Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py) Fix related to TinyRenderer object transforms not updating when using collision filtering
302 lines
9.8 KiB
C++
302 lines
9.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
|
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
|
|
#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
|
|
|
|
namespace Eigen {
|
|
namespace internal {
|
|
|
|
/** \ingroup SparseLU_Module
|
|
* \brief a class to manipulate the L supernodal factor from the SparseLU factorization
|
|
*
|
|
* This class contain the data to easily store
|
|
* and manipulate the supernodes during the factorization and solution phase of Sparse LU.
|
|
* Only the lower triangular matrix has supernodes.
|
|
*
|
|
* NOTE : This class corresponds to the SCformat structure in SuperLU
|
|
*
|
|
*/
|
|
/* TODO
|
|
* InnerIterator as for sparsematrix
|
|
* SuperInnerIterator to iterate through all supernodes
|
|
* Function for triangular solve
|
|
*/
|
|
template <typename _Scalar, typename _StorageIndex>
|
|
class MappedSuperNodalMatrix
|
|
{
|
|
public:
|
|
typedef _Scalar Scalar;
|
|
typedef _StorageIndex StorageIndex;
|
|
typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
|
|
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
|
|
public:
|
|
MappedSuperNodalMatrix()
|
|
{
|
|
|
|
}
|
|
MappedSuperNodalMatrix(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
|
|
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
|
|
{
|
|
setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
|
|
}
|
|
|
|
~MappedSuperNodalMatrix()
|
|
{
|
|
|
|
}
|
|
/**
|
|
* Set appropriate pointers for the lower triangular supernodal matrix
|
|
* These infos are available at the end of the numerical factorization
|
|
* FIXME This class will be modified such that it can be use in the course
|
|
* of the factorization.
|
|
*/
|
|
void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
|
|
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
|
|
{
|
|
m_row = m;
|
|
m_col = n;
|
|
m_nzval = nzval.data();
|
|
m_nzval_colptr = nzval_colptr.data();
|
|
m_rowind = rowind.data();
|
|
m_rowind_colptr = rowind_colptr.data();
|
|
m_nsuper = col_to_sup(n);
|
|
m_col_to_sup = col_to_sup.data();
|
|
m_sup_to_col = sup_to_col.data();
|
|
}
|
|
|
|
/**
|
|
* Number of rows
|
|
*/
|
|
Index rows() { return m_row; }
|
|
|
|
/**
|
|
* Number of columns
|
|
*/
|
|
Index cols() { return m_col; }
|
|
|
|
/**
|
|
* Return the array of nonzero values packed by column
|
|
*
|
|
* The size is nnz
|
|
*/
|
|
Scalar* valuePtr() { return m_nzval; }
|
|
|
|
const Scalar* valuePtr() const
|
|
{
|
|
return m_nzval;
|
|
}
|
|
/**
|
|
* Return the pointers to the beginning of each column in \ref valuePtr()
|
|
*/
|
|
StorageIndex* colIndexPtr()
|
|
{
|
|
return m_nzval_colptr;
|
|
}
|
|
|
|
const StorageIndex* colIndexPtr() const
|
|
{
|
|
return m_nzval_colptr;
|
|
}
|
|
|
|
/**
|
|
* Return the array of compressed row indices of all supernodes
|
|
*/
|
|
StorageIndex* rowIndex() { return m_rowind; }
|
|
|
|
const StorageIndex* rowIndex() const
|
|
{
|
|
return m_rowind;
|
|
}
|
|
|
|
/**
|
|
* Return the location in \em rowvaluePtr() which starts each column
|
|
*/
|
|
StorageIndex* rowIndexPtr() { return m_rowind_colptr; }
|
|
|
|
const StorageIndex* rowIndexPtr() const
|
|
{
|
|
return m_rowind_colptr;
|
|
}
|
|
|
|
/**
|
|
* Return the array of column-to-supernode mapping
|
|
*/
|
|
StorageIndex* colToSup() { return m_col_to_sup; }
|
|
|
|
const StorageIndex* colToSup() const
|
|
{
|
|
return m_col_to_sup;
|
|
}
|
|
/**
|
|
* Return the array of supernode-to-column mapping
|
|
*/
|
|
StorageIndex* supToCol() { return m_sup_to_col; }
|
|
|
|
const StorageIndex* supToCol() const
|
|
{
|
|
return m_sup_to_col;
|
|
}
|
|
|
|
/**
|
|
* Return the number of supernodes
|
|
*/
|
|
Index nsuper() const
|
|
{
|
|
return m_nsuper;
|
|
}
|
|
|
|
class InnerIterator;
|
|
template<typename Dest>
|
|
void solveInPlace( MatrixBase<Dest>&X) const;
|
|
|
|
|
|
|
|
|
|
protected:
|
|
Index m_row; // Number of rows
|
|
Index m_col; // Number of columns
|
|
Index m_nsuper; // Number of supernodes
|
|
Scalar* m_nzval; //array of nonzero values packed by column
|
|
StorageIndex* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
|
|
StorageIndex* m_rowind; // Array of compressed row indices of rectangular supernodes
|
|
StorageIndex* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
|
|
StorageIndex* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
|
|
StorageIndex* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
|
|
|
|
private :
|
|
};
|
|
|
|
/**
|
|
* \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L
|
|
*
|
|
*/
|
|
template<typename Scalar, typename StorageIndex>
|
|
class MappedSuperNodalMatrix<Scalar,StorageIndex>::InnerIterator
|
|
{
|
|
public:
|
|
InnerIterator(const MappedSuperNodalMatrix& mat, Index outer)
|
|
: m_matrix(mat),
|
|
m_outer(outer),
|
|
m_supno(mat.colToSup()[outer]),
|
|
m_idval(mat.colIndexPtr()[outer]),
|
|
m_startidval(m_idval),
|
|
m_endidval(mat.colIndexPtr()[outer+1]),
|
|
m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]),
|
|
m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1])
|
|
{}
|
|
inline InnerIterator& operator++()
|
|
{
|
|
m_idval++;
|
|
m_idrow++;
|
|
return *this;
|
|
}
|
|
inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
|
|
|
|
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
|
|
|
|
inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
|
|
inline Index row() const { return index(); }
|
|
inline Index col() const { return m_outer; }
|
|
|
|
inline Index supIndex() const { return m_supno; }
|
|
|
|
inline operator bool() const
|
|
{
|
|
return ( (m_idval < m_endidval) && (m_idval >= m_startidval)
|
|
&& (m_idrow < m_endidrow) );
|
|
}
|
|
|
|
protected:
|
|
const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
|
|
const Index m_outer; // Current column
|
|
const Index m_supno; // Current SuperNode number
|
|
Index m_idval; // Index to browse the values in the current column
|
|
const Index m_startidval; // Start of the column value
|
|
const Index m_endidval; // End of the column value
|
|
Index m_idrow; // Index to browse the row indices
|
|
Index m_endidrow; // End index of row indices of the current column
|
|
};
|
|
|
|
/**
|
|
* \brief Solve with the supernode triangular matrix
|
|
*
|
|
*/
|
|
template<typename Scalar, typename Index_>
|
|
template<typename Dest>
|
|
void MappedSuperNodalMatrix<Scalar,Index_>::solveInPlace( MatrixBase<Dest>&X) const
|
|
{
|
|
/* Explicit type conversion as the Index type of MatrixBase<Dest> may be wider than Index */
|
|
// eigen_assert(X.rows() <= NumTraits<Index>::highest());
|
|
// eigen_assert(X.cols() <= NumTraits<Index>::highest());
|
|
Index n = int(X.rows());
|
|
Index nrhs = Index(X.cols());
|
|
const Scalar * Lval = valuePtr(); // Nonzero values
|
|
Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor> work(n, nrhs); // working vector
|
|
work.setZero();
|
|
for (Index k = 0; k <= nsuper(); k ++)
|
|
{
|
|
Index fsupc = supToCol()[k]; // First column of the current supernode
|
|
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
|
|
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
|
|
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
|
|
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
|
|
Index irow; //Current index row
|
|
|
|
if (nsupc == 1 )
|
|
{
|
|
for (Index j = 0; j < nrhs; j++)
|
|
{
|
|
InnerIterator it(*this, fsupc);
|
|
++it; // Skip the diagonal element
|
|
for (; it; ++it)
|
|
{
|
|
irow = it.row();
|
|
X(irow, j) -= X(fsupc, j) * it.value();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// The supernode has more than one column
|
|
Index luptr = colIndexPtr()[fsupc];
|
|
Index lda = colIndexPtr()[fsupc+1] - luptr;
|
|
|
|
// Triangular solve
|
|
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
|
|
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
|
|
U = A.template triangularView<UnitLower>().solve(U);
|
|
|
|
// Matrix-vector product
|
|
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
|
|
work.topRows(nrow).noalias() = A * U;
|
|
|
|
//Begin Scatter
|
|
for (Index j = 0; j < nrhs; j++)
|
|
{
|
|
Index iptr = istart + nsupc;
|
|
for (Index i = 0; i < nrow; i++)
|
|
{
|
|
irow = rowIndex()[iptr];
|
|
X(irow, j) -= work(i, j); // Scatter operation
|
|
work(i, j) = Scalar(0);
|
|
iptr++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // end namespace internal
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SPARSELU_MATRIX_H
|