415 lines
15 KiB
C++
Executable File
415 lines
15 KiB
C++
Executable File
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
/*
|
|
Added by Roman Ponomarev (rponom@gmail.com)
|
|
April 04, 2008
|
|
*/
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "btSliderConstraint.h"
|
|
#include "BulletDynamics/Dynamics/btRigidBody.h"
|
|
#include "LinearMath/btTransformUtil.h"
|
|
#include <new>
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::initParams()
|
|
{
|
|
m_lowerLinLimit = btScalar(1.0);
|
|
m_upperLinLimit = btScalar(-1.0);
|
|
m_lowerAngLimit = btScalar(0.);
|
|
m_upperAngLimit = btScalar(0.);
|
|
m_softnessDirLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
|
|
m_restitutionDirLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
|
|
m_dampingDirLin = btScalar(0.);
|
|
m_softnessDirAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
|
|
m_restitutionDirAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
|
|
m_dampingDirAng = btScalar(0.);
|
|
m_softnessOrthoLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
|
|
m_restitutionOrthoLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
|
|
m_dampingOrthoLin = SLIDER_CONSTRAINT_DEF_DAMPING;
|
|
m_softnessOrthoAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
|
|
m_restitutionOrthoAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
|
|
m_dampingOrthoAng = SLIDER_CONSTRAINT_DEF_DAMPING;
|
|
m_softnessLimLin = SLIDER_CONSTRAINT_DEF_SOFTNESS;
|
|
m_restitutionLimLin = SLIDER_CONSTRAINT_DEF_RESTITUTION;
|
|
m_dampingLimLin = SLIDER_CONSTRAINT_DEF_DAMPING;
|
|
m_softnessLimAng = SLIDER_CONSTRAINT_DEF_SOFTNESS;
|
|
m_restitutionLimAng = SLIDER_CONSTRAINT_DEF_RESTITUTION;
|
|
m_dampingLimAng = SLIDER_CONSTRAINT_DEF_DAMPING;
|
|
|
|
m_poweredLinMotor = false;
|
|
m_targetLinMotorVelocity = btScalar(0.);
|
|
m_maxLinMotorForce = btScalar(0.);
|
|
m_accumulatedLinMotorImpulse = btScalar(0.0);
|
|
|
|
m_poweredAngMotor = false;
|
|
m_targetAngMotorVelocity = btScalar(0.);
|
|
m_maxAngMotorForce = btScalar(0.);
|
|
m_accumulatedAngMotorImpulse = btScalar(0.0);
|
|
|
|
} // btSliderConstraint::initParams()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
btSliderConstraint::btSliderConstraint()
|
|
:btTypedConstraint(SLIDER_CONSTRAINT_TYPE),
|
|
m_useLinearReferenceFrameA(true)
|
|
{
|
|
initParams();
|
|
} // btSliderConstraint::btSliderConstraint()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
btSliderConstraint::btSliderConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
|
|
: btTypedConstraint(SLIDER_CONSTRAINT_TYPE, rbA, rbB)
|
|
, m_frameInA(frameInA)
|
|
, m_frameInB(frameInB),
|
|
m_useLinearReferenceFrameA(useLinearReferenceFrameA)
|
|
{
|
|
initParams();
|
|
} // btSliderConstraint::btSliderConstraint()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::buildJacobian()
|
|
{
|
|
if(m_useLinearReferenceFrameA)
|
|
{
|
|
buildJacobianInt(m_rbA, m_rbB, m_frameInA, m_frameInB);
|
|
}
|
|
else
|
|
{
|
|
buildJacobianInt(m_rbB, m_rbA, m_frameInB, m_frameInA);
|
|
}
|
|
} // btSliderConstraint::buildJacobian()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::buildJacobianInt(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
|
|
{
|
|
//calculate transforms
|
|
m_calculatedTransformA = rbA.getCenterOfMassTransform() * frameInA;
|
|
m_calculatedTransformB = rbB.getCenterOfMassTransform() * frameInB;
|
|
m_realPivotAInW = m_calculatedTransformA.getOrigin();
|
|
m_realPivotBInW = m_calculatedTransformB.getOrigin();
|
|
m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
|
|
m_delta = m_realPivotBInW - m_realPivotAInW;
|
|
m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
|
|
m_relPosA = m_projPivotInW - rbA.getCenterOfMassPosition();
|
|
m_relPosB = m_realPivotBInW - rbB.getCenterOfMassPosition();
|
|
btVector3 normalWorld;
|
|
int i;
|
|
//linear part
|
|
for(i = 0; i < 3; i++)
|
|
{
|
|
normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
|
|
new (&m_jacLin[i]) btJacobianEntry(
|
|
rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
m_relPosA,
|
|
m_relPosB,
|
|
normalWorld,
|
|
rbA.getInvInertiaDiagLocal(),
|
|
rbA.getInvMass(),
|
|
rbB.getInvInertiaDiagLocal(),
|
|
rbB.getInvMass()
|
|
);
|
|
m_jacLinDiagABInv[i] = btScalar(1.) / m_jacLin[i].getDiagonal();
|
|
m_depth[i] = m_delta.dot(normalWorld);
|
|
}
|
|
testLinLimits();
|
|
// angular part
|
|
for(i = 0; i < 3; i++)
|
|
{
|
|
normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
|
|
new (&m_jacAng[i]) btJacobianEntry(
|
|
normalWorld,
|
|
rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
rbA.getInvInertiaDiagLocal(),
|
|
rbB.getInvInertiaDiagLocal()
|
|
);
|
|
}
|
|
testAngLimits();
|
|
btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
|
|
m_kAngle = btScalar(1.0 )/ (rbA.computeAngularImpulseDenominator(axisA) + rbB.computeAngularImpulseDenominator(axisA));
|
|
// clear accumulator for motors
|
|
m_accumulatedLinMotorImpulse = btScalar(0.0);
|
|
m_accumulatedAngMotorImpulse = btScalar(0.0);
|
|
} // btSliderConstraint::buildJacobianInt()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::solveConstraint(btScalar timeStep)
|
|
{
|
|
m_timeStep = timeStep;
|
|
if(m_useLinearReferenceFrameA)
|
|
{
|
|
solveConstraintInt(m_rbA, m_rbB);
|
|
}
|
|
else
|
|
{
|
|
solveConstraintInt(m_rbB, m_rbA);
|
|
}
|
|
} // btSliderConstraint::solveConstraint()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::solveConstraintInt(btRigidBody& rbA, btRigidBody& rbB)
|
|
{
|
|
int i;
|
|
// linear
|
|
btVector3 velA = rbA.getVelocityInLocalPoint(m_relPosA);
|
|
btVector3 velB = rbB.getVelocityInLocalPoint(m_relPosB);
|
|
btVector3 vel = velA - velB;
|
|
for(i = 0; i < 3; i++)
|
|
{
|
|
const btVector3& normal = m_jacLin[i].m_linearJointAxis;
|
|
btScalar rel_vel = normal.dot(vel);
|
|
// calculate positional error
|
|
btScalar depth = m_depth[i];
|
|
// get parameters
|
|
btScalar softness = (i) ? m_softnessOrthoLin : (m_solveLinLim ? m_softnessLimLin : m_softnessDirLin);
|
|
btScalar restitution = (i) ? m_restitutionOrthoLin : (m_solveLinLim ? m_restitutionLimLin : m_restitutionDirLin);
|
|
btScalar damping = (i) ? m_dampingOrthoLin : (m_solveLinLim ? m_dampingLimLin : m_dampingDirLin);
|
|
// calcutate and apply impulse
|
|
btScalar normalImpulse = softness * (restitution * depth / m_timeStep - damping * rel_vel) * m_jacLinDiagABInv[i];
|
|
btVector3 impulse_vector = normal * normalImpulse;
|
|
rbA.applyImpulse( impulse_vector, m_relPosA);
|
|
rbB.applyImpulse(-impulse_vector, m_relPosB);
|
|
if(m_poweredLinMotor && (!i))
|
|
{ // apply linear motor
|
|
if(m_accumulatedLinMotorImpulse < m_maxLinMotorForce)
|
|
{
|
|
btScalar desiredMotorVel = m_targetLinMotorVelocity;
|
|
btScalar motor_relvel = desiredMotorVel + rel_vel;
|
|
normalImpulse = -motor_relvel * m_jacLinDiagABInv[i];
|
|
// clamp accumulated impulse
|
|
btScalar new_acc = m_accumulatedLinMotorImpulse + btFabs(normalImpulse);
|
|
if(new_acc > m_maxLinMotorForce)
|
|
{
|
|
new_acc = m_maxLinMotorForce;
|
|
}
|
|
btScalar del = new_acc - m_accumulatedLinMotorImpulse;
|
|
if(normalImpulse < btScalar(0.0))
|
|
{
|
|
normalImpulse = -del;
|
|
}
|
|
else
|
|
{
|
|
normalImpulse = del;
|
|
}
|
|
m_accumulatedLinMotorImpulse = new_acc;
|
|
// apply clamped impulse
|
|
impulse_vector = normal * normalImpulse;
|
|
rbA.applyImpulse( impulse_vector, m_relPosA);
|
|
rbB.applyImpulse(-impulse_vector, m_relPosB);
|
|
}
|
|
}
|
|
}
|
|
// angular
|
|
// get axes in world space
|
|
btVector3 axisA = m_calculatedTransformA.getBasis().getColumn(0);
|
|
btVector3 axisB = m_calculatedTransformB.getBasis().getColumn(0);
|
|
|
|
const btVector3& angVelA = rbA.getAngularVelocity();
|
|
const btVector3& angVelB = rbB.getAngularVelocity();
|
|
|
|
btVector3 angVelAroundAxisA = axisA * axisA.dot(angVelA);
|
|
btVector3 angVelAroundAxisB = axisB * axisB.dot(angVelB);
|
|
|
|
btVector3 angAorthog = angVelA - angVelAroundAxisA;
|
|
btVector3 angBorthog = angVelB - angVelAroundAxisB;
|
|
btVector3 velrelOrthog = angAorthog-angBorthog;
|
|
//solve orthogonal angular velocity correction
|
|
btScalar len = velrelOrthog.length();
|
|
if (len > btScalar(0.00001))
|
|
{
|
|
btVector3 normal = velrelOrthog.normalized();
|
|
btScalar denom = rbA.computeAngularImpulseDenominator(normal) + rbB.computeAngularImpulseDenominator(normal);
|
|
velrelOrthog *= (btScalar(1.)/denom) * m_dampingOrthoAng * m_softnessOrthoAng;
|
|
}
|
|
//solve angular positional correction
|
|
btVector3 angularError = axisA.cross(axisB) *(btScalar(1.)/m_timeStep);
|
|
btScalar len2 = angularError.length();
|
|
if (len2>btScalar(0.00001))
|
|
{
|
|
btVector3 normal2 = angularError.normalized();
|
|
btScalar denom2 = rbA.computeAngularImpulseDenominator(normal2) + rbB.computeAngularImpulseDenominator(normal2);
|
|
angularError *= (btScalar(1.)/denom2) * m_restitutionOrthoAng * m_softnessOrthoAng;
|
|
}
|
|
// apply impulse
|
|
rbA.applyTorqueImpulse(-velrelOrthog+angularError);
|
|
rbB.applyTorqueImpulse(velrelOrthog-angularError);
|
|
btScalar impulseMag;
|
|
//solve angular limits
|
|
if(m_solveAngLim)
|
|
{
|
|
impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingLimAng + m_angDepth * m_restitutionLimAng / m_timeStep;
|
|
impulseMag *= m_kAngle * m_softnessLimAng;
|
|
}
|
|
else
|
|
{
|
|
impulseMag = (angVelB - angVelA).dot(axisA) * m_dampingDirAng + m_angDepth * m_restitutionDirAng / m_timeStep;
|
|
impulseMag *= m_kAngle * m_softnessDirAng;
|
|
}
|
|
btVector3 impulse = axisA * impulseMag;
|
|
rbA.applyTorqueImpulse(impulse);
|
|
rbB.applyTorqueImpulse(-impulse);
|
|
//apply angular motor
|
|
if(m_poweredAngMotor)
|
|
{
|
|
if(m_accumulatedAngMotorImpulse < m_maxAngMotorForce)
|
|
{
|
|
btVector3 velrel = angVelAroundAxisA - angVelAroundAxisB;
|
|
btScalar projRelVel = velrel.dot(axisA);
|
|
|
|
btScalar desiredMotorVel = m_targetAngMotorVelocity;
|
|
btScalar motor_relvel = desiredMotorVel - projRelVel;
|
|
|
|
btScalar angImpulse = m_kAngle * motor_relvel;
|
|
// clamp accumulated impulse
|
|
btScalar new_acc = m_accumulatedAngMotorImpulse + btFabs(angImpulse);
|
|
if(new_acc > m_maxAngMotorForce)
|
|
{
|
|
new_acc = m_maxAngMotorForce;
|
|
}
|
|
btScalar del = new_acc - m_accumulatedAngMotorImpulse;
|
|
if(angImpulse < btScalar(0.0))
|
|
{
|
|
angImpulse = -del;
|
|
}
|
|
else
|
|
{
|
|
angImpulse = del;
|
|
}
|
|
m_accumulatedAngMotorImpulse = new_acc;
|
|
// apply clamped impulse
|
|
btVector3 motorImp = angImpulse * axisA;
|
|
m_rbA.applyTorqueImpulse(motorImp);
|
|
m_rbB.applyTorqueImpulse(-motorImp);
|
|
}
|
|
}
|
|
} // btSliderConstraint::solveConstraint()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::calculateTransforms(void){
|
|
if(m_useLinearReferenceFrameA)
|
|
{
|
|
m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA;
|
|
m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB;
|
|
}
|
|
else
|
|
{
|
|
m_calculatedTransformA = m_rbB.getCenterOfMassTransform() * m_frameInB;
|
|
m_calculatedTransformB = m_rbA.getCenterOfMassTransform() * m_frameInA;
|
|
}
|
|
m_realPivotAInW = m_calculatedTransformA.getOrigin();
|
|
m_realPivotBInW = m_calculatedTransformB.getOrigin();
|
|
m_sliderAxis = m_calculatedTransformA.getBasis().getColumn(0); // along X
|
|
m_delta = m_realPivotBInW - m_realPivotAInW;
|
|
m_projPivotInW = m_realPivotAInW + m_sliderAxis.dot(m_delta) * m_sliderAxis;
|
|
btVector3 normalWorld;
|
|
int i;
|
|
//linear part
|
|
for(i = 0; i < 3; i++)
|
|
{
|
|
normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
|
|
m_depth[i] = m_delta.dot(normalWorld);
|
|
}
|
|
} // btSliderConstraint::calculateTransforms()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void btSliderConstraint::testLinLimits(void)
|
|
{
|
|
m_solveLinLim = false;
|
|
if(m_lowerLinLimit <= m_upperLinLimit)
|
|
{
|
|
if(m_depth[0] > m_upperLinLimit)
|
|
{
|
|
m_depth[0] -= m_upperLinLimit;
|
|
m_solveLinLim = true;
|
|
}
|
|
else if(m_depth[0] < m_lowerLinLimit)
|
|
{
|
|
m_depth[0] -= m_lowerLinLimit;
|
|
m_solveLinLim = true;
|
|
}
|
|
else
|
|
{
|
|
m_depth[0] = btScalar(0.);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_depth[0] = btScalar(0.);
|
|
}
|
|
} // btSliderConstraint::testLinLimits()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
void btSliderConstraint::testAngLimits(void)
|
|
{
|
|
m_angDepth = btScalar(0.);
|
|
m_solveAngLim = false;
|
|
if(m_lowerAngLimit <= m_upperAngLimit)
|
|
{
|
|
const btVector3 axisA0 = m_calculatedTransformA.getBasis().getColumn(1);
|
|
const btVector3 axisA1 = m_calculatedTransformA.getBasis().getColumn(2);
|
|
const btVector3 axisB0 = m_calculatedTransformB.getBasis().getColumn(1);
|
|
btScalar rot = btAtan2Fast(axisB0.dot(axisA1), axisB0.dot(axisA0));
|
|
if(rot < m_lowerAngLimit)
|
|
{
|
|
m_angDepth = rot - m_lowerAngLimit;
|
|
m_solveAngLim = true;
|
|
}
|
|
else if(rot > m_upperAngLimit)
|
|
{
|
|
m_angDepth = rot - m_upperAngLimit;
|
|
m_solveAngLim = true;
|
|
}
|
|
}
|
|
} // btSliderConstraint::testAngLimits()
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
btVector3 btSliderConstraint::getAncorInA(void)
|
|
{
|
|
btVector3 ancorInA;
|
|
ancorInA = m_realPivotAInW + (m_lowerLinLimit + m_upperLinLimit) * btScalar(0.5) * m_sliderAxis;
|
|
ancorInA = m_rbA.getCenterOfMassTransform().inverse() * ancorInA;
|
|
return ancorInA;
|
|
} // btSliderConstraint::getAncorInA()
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
btVector3 btSliderConstraint::getAncorInB(void)
|
|
{
|
|
btVector3 ancorInB;
|
|
ancorInB = m_frameInB.getOrigin();
|
|
return ancorInB;
|
|
} // btSliderConstraint::getAncorInB();
|