem.getlocalCollisionAlgorithm()->getShapeType1();
collisionPairInput.m_collisionMargin0 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin0();
collisionPairInput.m_collisionMargin1 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin1();
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("SPU collisionPairInput->m_shapeType0 = %d\n",collisionPairInput->m_shapeType0);
spu_printf("SPU collisionPairInput->m_shapeType1 = %d\n",collisionPairInput->m_shapeType1);
#endif //DEBUG_SPU_COLLISION_DETECTION
if (1)
{
collisionPairInput.m_worldTransform0 = lsMem.gColObj0.getWorldTransform();
collisionPairInput.m_worldTransform1 = lsMem.gColObj1.getWorldTransform();
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("SPU worldTrans0.origin = (%f,%f,%f)\n",
collisionPairInput->m_worldTransform0.getOrigin().getX(),
collisionPairInput->m_worldTransform0.getOrigin().getY(),
collisionPairInput->m_worldTransform0.getOrigin().getZ());
spu_printf("SPU worldTrans1.origin = (%f,%f,%f)\n",
collisionPairInput->m_worldTransform1.getOrigin().getX(),
collisionPairInput->m_worldTransform1.getOrigin().getY(),
collisionPairInput->m_worldTransform1.getOrigin().getZ());
#endif //DEBUG_SPU_COLLISION_DETECTION
{
int dmaSize = sizeof(btPersistentManifold);
uint64_t dmaPpuAddress2 = collisionPairInput.m_persistentManifoldPtr;
cellDmaGet(&lsMem.gPersistentManifold, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)
&& btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
{
{
int dmaSize = lsMem.maxShapeSize;
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
{
int dmaSize = lsMem.maxShapeSize;
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape();
cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(2));
}
btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0;
btConvexShape* spuConvexShape1 = (btConvexShape*)lsMem.gCollisionShape1;
btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions();
btVector3 dim1 = spuConvexShape1->getImplicitShapeDimensions();
collisionPairInput.m_primitiveDimensions0 = dim0;
collisionPairInput.m_primitiveDimensions1 = dim1;
collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape();
collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape();
collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0;
collisionPairInput.m_spuCollisionShapes[1] = spuConvexShape1;
ProcessSpuConvexConvexCollision(&collisionPairInput,&lsMem, spuContacts);
} else
{
//a non-convex shape is involved
bool isSwapped = false;
bool handleConvexConcave = false;
if (btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType0) &&
btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
{
isSwapped = true;
spu_printf("SPU convex/concave swapped, unsupported!\n");
handleConvexConcave = true;
}
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)&&
btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType1))
{
handleConvexConcave = true;
}
if (handleConvexConcave && !isSwapped)
{
// spu_printf("SPU: non-convex detected\n");
{
// uint64_t dmaPpuAddress2 = (uint64_t)gProxy1.m_clientObject;
// spu_printf("SPU: gColObj1 trimesh = %llx\n",dmaPpuAddress2);
}
///dma and initialize the convex object
{
int dmaSize = lsMem.maxShapeSize;
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
///dma and initialize the concave object
{
int dmaSize = lsMem.maxShapeSize;//sizeof(btBvhTriangleMeshShape);//lsMem.maxShapeSize;
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape();
// spu_printf("SPU: trimesh = %llx\n",dmaPpuAddress2);
cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(2));
}
btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0;
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)lsMem.gCollisionShape1;
btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions();
collisionPairInput.m_primitiveDimensions0 = dim0;
collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape();
collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape();
collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0;
collisionPairInput.m_spuCollisionShapes[1] = trimeshShape;
ProcessConvexConcaveSpuCollision(&collisionPairInput,&lsMem,spuContacts);
}
}
spuContacts.flush();
}
}
}
}
}
}
}