Applied patch/contribution to improve btGeneric6DofConstraint. See also GenericJointDemo/Ragdoll.cpp

Thanks Francisco Leon/projectileman.
This commit is contained in:
ejcoumans
2007-09-13 07:22:40 +00:00
parent 7a117ca7ac
commit 0300e8fa12
4 changed files with 869 additions and 448 deletions

View File

@@ -4,14 +4,20 @@ Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
2007-09-09
Refactored by Francisco Le<4C>n
email: projectileman@yahoo.com
http://gimpact.sf.net
*/
#include "btGeneric6DofConstraint.h"
@@ -19,372 +25,473 @@ subject to the following restrictions:
#include "LinearMath/btTransformUtil.h"
#include <new>
static const btScalar kSign[] = { btScalar(1.0), btScalar(-1.0), btScalar(1.0) };
static const int kAxisA[] = { 1, 0, 0 };
static const int kAxisB[] = { 2, 2, 1 };
#define GENERIC_D6_DISABLE_WARMSTARTING 1
btGeneric6DofConstraint::btGeneric6DofConstraint()
:btTypedConstraint(D6_CONSTRAINT_TYPE)
btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
{
}
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB)
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB)
{
//free means upper < lower,
//locked means upper == lower
//limited means upper > lower
//so start all locked
for (int i=0; i<6;++i)
{
m_lowerLimit[i] = btScalar(0.0);
m_upperLimit[i] = btScalar(0.0);
m_accumulatedImpulse[i] = btScalar(0.0);
}
}
void btGeneric6DofConstraint::buildJacobian()
{
btVector3 localNormalInA(0,0,0);
const btVector3& pivotInA = m_frameInA.getOrigin();
const btVector3& pivotInB = m_frameInB.getOrigin();
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
int i;
//linear part
for (i=0;i<3;i++)
{
if (isLimited(i))
{
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
// Create linear atom
new (&m_jacLinear[i]) btJacobianEntry(
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getCenterOfMassTransform()*pivotInA - m_rbA.getCenterOfMassPosition(),
m_rbB.getCenterOfMassTransform()*pivotInB - m_rbB.getCenterOfMassPosition(),
normalWorld,
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
//optionally disable warmstarting
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
btVector3 impulse_vector = m_accumulatedImpulse[i] * normalWorld;
m_rbA.applyImpulse( impulse_vector, rel_pos1);
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
localNormalInA[i] = 0;
}
}
// angular part
for (i=0;i<3;i++)
{
if (isLimited(i+3))
{
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
// Dirk: This is IMO mathematically the correct way, but we should consider axisA and axisB being near parallel maybe
btVector3 axis = kSign[i] * axisA.cross(axisB);
// Create angular atom
new (&m_jacAng[i]) btJacobianEntry(axis,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
#ifdef GENERIC_D6_DISABLE_WARMSTARTING
m_accumulatedImpulse[i + 3] = btScalar(0.);
#endif //GENERIC_D6_DISABLE_WARMSTARTING
// Apply accumulated impulse
btVector3 impulse_vector = m_accumulatedImpulse[i + 3] * axis;
m_rbA.applyTorqueImpulse( impulse_vector);
m_rbB.applyTorqueImpulse(-impulse_vector);
}
}
}
btScalar getMatrixElem(const btMatrix3x3& mat,int index)
{
int row = index%3;
int col = index / 3;
return mat[row][col];
int i = index%3;
int j = index/3;
return mat[i][j];
}
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool MatrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz)
{
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
// // rot = cy*cz -cy*sz sy
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
//
if (btGetMatrixElem(mat,2) < btScalar(1.0))
{
if (btGetMatrixElem(mat,2) > btScalar(-1.0))
{
xyz[0] = btAtan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
xyz[1] = btAsin(btGetMatrixElem(mat,2));
xyz[2] = btAtan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = btAtan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
/// 0..8
if (getMatrixElem(mat,2) < btScalar(1.0))
{
if (getMatrixElem(mat,2) > btScalar(-1.0))
{
xyz[0] = btAtan2(-getMatrixElem(mat,5),getMatrixElem(mat,8));
xyz[1] = btAsin(getMatrixElem(mat,2));
xyz[2] = btAtan2(-getMatrixElem(mat,1),getMatrixElem(mat,0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = -SIMD_HALF_PI;
xyz[2] = btScalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = btAtan2(getMatrixElem(mat,3),getMatrixElem(mat,4));
xyz[1] = SIMD_HALF_PI;
xyz[2] = 0.0;
}
return false;
}
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
//////////////////////////// btRotationalLimitMotor ////////////////////////////////////
int btRotationalLimitMotor::testLimitValue(btScalar test_value)
{
btScalar tau = btScalar(0.1);
btScalar damping = btScalar(1.0);
btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 localNormalInA(0,0,0);
int i;
// linear
for (i=0;i<3;i++)
{
if (isLimited(i))
{
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
localNormalInA.setValue(0,0,0);
localNormalInA[i] = 1;
btVector3 normalWorld = m_rbA.getCenterOfMassTransform().getBasis() * localNormalInA;
btScalar jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacLinear[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
//positional error (zeroth order error)
btScalar depth = -(pivotAInW - pivotBInW).dot(normalWorld);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the limits
if (m_lowerLimit[i] < m_upperLimit[i])
{
{
if (depth > m_upperLimit[i])
{
depth -= m_upperLimit[i];
lo = btScalar(0.);
} else
{
if (depth < m_lowerLimit[i])
{
depth -= m_lowerLimit[i];
hi = btScalar(0.);
} else
{
continue;
}
}
}
}
btScalar normalImpulse= (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[i];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i] - oldNormalImpulse;
btVector3 impulse_vector = normalWorld * normalImpulse;
m_rbA.applyImpulse( impulse_vector, rel_pos1);
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
localNormalInA[i] = 0;
}
}
btVector3 axis;
btScalar angle;
btTransform frameAWorld = m_rbA.getCenterOfMassTransform() * m_frameInA;
btTransform frameBWorld = m_rbB.getCenterOfMassTransform() * m_frameInB;
btTransformUtil::calculateDiffAxisAngle(frameAWorld,frameBWorld,axis,angle);
btQuaternion diff(axis,angle);
btMatrix3x3 diffMat (diff);
btVector3 xyz;
///this is not perfect, we can first check which axis are limited, and choose a more appropriate order
MatrixToEulerXYZ(diffMat,xyz);
// angular
for (i=0;i<3;i++)
if(m_loLimit>m_hiLimit)
{
if (isLimited(i+3))
{
btVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
btVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
btScalar jacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
//velocity error (first order error)
btScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
m_rbB.getLinearVelocity(),angvelB);
//positional error (zeroth order error)
btVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn( kAxisA[i] );
btVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn( kAxisB[i] );
btScalar rel_pos = kSign[i] * axisA.dot(axisB);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
//handle the twist limit
if (m_lowerLimit[i+3] < m_upperLimit[i+3])
{
//clamp the values
btScalar loLimit = m_lowerLimit[i+3] > -3.1415 ? m_lowerLimit[i+3] : btScalar(-1e30);
btScalar hiLimit = m_upperLimit[i+3] < 3.1415 ? m_upperLimit[i+3] : btScalar(1e30);
btScalar projAngle = btScalar(-1.)*xyz[i];
if (projAngle < loLimit)
{
hi = btScalar(0.);
rel_pos = (loLimit - projAngle);
} else
{
if (projAngle > hiLimit)
{
lo = btScalar(0.);
rel_pos = (hiLimit - projAngle);
} else
{
continue;
}
}
}
//impulse
btScalar normalImpulse= -(tau*rel_pos/timeStep + damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[i+3];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[i+3] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[i+3] - oldNormalImpulse;
// Dirk: Not needed - we could actually project onto Jacobian entry here (same as above)
btVector3 axis = kSign[i] * axisA.cross(axisB);
btVector3 impulse_vector = axis * normalImpulse;
m_rbA.applyTorqueImpulse( impulse_vector);
m_rbB.applyTorqueImpulse(-impulse_vector);
}
m_currentLimit = 0;//Free from violation
return 0;
}
if (test_value < m_loLimit)
{
m_currentLimit = 1;//low limit violation
m_currentLimitError = test_value - m_loLimit;
return 1;
}
else if (test_value> m_hiLimit)
{
m_currentLimit = 2;//High limit violation
m_currentLimitError = test_value - m_hiLimit;
return 2;
}
else
{
m_currentLimit = 0;//Free from violation
return 0;
}
return 0;
}
btScalar btRotationalLimitMotor::solveAngularLimits(
btScalar timeStep,btVector3 axis,btScalar jacDiagABInv,
btRigidBody * body0, btRigidBody * body1)
{
if (needApplyTorques()==false) return 0.0f;
btScalar target_velocity = m_targetVelocity;
btScalar maxMotorForce = m_maxMotorForce;
//current error correction
if (m_currentLimit!=0)
{
target_velocity = -m_ERP*m_currentLimitError/(timeStep);
maxMotorForce = m_maxLimitForce;
}
maxMotorForce *= timeStep;
// current velocity difference
btVector3 vel_diff = body0->getAngularVelocity();
if (body1)
{
vel_diff -= body1->getAngularVelocity();
}
btScalar rel_vel = axis.dot(vel_diff);
// correction velocity
btScalar motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel);
if ( motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON )
{
return 0.0f;//no need for applying force
}
// correction impulse
btScalar unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
// clip correction impulse
btScalar clippedMotorImpulse;
//todo: should clip against accumulated impulse
if (unclippedMotorImpulse>0.0f)
{
clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
}
else
{
clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
}
// sort with accumulated impulses
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
btScalar oldaccumImpulse = m_accumulatedImpulse;
btScalar sum = oldaccumImpulse + clippedMotorImpulse;
m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
btVector3 motorImp = clippedMotorImpulse * axis;
body0->applyTorqueImpulse(motorImp);
if (body1) body1->applyTorqueImpulse(-motorImp);
return clippedMotorImpulse;
}
//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
btScalar btTranslationalLimitMotor::solveLinearAxis(
btScalar timeStep,
btScalar jacDiagABInv,
btRigidBody& body1,const btVector3 &pointInA,
btRigidBody& body2,const btVector3 &pointInB,
int limit_index,
const btVector3 & axis_normal_on_a)
{
///find relative velocity
btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar rel_vel = axis_normal_on_a.dot(vel);
/// apply displacement correction
//positional error (zeroth order error)
btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
btScalar lo = btScalar(-1e30);
btScalar hi = btScalar(1e30);
btScalar minLimit = m_lowerLimit[limit_index];
btScalar maxLimit = m_upperLimit[limit_index];
//handle the limits
if (minLimit < maxLimit)
{
{
if (depth > maxLimit)
{
depth -= maxLimit;
lo = btScalar(0.);
}
else
{
if (depth < minLimit)
{
depth -= minLimit;
hi = btScalar(0.);
}
else
{
return 0.0f;
}
}
}
}
btScalar normalImpulse= m_limitSoftness*(m_restitution*depth/timeStep - m_damping*rel_vel) * jacDiagABInv;
btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
btScalar sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
body1.applyImpulse( impulse_vector, rel_pos1);
body2.applyImpulse(-impulse_vector, rel_pos2);
return normalImpulse;
}
//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
btGeneric6DofConstraint::btGeneric6DofConstraint()
:btTypedConstraint(D6_CONSTRAINT_TYPE),
m_useLinearReferenceFrameA(true)
{
}
btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
: btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB)
, m_frameInA(frameInA)
, m_frameInB(frameInB),
m_useLinearReferenceFrameA(useLinearReferenceFrameA)
{
}
void btGeneric6DofConstraint::calculateAngleInfo()
{
btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse()*m_calculatedTransformB.getBasis();
matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
// to get constrain w2-w1 along ...not
// ------ --------------------- ------
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
// d(angle[1])/dt = 0 ax[1]
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
//
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
// to prove the result for angle[0], write the expression for angle[0] from
// GetInfo1 then take the derivative. to prove this for angle[2] it is
// easier to take the euler rate expression for d(angle[2])/dt with respect
// to the components of w and set that to 0.
btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
m_calculatedAxis[1] = axis2.cross(axis0);
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
// if(m_debugDrawer)
// {
//
// char buff[300];
// sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ",
// m_calculatedAxisAngleDiff[0],
// m_calculatedAxisAngleDiff[1],
// m_calculatedAxisAngleDiff[2]);
// m_debugDrawer->reportErrorWarning(buff);
// }
}
void btGeneric6DofConstraint::calculateTransforms()
{
m_calculatedTransformA = m_rbA.getCenterOfMassTransform() * m_frameInA;
m_calculatedTransformB = m_rbB.getCenterOfMassTransform() * m_frameInB;
calculateAngleInfo();
}
void btGeneric6DofConstraint::buildLinearJacobian(
btJacobianEntry & jacLinear,const btVector3 & normalWorld,
const btVector3 & pivotAInW,const btVector3 & pivotBInW)
{
new (&jacLinear) btJacobianEntry(
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
pivotAInW - m_rbA.getCenterOfMassPosition(),
pivotBInW - m_rbB.getCenterOfMassPosition(),
normalWorld,
m_rbA.getInvInertiaDiagLocal(),
m_rbA.getInvMass(),
m_rbB.getInvInertiaDiagLocal(),
m_rbB.getInvMass());
}
void btGeneric6DofConstraint::buildAngularJacobian(
btJacobianEntry & jacAngular,const btVector3 & jointAxisW)
{
new (&jacAngular) btJacobianEntry(jointAxisW,
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
m_rbA.getInvInertiaDiagLocal(),
m_rbB.getInvInertiaDiagLocal());
}
bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
{
btScalar angle = m_calculatedAxisAngleDiff[axis_index];
//test limits
m_angularLimits[axis_index].testLimitValue(angle);
return m_angularLimits[axis_index].needApplyTorques();
}
void btGeneric6DofConstraint::buildJacobian()
{
//calculates transform
calculateTransforms();
const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
btVector3 normalWorld;
int i;
//linear part
for (i=0;i<3;i++)
{
if (m_linearLimits.isLimited(i))
{
if (m_useLinearReferenceFrameA)
normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
else
normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
buildLinearJacobian(
m_jacLinear[i],normalWorld ,
pivotAInW,pivotBInW);
}
}
// angular part
for (i=0;i<3;i++)
{
//calculates error angle
if (testAngularLimitMotor(i))
{
normalWorld = this->getAxis(i);
// Create angular atom
buildAngularJacobian(m_jacAng[i],normalWorld);
}
}
}
void btGeneric6DofConstraint::solveConstraint(btScalar timeStep)
{
m_timeStep = timeStep;
//calculateTransforms();
int i;
// linear
btVector3 pointInA = m_calculatedTransformA.getOrigin();
btVector3 pointInB = m_calculatedTransformB.getOrigin();
btScalar jacDiagABInv;
btVector3 linear_axis;
for (i=0;i<3;i++)
{
if (m_linearLimits.isLimited(i))
{
jacDiagABInv = btScalar(1.) / m_jacLinear[i].getDiagonal();
if (m_useLinearReferenceFrameA)
linear_axis = m_calculatedTransformA.getBasis().getColumn(i);
else
linear_axis = m_calculatedTransformB.getBasis().getColumn(i);
m_linearLimits.solveLinearAxis(
m_timeStep,
jacDiagABInv,
m_rbA,pointInA,
m_rbB,pointInB,
i,linear_axis);
}
}
// angular
btVector3 angular_axis;
btScalar angularJacDiagABInv;
for (i=0;i<3;i++)
{
if (m_angularLimits[i].needApplyTorques())
{
// get axis
angular_axis = getAxis(i);
angularJacDiagABInv = btScalar(1.) / m_jacAng[i].getDiagonal();
m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, &m_rbA,&m_rbB);
}
}
}
void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
{
(void)timeStep;
(void)timeStep;
}
btScalar btGeneric6DofConstraint::computeAngle(int axis) const
{
btScalar angle = btScalar(0.f);
btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
{
return m_calculatedAxis[axis_index];
}
switch (axis)
{
case 0:
{
btVector3 v1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(1);
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
btScalar btGeneric6DofConstraint::getAngle(int axis_index) const
{
return m_calculatedAxisAngleDiff[axis_index];
}
btScalar s = v1.dot(w2);
btScalar c = v1.dot(v2);
angle = btAtan2( s, c );
}
break;
case 1:
{
btVector3 w1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(2);
btVector3 w2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(2);
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
btScalar s = w1.dot(u2);
btScalar c = w1.dot(w2);
angle = btAtan2( s, c );
}
break;
case 2:
{
btVector3 u1 = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(0);
btVector3 u2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(0);
btVector3 v2 = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(1);
btScalar s = u1.dot(v2);
btScalar c = u1.dot(u2);
angle = btAtan2( s, c );
}
break;
default:
btAssert ( 0 ) ;
break ;
}
return angle;
}