add kata
This commit is contained in:
106
5kyu/k-primes/solution.ts
Normal file
106
5kyu/k-primes/solution.ts
Normal file
@@ -0,0 +1,106 @@
|
||||
|
||||
// sieve of eratosthenes
|
||||
const primesBelow = (n: number): number[] => {
|
||||
const primes: number[] = [];
|
||||
const isPrime: boolean[] = Array(n).fill(true);
|
||||
isPrime[0] = false;
|
||||
isPrime[1] = false;
|
||||
for (let i = 2; i < n; i++) {
|
||||
if (isPrime[i]) {
|
||||
primes.push(i);
|
||||
for (let j = i * i; j < n; j += i) {
|
||||
isPrime[j] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return primes;
|
||||
}
|
||||
|
||||
// prime factorization using trial division
|
||||
const primeFactors = (n: number, primesList: number[]): number[] => {
|
||||
const factors: number[] = [];
|
||||
const sqrtN = Math.sqrt(n);
|
||||
const primes = [...primesList];
|
||||
let currPrime = primes.shift() as number;
|
||||
while (currPrime <= sqrtN) {
|
||||
if (n % currPrime === 0) {
|
||||
factors.push(currPrime);
|
||||
n /= currPrime;
|
||||
} else {
|
||||
currPrime = primes.shift() as number;
|
||||
}
|
||||
}
|
||||
|
||||
if (n > 1) {
|
||||
factors.push(n);
|
||||
}
|
||||
|
||||
return factors;
|
||||
}
|
||||
|
||||
const generatePrimeFactors = (upper: number): number[] => {
|
||||
// this stores the number of times a number is marked as a prime factor
|
||||
const factors: number[] = Array(upper + 1).fill(0);
|
||||
|
||||
for (let p = 2; p <= upper; p++) {
|
||||
if (factors[p] === 0) {
|
||||
// p is prime
|
||||
// mark all multiples of p
|
||||
for (let j = p; j <= upper; j += p) {
|
||||
// also mark all multiples of p^2, p^3, ...
|
||||
for(let k = j; k <= upper; k *= p) {
|
||||
factors[k]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return factors;
|
||||
}
|
||||
|
||||
// create static class which can be called a single time for a very large range
|
||||
export class KPrimes {
|
||||
private static limit = 10001000;
|
||||
private static primeFactors = generatePrimeFactors(KPrimes.limit);
|
||||
|
||||
public static countKprimes(k: number, start: number, nd: number): number[] {
|
||||
if(nd > KPrimes.limit) {
|
||||
throw new Error(`nd: ${nd} is greater than the limit: ${KPrimes.limit}`);
|
||||
}
|
||||
// filter out the numbers that have k prime factors
|
||||
const result = [];
|
||||
for (let i = start; i <= nd; i++) {
|
||||
if (KPrimes.primeFactors[i] === k) {
|
||||
result.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
// using modified sieve of eratosthenes
|
||||
export const countKprimes = (k: number, start: number, nd: number): number[] => {
|
||||
return KPrimes.countKprimes(k, start, nd);
|
||||
}
|
||||
|
||||
export const puzzle = (s: number): number => {
|
||||
const onePrimes = countKprimes(1, 0, s);
|
||||
const threePrimes = countKprimes(3, 0, s);
|
||||
const sevenPrimes = countKprimes(7, 0, s);
|
||||
|
||||
let count = 0;
|
||||
|
||||
onePrimes.forEach(onePrime => {
|
||||
threePrimes.forEach(threePrime => {
|
||||
sevenPrimes.forEach(sevenPrime => {
|
||||
if (onePrime + threePrime + sevenPrime === s) {
|
||||
count++;
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
return count;
|
||||
}
|
||||
Reference in New Issue
Block a user