Files
bullet3/Demos/Raytracer/Raytracer.cpp
ejcoumans 17a214a2b3 - Added btRigidBodyConstructionInfo, to make it easier to set individual setting (and leave other untouched) during rigid body construction.
This was harder using default arguments. Thanks Vangelis Kokkevis for pointing this out.
- Fixed memoryleak in the ConstraintDemo and Raytracer demo.
- fixed issue with clearing forces/gravity at the end of the stepSimulation, instead of during internalSingleStepSimulation.
Thanks chunky for pointing this out: http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1780
- Disabled additional damping in rigid body by default, but enable it in most demos. Set btRigidBodyConstructionInfo m_additionalDamping to true to enable this.
- Removed obsolete QUICKPROF BEGIN/END_PROFILE, and enabled BT_PROFILE. Profiling is enabled by default (see Bullet/Demos/OpenGL/DemoApplication.cpp how to use this).
User can switch off profiling by enabling define BT_NO_PROFILE in Bullet/src/btQuickprof.h.
2007-12-17 04:26:36 +00:00

578 lines
14 KiB
C++

/*
* Copyright (c) 2005 Erwin Coumans <www.erwincoumans.com>
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "BulletCollision/CollisionDispatch/btCollisionWorld.h"
/*
Raytracer uses the Convex rayCast to visualize the Collision Shapes/Minkowski Sum.
Very basic raytracer, rendering into a texture.
*/
///Low level demo, doesn't include btBulletCollisionCommon.h
#include "LinearMath/btQuaternion.h"
#include "LinearMath/btTransform.h"
#include "GL_ShapeDrawer.h"
#include "GLDebugDrawer.h"
#include "Raytracer.h"
#include "GlutStuff.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
#include "BulletCollision/CollisionShapes/btConvexHullShape.h"
#include "LinearMath/btAabbUtil2.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/CollisionShapes/btTetrahedronShape.h"
#include "BulletCollision/CollisionShapes/btConeShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h"
#include "BulletCollision/BroadphaseCollision/btAxisSweep3.h"
#include "RenderTexture.h"
static btVoronoiSimplexSolver simplexSolver;
static float yaw=0.f,pitch=0.f,roll=0.f;
static const int maxNumObjects = 4;
static const int numObjects = 3;
static btConvexShape* shapePtr[maxNumObjects];
static btTransform transforms[maxNumObjects];
renderTexture* raytracePicture = 0;
//this applies to the raytracer virtual screen/image buffer
static int screenWidth = 100;
//float aspectRatio = (3.f/4.f);
static int screenHeight = 80;//screenWidth * aspectRatio;
GLuint glTextureId;
btConeShape myCone(1,1);
btSphereShape mysphere(1);
btBoxShape mybox(btVector3(1,1,1));
btCollisionWorld* m_collisionWorld = 0;
///
///
///
void Raytracer::initPhysics()
{
m_ele = 0;
raytracePicture = new renderTexture(screenWidth,screenHeight);
myCone.setMargin(0.2f);
//choose shape
shapePtr[0] = &myCone;
shapePtr[1] = &mysphere;
shapePtr[2] = &mybox;
for (int i=0;i<numObjects;i++)
{
transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(yaw,pitch,roll);
transforms[i].setRotation(orn);
}
}
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
m_collisionWorld = new btCollisionWorld(m_dispatcher,m_overlappingPairCache,m_collisionConfiguration);
for (int s=0;s<numObjects;s++)
{
btCollisionObject* obj = new btCollisionObject();
obj->setCollisionShape(shapePtr[s]);
obj->setWorldTransform(transforms[s]);
m_collisionWorld->addCollisionObject(obj);
}
}
Raytracer::~Raytracer()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_collisionWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_collisionWorld->getCollisionObjectArray()[i];
m_collisionWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision world
delete m_collisionWorld;
//delete broadphase
delete m_overlappingPairCache;
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
delete raytracePicture;
raytracePicture=0;
}
//to be implemented by the demo
void Raytracer::clientMoveAndDisplay()
{
displayCallback();
}
int once = 1;
bool Raytracer::worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
struct AllRayResultCallback : public btCollisionWorld::RayResultCallback
{
AllRayResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:m_rayFromWorld(rayFromWorld),
m_rayToWorld(rayToWorld)
{
}
btVector3 m_rayFromWorld;//used to calculate hitPointWorld from hitFraction
btVector3 m_rayToWorld;
btVector3 m_hitNormalWorld;
btVector3 m_hitPointWorld;
virtual btScalar AddSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace)
{
//caller already does the filter on the m_closestHitFraction
assert(rayResult.m_hitFraction <= m_closestHitFraction);
m_closestHitFraction = rayResult.m_hitFraction;
m_collisionObject = rayResult.m_collisionObject;
if (normalInWorldSpace)
{
m_hitNormalWorld = rayResult.m_hitNormalLocal;
} else
{
///need to transform normal into worldspace
m_hitNormalWorld = m_collisionObject->getWorldTransform().getBasis()*rayResult.m_hitNormalLocal;
}
m_hitPointWorld.setInterpolate3(m_rayFromWorld,m_rayToWorld,rayResult.m_hitFraction);
return 1.f;
}
};
AllRayResultCallback resultCallback(rayFrom,rayTo);
// btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
m_collisionWorld->rayTest(rayFrom,rayTo,resultCallback);
if (resultCallback.HasHit())
{
worldNormal = resultCallback.m_hitNormalWorld;
return true;
}
return false;
}
bool Raytracer::singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
btCollisionWorld::ClosestRayResultCallback resultCallback(rayFrom,rayTo);
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
{
//comment-out next line to get all hits, instead of just the closest hit
//resultCallback.m_closestHitFraction = 1.f;
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
btCollisionWorld::rayTestSingle(rayFromTrans,rayToTrans, &tmpObj, shapePtr[s], transforms[s], resultCallback);
if (resultCallback.HasHit())
{
//float fog = 1.f - 0.1f * rayResult.m_fraction;
resultCallback.m_hitNormalWorld.normalize();//.m_normal.normalize();
worldNormal = resultCallback.m_hitNormalWorld;
//worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
return hasHit;
}
bool Raytracer::lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
for (int s=0;s<numObjects;s++)
{
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
shapePtr[s]->getAabb(transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
//choose the continuous collision detection method
btSubsimplexConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btContinuousConvexCollision convexCaster(&pointShape,shapePtr[s],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,transforms[s],transforms[s],rayResult))
{
if (rayResult.m_fraction < closestHitResults)
{
closestHitResults = rayResult.m_fraction;
worldNormal = transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
}
return hasHit;
}
void Raytracer::displayCallback()
{
updateCamera();
for (int i=0;i<numObjects;i++)
{
transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(yaw,pitch,roll);
transforms[i].setRotation(orn);
}
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDisable(GL_LIGHTING);
if (once)
{
glGenTextures(1, &glTextureId);
glBindTexture(GL_TEXTURE_2D,glTextureId );
once = 0;
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
btVector4 rgba(1.f,0.f,0.f,0.5f);
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = 2.0 * atanf (tanFov);
btVector3 rayFrom = getCameraPosition();
btVector3 rayForward = getCameraTargetPosition()-getCameraPosition();
rayForward.normalize();
float farPlane = 600.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 vertical(0.f,1.f,0.f);
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/float(screenWidth);
btVector3 dVert = vertical * 1.f/float(screenHeight);
btTransform rayFromTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
btTransform rayFromLocal;
btTransform rayToLocal;
int x;
///clear texture
for (x=0;x<screenWidth;x++)
{
for (int y=0;y<screenHeight;y++)
{
btVector4 rgba(0.f,0.f,0.f,0.f);
raytracePicture->setPixel(x,y,rgba);
}
}
btVector3 rayTo;
btTransform colObjWorldTransform;
colObjWorldTransform.setIdentity();
int mode = 0;
for (x=0;x<screenWidth;x++)
{
for (int y=0;y<screenHeight;y++)
{
rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += x * dHor;
rayTo -= y * dVert;
btVector3 worldNormal(0,0,0);
btVector3 worldPoint(0,0,0);
bool hasHit = false;
int mode = 0;
switch (mode)
{
case 0:
hasHit = lowlevelRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 1:
hasHit = singleObjectRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 2:
hasHit = worldRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
default:
{
}
}
if (hasHit)
{
float lightVec0 = worldNormal.dot(btVector3(0,-1,-1));//0.4f,-1.f,-0.4f));
float lightVec1= worldNormal.dot(btVector3(-1,0,-1));//-0.4f,-1.f,-0.4f));
rgba = btVector4(lightVec0,lightVec1,0,1.f);
rgba.setMin(btVector3(1,1,1));
rgba.setMax(btVector3(0.2,0.2,0.2));
rgba[3] = 1.f;
raytracePicture->setPixel(x,y,rgba);
} else
btVector4 rgba = raytracePicture->getPixel(x,y);
if (!rgba.length2())
{
raytracePicture->setPixel(x,y,btVector4(1,1,1,1));
}
}
}
extern BMF_FontData BMF_font_helv10;
raytracePicture->grapicalPrintf("CCD RAYTRACER",&BMF_font_helv10);
char buffer[256];
sprintf(buffer,"%d RAYS / Frame",screenWidth*screenHeight*numObjects);
raytracePicture->grapicalPrintf(buffer,&BMF_font_helv10,0,10);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glFrustum(-1.0,1.0,-1.0,1.0,3,2020.0);
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity(); // reset The Modelview Matrix
glTranslatef(0.0f,0.0f,-3.1f); // Move Into The Screen 5 Units
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D,glTextureId );
const unsigned char *ptr = raytracePicture->getBuffer();
glTexImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
raytracePicture->getWidth(),raytracePicture->getHeight(),
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
ptr);
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f (1,1,1,1); // alpha=0.5=half visible
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f);
glVertex2f(-1,1);
glTexCoord2f(1.0f, 0.0f);
glVertex2f(1,1);
glTexCoord2f(1.0f, 1.0f);
glVertex2f(1,-1);
glTexCoord2f(0.0f, 1.0f);
glVertex2f(-1,-1);
glEnd();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glDisable(GL_TEXTURE_2D);
glDisable(GL_DEPTH_TEST);
GL_ShapeDrawer::drawCoordSystem();
{
for (int i=0;i<numObjects;i++)
{
btVector3 aabbMin,aabbMax;
shapePtr[i]->getAabb(transforms[i],aabbMin,aabbMax);
}
}
glPushMatrix();
glPopMatrix();
pitch += 0.005f;
yaw += 0.01f;
m_azi += 1.f;
glFlush();
glutSwapBuffers();
}