Applied patch/contribution to improve btGeneric6DofConstraint. See also GenericJointDemo/Ragdoll.cpp

Thanks Francisco Leon/projectileman.
This commit is contained in:
ejcoumans
2007-09-13 07:22:40 +00:00
parent 7a117ca7ac
commit 0300e8fa12
4 changed files with 869 additions and 448 deletions

View File

@@ -15,6 +15,7 @@ subject to the following restrictions:
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btIDebugDraw.h"
@@ -25,7 +26,6 @@ subject to the following restrictions:
#include "ConstraintDemo.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
const int numObjects = 3;
@@ -150,8 +150,9 @@ void ConstraintDemo::initPhysics()
btTransform frameInA, frameInB;
frameInA = btTransform::getIdentity();
frameInB = btTransform::getIdentity();
btGeneric6DofConstraint* slider = new btGeneric6DofConstraint(*d6body0,*fixedBody1,frameInA,frameInB);
bool useLinearReferenceFrameA = false;//use fixed frame B for linear limits
btGeneric6DofConstraint* slider = new btGeneric6DofConstraint(*d6body0,*fixedBody1,frameInA,frameInB,useLinearReferenceFrameA);
slider->setLinearLowerLimit(lowerSliderLimit);
slider->setLinearUpperLimit(hiSliderLimit);

View File

@@ -1,21 +1,21 @@
/*
Bullet Continuous Collision Detection and Physics Library
Ragdoll Demo
Copyright (c) 2007 Starbreeze Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Marten Svanfeldt
*/
/*
Bullet Continuous Collision Detection and Physics Library
Ragdoll Demo
Copyright (c) 2007 Starbreeze Studios
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Written by: Marten Svanfeldt
*/
#include "Ragdoll.h"
//#define RIGID 1
@@ -106,7 +106,7 @@ btScalar(0.)));
// Now setup the constraints
btGeneric6DofConstraint * joint6DOF;
btTransform localA, localB;
bool useLinearReferenceFrameA = true;
/// ******* SPINE HEAD ******** ///
{
localA.setIdentity(); localB.setIdentity();
@@ -115,7 +115,7 @@ btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(-0.14*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB);
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_HEAD], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -141,7 +141,7 @@ btScalar(0.)));
localB.getBasis().setEulerZYX(SIMD_HALF_PI,0,-SIMD_HALF_PI);
localB.setOrigin(btVector3(btScalar(0.), btScalar(-0.18*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB);
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_LEFT_UPPER_ARM], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -163,7 +163,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.2*scale_ragdoll), btScalar(0.15*scale_ragdoll), btScalar(0.)));
localB.getBasis().setEulerZYX(0,0,SIMD_HALF_PI);
localB.setOrigin(btVector3(btScalar(0.), btScalar(-0.18*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB);
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_SPINE], *m_bodies[BODYPART_RIGHT_UPPER_ARM], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -184,7 +184,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.), btScalar(0.18*scale_ragdoll), btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(-0.14*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB);
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_LEFT_UPPER_ARM], *m_bodies[BODYPART_LEFT_LOWER_ARM], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -204,7 +204,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.), btScalar(0.18*scale_ragdoll), btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(-0.14*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB);
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_RIGHT_UPPER_ARM], *m_bodies[BODYPART_RIGHT_LOWER_ARM], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -228,7 +228,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.), btScalar(0.15*scale_ragdoll), btScalar(0.)));
localB.getBasis().setEulerZYX(0,M_PI_2,0);
localB.setOrigin(btVector3(btScalar(0.), btScalar(-0.15*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB);
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_SPINE], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -250,7 +250,7 @@ btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(0.225*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB);
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_LEFT_UPPER_LEG], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -272,7 +272,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.18*scale_ragdoll), btScalar(-0.10*scale_ragdoll), btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(0.225*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB);
joint6DOF = new btGeneric6DofConstraint(*m_bodies[BODYPART_PELVIS], *m_bodies[BODYPART_RIGHT_UPPER_LEG], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -293,7 +293,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.), btScalar(-0.225*scale_ragdoll), btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(0.185*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB);
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_LEFT_UPPER_LEG], *m_bodies[BODYPART_LEFT_LOWER_LEG], localA, localB,useLinearReferenceFrameA);
//
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -313,7 +313,7 @@ btScalar(0.)));
localA.setOrigin(btVector3(btScalar(0.), btScalar(-0.225*scale_ragdoll), btScalar(0.)));
localB.setOrigin(btVector3(btScalar(0.), btScalar(0.185*scale_ragdoll), btScalar(0.)));
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB);
joint6DOF = new btGeneric6DofConstraint (*m_bodies[BODYPART_RIGHT_UPPER_LEG], *m_bodies[BODYPART_RIGHT_LOWER_LEG], localA, localB,useLinearReferenceFrameA);
#ifdef RIGID
joint6DOF->setAngularLowerLimit(btVector3(-SIMD_EPSILON,-SIMD_EPSILON,-SIMD_EPSILON));
@@ -349,8 +349,8 @@ RagDoll::~RagDoll()
delete m_bodies[i]; m_bodies[i] = 0;
delete m_shapes[i]; m_shapes[i] = 0;
}
}
}
btRigidBody* RagDoll::localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
{

View File

@@ -4,14 +4,20 @@ Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2007-09-09
Refactored by Francisco Le<4C>n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/
#include "btGeneric6DofConstraint.h"
@@ -19,372 +25,473 @@ subject to the following restrictions:
#include "LinearMath/btTransformUtil.h"
#include <new>
static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) };
static const int kAxisA[] = { 1, 0, 0 };
static const int kAxisB[] = { 2, 2, 1 };
#define GENERIC_D6_DISABLE_WARMSTARTING 1
btGeneric6DofConstraint::btGeneric6DofConstraint()
:btTypedConstraint(D6_CONSTRAINT_TYPE)
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
{
}
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB)
{
//free means upper < lower,
//locked means upper == lower
//limited means upper > lower
//so start all locked
for (int i=0; i<6;++i)
{
m_lowerLimit[i] = btScalar(0.0);
m_upperLimit[i] = btScalar(0.0);
m_accumulatedImpulse[i] = btScalar(0.0);
}
}
void btGeneric6DofConstraint::buildJacobian()
{
btVector3 localNormalInA(0,0,0);
const btVector3& pivotInA = m_frameInA.getOrigin();
const btVector3& pivotInB = m_frameInB.getOrigin();
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
int i;
//linear part
for (i=0;i<3;i++)
{
if (isLimited(i))
{
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
// Create linear atom
new (&m_jacLinear[i]) btJacobianEntry(
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getCenterOfMassTransform()*pivotInA - m_rbA.getCenterOfMassPosition(),
m_rbB.getCenterOfMassTransform()*pivotInB - m_rbB.getCenterOfMassPosition(),
normalWorld,
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
//optionally disable warmstarting
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
btVector3 impulse_vector = m_accumulatedImpulse[i] * normalWorld;
m_rbA.applyImpulse( impulse_vector, rel_pos1);
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
localNormalInA[i] = 0;
}
}
// angular part
for (i=0;i<3;i++)
{
if (isLimited(i+3))
{
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
// Dirk: This is IMO mathematically the correct way, but we should consider axisA and axisB being near parallel maybe
btVector3 axis = kSign[i] * axisA.cross(axisB);
// Create angular atom
new (&m_jacAng[i]) btJacobianEntry(axis,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i + 3] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
btVector3 impulse_vector = m_accumulatedImpulse[i + 3] * axis;
m_rbA.applyTorqueImpulse( impulse_vector);
m_rbB.applyTorqueImpulse(-impulse_vector);
}
}
}
btScalar getMatrixElem(const btMatrix3x3& mat,int index)
{
int row = index%3;
int col = index / 3;
return mat[row][col];
int i = index%3;
int j = index/3;
return mat[i][j];
}
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
{
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
// // rot = cy*cz -cy*sz sy
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
//
if (btGetMatrixElem(mat,2) < btScalar(1.0))
{
if (btGetMatrixElem(mat,2) > btScalar(-1.0))
{
xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
xyz[1] = btAsin(btGetMatrixElem(mat,2));
xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
/// 0..8
if (getMatrixElem(mat,2) < btScalar(1.0))
{
if (getMatrixElem(mat,2) > btScalar(-1.0))
{
xyz[0] = btAtan2(-getMatrixElem(mat,5),getMatrixElem(mat,8));
xyz[1] = btAsin(getMatrixElem(mat,2));
xyz[2] = btAtan2(-getMatrixElem(mat,1),getMatrixElem(mat,0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
return false;
}
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
//////////////////////////// btRotationalLimitMotor ////////////////////////////////////
int btRotationalLimitMotor::testLimitValue(btScalar test_value)
{
btScalar tau = btScalar(0.1);
btScalar damping = btScalar(1.0);
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 localNormalInA(0,0,0);
int i;
// linear
for (i=0;i<3;i++)
{
if (isLimited(i))
{
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
localNormalInA.setValue(0,0,0);
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
btScalar jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacLinear[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normalWorld);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the limits
if (m_lowerLimit[i] < m_upperLimit[i])
{
{
if (depth > m_upperLimit[i])
{
depth -= m_upperLimit[i];
lo = btScalar(0.);
} else
{
if (depth < m_lowerLimit[i])
{
depth -= m_lowerLimit[i];
hi = btScalar(0.);
} else
{
continue;
}
}
}
}
btScalar normalImpulse= (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[i];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i] - oldNormalImpulse;
btVector3 impulse_vector = normalWorld * normalImpulse;
m_rbA.applyImpulse( impulse_vector, rel_pos1);
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
localNormalInA[i] = 0;
}
}
btVector3 axis;
btScalar angle;
btTransform frameAWorld = m_rbA.getCenterOfMassTransform() * m_frameInA;
btTransform frameBWorld = m_rbB.getCenterOfMassTransform() * m_frameInB;
btTransformUtil::calculateDiffAxisAngle(frameAWorld,frameBWorld,axis,angle);
btQuaternion diff(axis,angle);
btMatrix3x3 diffMat (diff);
btVector3 xyz;
///this is not perfect, we can first check which axis are limited, and choose a more appropriate order
MatrixToEulerXYZ(diffMat,xyz);
// angular
for (i=0;i<3;i++)
if(m_loLimit>m_hiLimit)
{
if (isLimited(i+3))
{
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
btScalar jacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
//positional error (zeroth order error)
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
btScalar rel_pos = kSign[i] * axisA.dot(axisB);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the twist limit
if (m_lowerLimit[i+3] < m_upperLimit[i+3])
{
//clamp the values
btScalar loLimit = m_lowerLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : btScalar(-1e30);
btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : btScalar(1e30);
btScalar projAngle = btScalar(-1.)*xyz[i];
if (projAngle < loLimit)
{
hi = btScalar(0.);
rel_pos = (loLimit - projAngle);
} else
{
if (projAngle > hiLimit)
{
lo = btScalar(0.);
rel_pos = (hiLimit - projAngle);
} else
{
continue;
}
}
}
//impulse
btScalar normalImpulse= -(tau*rel_pos/timeStep + damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[i+3];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i+3] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i+3] - oldNormalImpulse;
// Dirk: Not needed - we could actually project onto Jacobian entry here (same as above)
btVector3 axis = kSign[i] * axisA.cross(axisB);
btVector3 impulse_vector = axis * normalImpulse;
m_rbA.applyTorqueImpulse( impulse_vector);
m_rbB.applyTorqueImpulse(-impulse_vector);
}
m_currentLimit = 0;//Free from violation
return 0;
}
if (test_value < m_loLimit)
{
m_currentLimit = 1;//low limit violation
m_currentLimitError = test_value - m_loLimit;
return 1;
}
else if (test_value> m_hiLimit)
{
m_currentLimit = 2;//High limit violation
m_currentLimitError = test_value - m_hiLimit;
return 2;
}
else
{
m_currentLimit = 0;//Free from violation
return 0;
}
return 0;
}
btScalar btRotationalLimitMotor::solveAngularLimits(
btScalar timeStep,btVector3 axis,btScalar jacDiagABInv,
btRigidBody * body0, btRigidBody * body1)
{
if (needApplyTorques()==false) return 0.0f;
btScalar target_velocity = m_targetVelocity;
btScalar maxMotorForce = m_maxMotorForce;
//current error correction
if (m_currentLimit!=0)
{
target_velocity = -m_ERP*m_currentLimitError/(timeStep);
maxMotorForce = m_maxLimitForce;
}
maxMotorForce *= timeStep;
// current velocity difference
btVector3 vel_diff = body0->getAngularVelocity();
if (body1)
{
vel_diff -= body1->getAngularVelocity();
}
btScalar rel_vel = axis.dot(vel_diff);
// correction velocity
btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel);
if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON )
{
return 0.0f;//no need for applying force
}
// correction impulse
btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
// clip correction impulse
btScalar clippedMotorImpulse;
//todo: should clip against accumulated impulse
if (unclippedMotorImpulse>0.0f)
{
clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
}
else
{
clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
}
// sort with accumulated impulses
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
btScalar oldaccumImpulse = m_accumulatedImpulse;
btScalar sum = oldaccumImpulse + clippedMotorImpulse;
m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
btVector3 motorImp = clippedMotorImpulse * axis;
body0->applyTorqueImpulse(motorImp);
if (body1) body1->applyTorqueImpulse(-motorImp);
return clippedMotorImpulse;
}
//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
btScalar btTranslationalLimitMotor::solveLinearAxis(
btScalar timeStep,
btScalar jacDiagABInv,
btRigidBody& body1,const btVector3 &pointInA,
btRigidBody& body2,const btVector3 &pointInB,
int limit_index,
const btVector3 & axis_normal_on_a)
{
///find relative velocity
btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar rel_vel = axis_normal_on_a.dot(vel);
/// apply displacement correction
//positional error (zeroth order error)
btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
btScalar minLimit = m_lowerLimit[limit_index];
btScalar maxLimit = m_upperLimit[limit_index];
//handle the limits
if (minLimit < maxLimit)
{
{
if (depth > maxLimit)
{
depth -= maxLimit;
lo = btScalar(0.);
}
else
{
if (depth < minLimit)
{
depth -= minLimit;
hi = btScalar(0.);
}
else
{
return 0.0f;
}
}
}
}
btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
body1.applyImpulse( impulse_vector, rel_pos1);
body2.applyImpulse(-impulse_vector, rel_pos2);
return normalImpulse;
}
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
btGeneric6DofConstraint::btGeneric6DofConstraint()
:btTypedConstraint(D6_CONSTRAINT_TYPE),
m_useLinearReferenceFrameA(true)
{
}
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB),
m_useLinearReferenceFrameA(useLinearReferenceFrameA)
{
}
void btGeneric6DofConstraint::calculateAngleInfo()
{
btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
// to get constrain w2-w1 along ...not
// ------ --------------------- ------
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
// d(angle[1])/dt = 0 ax[1]
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
//
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
// to prove the result for angle[0], write the expression for angle[0] from
// GetInfo1 then take the derivative. to prove this for angle[2] it is
// easier to take the euler rate expression for d(angle[2])/dt with respect
// to the components of w and set that to 0.
btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
m_calculatedAxis[1] = axis2.cross(axis0);
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
// if(m_debugDrawer)
// {
//
// char buff[300];
// sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ",
// m_calculatedAxisAngleDiff[0],
// m_calculatedAxisAngleDiff[1],
// m_calculatedAxisAngleDiff[2]);
// m_debugDrawer->reportErrorWarning(buff);
// }
}
void btGeneric6DofConstraint::calculateTransforms()
{
m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA;
m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB;
calculateAngleInfo();
}
void btGeneric6DofConstraint::buildLinearJacobian(
btJacobianEntry & jacLinear,const btVector3 & normalWorld,
const btVector3 & pivotAInW,const btVector3 & pivotBInW)
{
new (&jacLinear) btJacobianEntry(
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
pivotAInW - m_rbA.getCenterOfMassPosition(),
pivotBInW - m_rbB.getCenterOfMassPosition(),
normalWorld,
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
}
void btGeneric6DofConstraint::buildAngularJacobian(
btJacobianEntry & jacAngular,const btVector3 & jointAxisW)
{
new (&jacAngular) btJacobianEntry(jointAxisW,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
}
bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
{
btScalar angle = m_calculatedAxisAngleDiff[axis_index];
//test limits
m_angularLimits[axis_index].testLimitValue(angle);
return m_angularLimits[axis_index].needApplyTorques();
}
void btGeneric6DofConstraint::buildJacobian()
{
//calculates transform
calculateTransforms();
const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 normalWorld;
int i;
//linear part
for (i=0;i<3;i++)
{
if (m_linearLimits.isLimited(i))
{
if (m_useLinearReferenceFrameA)
normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
else
normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
buildLinearJacobian(
m_jacLinear[i],normalWorld ,
pivotAInW,pivotBInW);
}
}
// angular part
for (i=0;i<3;i++)
{
//calculates error angle
if (testAngularLimitMotor(i))
{
normalWorld = this->getAxis(i);
// Create angular atom
buildAngularJacobian(m_jacAng[i],normalWorld);
}
}
}
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
{
m_timeStep = timeStep;
//calculateTransforms();
int i;
// linear
btVector3 pointInA = m_calculatedTransformA.getOrigin();
btVector3 pointInB = m_calculatedTransformB.getOrigin();
btScalar jacDiagABInv;
btVector3 linear_axis;
for (i=0;i<3;i++)
{
if (m_linearLimits.isLimited(i))
{
jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
if (m_useLinearReferenceFrameA)
linear_axis = m_calculatedTransformA.getBasis().getColumn(i);
else
linear_axis = m_calculatedTransformB.getBasis().getColumn(i);
m_linearLimits.solveLinearAxis(
m_timeStep,
jacDiagABInv,
m_rbA,pointInA,
m_rbB,pointInB,
i,linear_axis);
}
}
// angular
btVector3 angular_axis;
btScalar angularJacDiagABInv;
for (i=0;i<3;i++)
{
if (m_angularLimits[i].needApplyTorques())
{
// get axis
angular_axis = getAxis(i);
angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,&m_rbB);
}
}
}
void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
{
(void)timeStep;
(void)timeStep;
}
btScalar btGeneric6DofConstraint::computeAngle(int axis) const
{
btScalar angle = btScalar(0.f);
btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
{
return m_calculatedAxis[axis_index];
}
switch (axis)
{
case 0:
{
btVector3 v1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(1);
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
btScalar btGeneric6DofConstraint::getAngle(int axis_index) const
{
return m_calculatedAxisAngleDiff[axis_index];
}
btScalar s = v1.dot(w2);
btScalar c = v1.dot(v2);
angle = btAtan2( s, c );
}
break;
case 1:
{
btVector3 w1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(2);
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
btScalar s = w1.dot(u2);
btScalar c = w1.dot(w2);
angle = btAtan2( s, c );
}
break;
case 2:
{
btVector3 u1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(0);
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
btScalar s = u1.dot(v2);
btScalar c = u1.dot(u2);
angle = btAtan2( s, c );
}
break;
default:
btAssert ( 0 ) ;
break ;
}
return angle;
}

View File

@@ -4,14 +4,21 @@ Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2007-09-09
btGeneric6DofConstraint Refactored by Francisco Le<4C>n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/
#ifndef GENERIC_6DOF_CONSTRAINT_H
#define GENERIC_6DOF_CONSTRAINT_H
@@ -23,97 +30,403 @@ subject to the following restrictions:
class btRigidBody;
//! Rotation Limit structure for generic joints
class btRotationalLimitMotor
{
public:
//! limit_parameters
//!@{
btScalar m_loLimit;//!< joint limit
btScalar m_hiLimit;//!< joint limit
btScalar m_targetVelocity;//!< target motor velocity
btScalar m_maxMotorForce;//!< max force on motor
btScalar m_maxLimitForce;//!< max force on limit
btScalar m_damping;//!< Damping.
btScalar m_limitSoftness;//! Relaxation factor
btScalar m_ERP;//!< Error tolerance factor when joint is at limit
btScalar m_bounce;//!< restitution factor
bool m_enableMotor;
//!@}
//! temp_variables
//!@{
btScalar m_currentLimitError;//! How much is violated this limit
int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
btScalar m_accumulatedImpulse;
//!@}
btRotationalLimitMotor()
{
m_accumulatedImpulse = 0.f;
m_targetVelocity = 0;
m_maxMotorForce = 0.1f;
m_maxLimitForce = 300.0f;
m_loLimit = -SIMD_INFINITY;
m_hiLimit = SIMD_INFINITY;
m_ERP = 0.5f;
m_bounce = 0.0f;
m_damping = 1.0f;
m_limitSoftness = 0.5f;
m_currentLimit = 0;
m_currentLimitError = 0;
m_enableMotor = false;
}
btRotationalLimitMotor(const btRotationalLimitMotor & limot)
{
m_targetVelocity = limot.m_targetVelocity;
m_maxMotorForce = limot.m_maxMotorForce;
m_limitSoftness = limot.m_limitSoftness;
m_loLimit = limot.m_loLimit;
m_hiLimit = limot.m_hiLimit;
m_ERP = limot.m_ERP;
m_bounce = limot.m_bounce;
m_currentLimit = limot.m_currentLimit;
m_currentLimitError = limot.m_currentLimitError;
m_enableMotor = limot.m_enableMotor;
}
//! Is limited
bool isLimited()
{
if(m_loLimit>=m_hiLimit) return false;
return true;
}
//! Need apply correction
bool needApplyTorques()
{
if(m_currentLimit == 0 && m_enableMotor == false) return false;
return true;
}
//! calculates error
/*!
calculates m_currentLimit and m_currentLimitError.
*/
int testLimitValue(btScalar test_value);
//! apply the correction impulses for two bodies
btScalar solveAngularLimits(btScalar timeStep,btVector3 axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1);
};
class btTranslationalLimitMotor
{
public:
btVector3 m_lowerLimit;//!< the constraint lower limits
btVector3 m_upperLimit;//!< the constraint upper limits
btVector3 m_accumulatedImpulse;
//! Linear_Limit_parameters
//!@{
btScalar m_limitSoftness;//!< Softness for linear limit
btScalar m_damping;//!< Damping for linear limit
btScalar m_restitution;//! Bounce parameter for linear limit
//!@}
btTranslationalLimitMotor()
{
m_lowerLimit.setValue(0.f,0.f,0.f);
m_upperLimit.setValue(0.f,0.f,0.f);
m_accumulatedImpulse.setValue(0.f,0.f,0.f);
m_limitSoftness = 0.7f;
m_damping = btScalar(1.0f);
m_restitution = btScalar(0.5f);
}
btTranslationalLimitMotor(const btTranslationalLimitMotor & other )
{
m_lowerLimit = other.m_lowerLimit;
m_upperLimit = other.m_upperLimit;
m_accumulatedImpulse = other.m_accumulatedImpulse;
m_limitSoftness = other.m_limitSoftness ;
m_damping = other.m_damping;
m_restitution = other.m_restitution;
}
//! Test limit
/*!
- free means upper < lower,
- locked means upper == lower
- limited means upper > lower
- limitIndex: first 3 are linear, next 3 are angular
*/
inline bool isLimited(int limitIndex)
{
return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
}
btScalar solveLinearAxis(
btScalar timeStep,
btScalar jacDiagABInv,
btRigidBody& body1,const btVector3 &pointInA,
btRigidBody& body2,const btVector3 &pointInB,
int limit_index,
const btVector3 & axis_normal_on_a);
};
/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
/// btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'
/// Work in progress (is still a Hinge actually)
/*!
btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'.
currently this limit supports rotational motors<br>
<ul>
<li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method.
At this moment translational motors are not supported. May be in the future. </li>
<li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit.
This is accessible through btGeneric6DofConstraint.getLimitMotor method,
This brings support for limit parameters and motors. </li>
<li> Angulars limits have these possible ranges:
<table border=1 >
<tr
<td><b>AXIS</b></td>
<td><b>MIN ANGLE</b></td>
<td><b>MAX ANGLE</b></td>
<td>X</td>
<td>-PI</td>
<td>PI</td>
<td>Y</td>
<td>-PI/2</td>
<td>PI/2</td>
<td>Z</td>
<td>-PI/2</td>
<td>PI/2</td>
</tr>
</table>
</li>
</ul>
*/
class btGeneric6DofConstraint : public btTypedConstraint
{
btJacobianEntry m_jacLinear[3]; // 3 orthogonal linear constraints
btJacobianEntry m_jacAng[3]; // 3 orthogonal angular constraints
protected:
btTransform m_frameInA; // the constraint space w.r.t body A
btTransform m_frameInB; // the constraint space w.r.t body B
//! relative_frames
//!@{
btTransform m_frameInA;//!< the constraint space w.r.t body A
btTransform m_frameInB;//!< the constraint space w.r.t body B
//!@}
//! Jacobians
//!@{
btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
//!@}
//! Linear_Limit_parameters
//!@{
btTranslationalLimitMotor m_linearLimits;
//!@}
//! hinge_parameters
//!@{
btRotationalLimitMotor m_angularLimits[3];
//!@}
protected:
//! temporal variables
//!@{
btScalar m_timeStep;
btTransform m_calculatedTransformA;
btTransform m_calculatedTransformB;
btVector3 m_calculatedAxisAngleDiff;
btVector3 m_calculatedAxis[3];
bool m_useLinearReferenceFrameA;
//!@}
btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other)
{
btAssert(0);
(void) other;
return *this;
}
void buildLinearJacobian(
btJacobianEntry & jacLinear,const btVector3 & normalWorld,
const btVector3 & pivotAInW,const btVector3 & pivotBInW);
void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW);
//! calcs the euler angles between the two bodies.
void calculateAngleInfo();
btScalar m_lowerLimit[6]; // the constraint lower limits
btScalar m_upperLimit[6]; // the constraint upper limits
btScalar m_accumulatedImpulse[6];
btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other)
{
btAssert(0);
(void) other;
return *this;
}
public:
btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB );
btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
btGeneric6DofConstraint();
btGeneric6DofConstraint();
virtual void buildJacobian();
//! Calcs global transform of the offsets
/*!
Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
\sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo
*/
void calculateTransforms();
virtual void solveConstraint(btScalar timeStep);
//! Gets the global transform of the offset for body A
/*!
\sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
*/
const btTransform & getCalculatedTransformA() const
{
return m_calculatedTransformA;
}
void updateRHS(btScalar timeStep);
//! Gets the global transform of the offset for body B
/*!
\sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
*/
const btTransform & getCalculatedTransformB() const
{
return m_calculatedTransformB;
}
btScalar computeAngle(int axis) const;
const btTransform & getFrameOffsetA() const
{
return m_frameInA;
}
void setLinearLowerLimit(const btVector3& linearLower)
{
m_lowerLimit[0] = linearLower.getX();
m_lowerLimit[1] = linearLower.getY();
m_lowerLimit[2] = linearLower.getZ();
}
const btTransform & getFrameOffsetB() const
{
return m_frameInB;
}
void setLinearUpperLimit(const btVector3& linearUpper)
{
m_upperLimit[0] = linearUpper.getX();
m_upperLimit[1] = linearUpper.getY();
m_upperLimit[2] = linearUpper.getZ();
}
void setAngularLowerLimit(const btVector3& angularLower)
{
m_lowerLimit[3] = angularLower.getX();
m_lowerLimit[4] = angularLower.getY();
m_lowerLimit[5] = angularLower.getZ();
}
btTransform & getFrameOffsetA()
{
return m_frameInA;
}
void setAngularUpperLimit(const btVector3& angularUpper)
{
m_upperLimit[3] = angularUpper.getX();
m_upperLimit[4] = angularUpper.getY();
m_upperLimit[5] = angularUpper.getZ();
}
btTransform & getFrameOffsetB()
{
return m_frameInB;
}
//first 3 are linear, next 3 are angular
void SetLimit(int axis, btScalar lo, btScalar hi)
{
m_lowerLimit[axis] = lo;
m_upperLimit[axis] = hi;
}
//free means upper < lower,
//locked means upper == lower
//limited means upper > lower
//limitIndex: first 3 are linear, next 3 are angular
bool isLimited(int limitIndex)
{
return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
}
//! performs Jacobian calculation, and also calculates angle differences and axis
virtual void buildJacobian();
virtual void solveConstraint(btScalar timeStep);
void updateRHS(btScalar timeStep);
//! Get the rotation axis in global coordinates
/*!
\pre btGeneric6DofConstraint.buildJacobian must be called previously.
*/
btVector3 getAxis(int axis_index) const;
//! Get the relative Euler angle
/*!
\pre btGeneric6DofConstraint.buildJacobian must be called previously.
*/
btScalar getAngle(int axis_index) const;
//! Test angular limit.
/*!
Calculates angular correction and returns true if limit needs to be corrected.
\pre btGeneric6DofConstraint.buildJacobian must be called previously.
*/
bool testAngularLimitMotor(int axis_index);
void setLinearLowerLimit(const btVector3& linearLower)
{
m_linearLimits.m_lowerLimit = linearLower;
}
void setLinearUpperLimit(const btVector3& linearUpper)
{
m_linearLimits.m_upperLimit = linearUpper;
}
void setAngularLowerLimit(const btVector3& angularLower)
{
m_angularLimits[0].m_loLimit = angularLower.getX();
m_angularLimits[1].m_loLimit = angularLower.getY();
m_angularLimits[2].m_loLimit = angularLower.getZ();
}
void setAngularUpperLimit(const btVector3& angularUpper)
{
m_angularLimits[0].m_hiLimit = angularUpper.getX();
m_angularLimits[1].m_hiLimit = angularUpper.getY();
m_angularLimits[2].m_hiLimit = angularUpper.getZ();
}
//! Retrieves the angular limit informacion
btRotationalLimitMotor * getRotationalLimitMotor(int index)
{
return &m_angularLimits[index];
}
//! Retrieves the limit informacion
btTranslationalLimitMotor * getTranslationalLimitMotor()
{
return &m_linearLimits;
}
//first 3 are linear, next 3 are angular
void setLimit(int axis, btScalar lo, btScalar hi)
{
if(axis<3)
{
m_linearLimits.m_lowerLimit[axis] = lo;
m_linearLimits.m_upperLimit[axis] = hi;
}
else
{
m_angularLimits[axis-3].m_loLimit = lo;
m_angularLimits[axis-3].m_hiLimit = hi;
}
}
//! Test limit
/*!
- free means upper < lower,
- locked means upper == lower
- limited means upper > lower
- limitIndex: first 3 are linear, next 3 are angular
*/
bool isLimited(int limitIndex)
{
if(limitIndex<3)
{
return m_linearLimits.isLimited(limitIndex);
}
return m_angularLimits[limitIndex-3].isLimited();
}
const btRigidBody& getRigidBodyA() const
{
return m_rbA;
}
const btRigidBody& getRigidBodyB() const
{
return m_rbB;
}
const btRigidBody& getRigidBodyA() const
{
return m_rbA;
}
const btRigidBody& getRigidBodyB() const
{
return m_rbB;
}
};