91 lines
3.1 KiB
Python
91 lines
3.1 KiB
Python
import numpy as np
|
|
import cv2
|
|
from typing import List
|
|
from data.library import ArkiteData, ArkiteDetectionHEF
|
|
from cv2util import to_8_bit_image
|
|
import time
|
|
|
|
class BackgroundHeatmap:
|
|
def __init__(self, capture, bg_teach_iters=50):
|
|
self.heatmap = np.array([])
|
|
self.cap = capture
|
|
# self.backsub = cv2.createBackgroundSubtractorMOG2()
|
|
self.backsub = cv2.createBackgroundSubtractorKNN()
|
|
# self.backsub = cv2.bgsegm_BackgroundSubtractorGSOC()
|
|
# self.backsub = cv2.back()
|
|
|
|
# Fill up with first frame
|
|
ret, frame = self.cap.read()
|
|
# Suppose the first frame is background, teach it for a few iterations
|
|
for i in range(bg_teach_iters):
|
|
ret, frame = self.cap.read()
|
|
self.backsub.apply(cv2.blur(frame,(5,5)))
|
|
self.lastframe = self.backsub.apply(frame)
|
|
self.lastsum = self.to_floats(self.lastframe)
|
|
|
|
@staticmethod
|
|
def to_grayscale(frame):
|
|
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
@staticmethod
|
|
def to_floats(frame):
|
|
return cv2.normalize(frame, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
|
|
|
|
@staticmethod
|
|
def float_to_gray(frame):
|
|
return cv2.normalize(frame, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
|
|
|
|
@staticmethod
|
|
def gray_to_heat(frame):
|
|
return cv2.applyColorMap(frame, cv2.COLORMAP_JET)
|
|
|
|
def update(self):
|
|
ret, frame = self.cap.read()
|
|
self.lastframe = self.backsub.apply(cv2.blur(frame,(5,5)))
|
|
self.lastsum += self.to_floats(self.lastframe)
|
|
self.heatmap = self.gray_to_heat(
|
|
self.float_to_gray(
|
|
self.to_floats(self.lastsum)
|
|
)
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
# cap = cv2.VideoCapture(0)
|
|
projects_path = "C:\\UntrackedGit\\opencv_test\\him_projects"
|
|
data = ArkiteData(projects_path, 1)
|
|
for uc in data.use_cases():
|
|
for detection in data.detections(uc):
|
|
for recording in detection.recordings():
|
|
print("New recording: " + str(recording.name))
|
|
with recording.ir() as ir:
|
|
for frame in ir.frame_sequence():
|
|
converted = to_8_bit_image(frame, display_min=100, display_max=8000)
|
|
# converted = cv2.applyColorMap(frame, colormap=cv2.COLORMAP_JET)
|
|
cv2.imshow("IR", converted)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
# print("Showing frame...")
|
|
# time.sleep(0.1)
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
# # Load diffsum up with first
|
|
# first = True
|
|
# while(True):
|
|
# # Update heatmap
|
|
# diffsum.update()
|
|
|
|
# # Display the resulting frame
|
|
# cv2.imshow('Heatmap', diffsum.heatmap)
|
|
# cv2.imshow('Backsub', diffsum.lastframe)
|
|
|
|
# if first:
|
|
# cv2.moveWindow("Backsub", 1000, 100)
|
|
# first = False
|
|
|
|
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
# break
|
|
|
|
# # When everything done, release the capture
|
|
# diffsum.cap.release()
|
|
# cv2.destroyAllWindows() |