MaskRCNN test
This commit is contained in:
115
kangoroo.py
Normal file
115
kangoroo.py
Normal file
@@ -0,0 +1,115 @@
|
||||
# fit a mask rcnn on the kangaroo dataset
|
||||
from os import listdir
|
||||
from xml.etree import ElementTree
|
||||
from numpy import zeros
|
||||
from numpy import asarray
|
||||
from mrcnn.utils import Dataset
|
||||
from mrcnn.config import Config
|
||||
from mrcnn.model import MaskRCNN
|
||||
import tensorflow as tf
|
||||
import os
|
||||
|
||||
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
||||
|
||||
# class that defines and loads the kangaroo dataset
|
||||
class KangarooDataset(Dataset):
|
||||
# load the dataset definitions
|
||||
def load_dataset(self, dataset_dir, is_train=True):
|
||||
# define one class
|
||||
self.add_class("dataset", 1, "kangaroo")
|
||||
# define data locations
|
||||
images_dir = dataset_dir + '/images/'
|
||||
annotations_dir = dataset_dir + '/annots/'
|
||||
# find all images
|
||||
for filename in listdir(images_dir):
|
||||
# extract image id
|
||||
image_id = filename[:-4]
|
||||
# skip bad images
|
||||
if image_id in ['00090']:
|
||||
continue
|
||||
# skip all images after 150 if we are building the train set
|
||||
if is_train and int(image_id) >= 150:
|
||||
continue
|
||||
# skip all images before 150 if we are building the test/val set
|
||||
if not is_train and int(image_id) < 150:
|
||||
continue
|
||||
img_path = images_dir + filename
|
||||
ann_path = annotations_dir + image_id + '.xml'
|
||||
# add to dataset
|
||||
self.add_image('dataset', image_id=image_id, path=img_path, annotation=ann_path)
|
||||
|
||||
# extract bounding boxes from an annotation file
|
||||
def extract_boxes(self, filename):
|
||||
# load and parse the file
|
||||
tree = ElementTree.parse(filename)
|
||||
# get the root of the document
|
||||
root = tree.getroot()
|
||||
# extract each bounding box
|
||||
boxes = list()
|
||||
for box in root.findall('.//bndbox'):
|
||||
xmin = int(box.find('xmin').text)
|
||||
ymin = int(box.find('ymin').text)
|
||||
xmax = int(box.find('xmax').text)
|
||||
ymax = int(box.find('ymax').text)
|
||||
coors = [xmin, ymin, xmax, ymax]
|
||||
boxes.append(coors)
|
||||
# extract image dimensions
|
||||
width = int(root.find('.//size/width').text)
|
||||
height = int(root.find('.//size/height').text)
|
||||
return boxes, width, height
|
||||
|
||||
# load the masks for an image
|
||||
def load_mask(self, image_id):
|
||||
# get details of image
|
||||
info = self.image_info[image_id]
|
||||
# define box file location
|
||||
path = info['annotation']
|
||||
# load XML
|
||||
boxes, w, h = self.extract_boxes(path)
|
||||
# create one array for all masks, each on a different channel
|
||||
masks = zeros([h, w, len(boxes)], dtype='uint8')
|
||||
# create masks
|
||||
class_ids = list()
|
||||
for i in range(len(boxes)):
|
||||
box = boxes[i]
|
||||
row_s, row_e = box[1], box[3]
|
||||
col_s, col_e = box[0], box[2]
|
||||
masks[row_s:row_e, col_s:col_e, i] = 1
|
||||
class_ids.append(self.class_names.index('kangaroo'))
|
||||
return masks, asarray(class_ids, dtype='int32')
|
||||
|
||||
# load an image reference
|
||||
def image_reference(self, image_id):
|
||||
info = self.image_info[image_id]
|
||||
return info['path']
|
||||
|
||||
# define a configuration for the model
|
||||
class KangarooConfig(Config):
|
||||
# define the name of the configuration
|
||||
NAME = "kangaroo_cfg"
|
||||
# number of classes (background + kangaroo)
|
||||
NUM_CLASSES = 1 + 1
|
||||
# number of training steps per epoch
|
||||
STEPS_PER_EPOCH = 131
|
||||
IMAGES_PER_GPU = 1
|
||||
# BACKBONE = "resnet50"
|
||||
|
||||
# prepare train set
|
||||
train_set = KangarooDataset()
|
||||
train_set.load_dataset('kangaroo', is_train=True)
|
||||
train_set.prepare()
|
||||
print('Train: %d' % len(train_set.image_ids))
|
||||
# prepare test/val set
|
||||
test_set = KangarooDataset()
|
||||
test_set.load_dataset('kangaroo', is_train=False)
|
||||
test_set.prepare()
|
||||
print('Test: %d' % len(test_set.image_ids))
|
||||
# prepare config
|
||||
config = KangarooConfig()
|
||||
config.display()
|
||||
# define the model
|
||||
model = MaskRCNN(mode='training', model_dir='./', config=config)
|
||||
# load weights (mscoco) and exclude the output layers
|
||||
model.load_weights('mask_rcnn_coco.h5', by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"])
|
||||
# train weights (output layers or 'heads')
|
||||
model.train(train_set, test_set, learning_rate=config.LEARNING_RATE, epochs=5, layers='heads')
|
||||
Reference in New Issue
Block a user