Usually m_contactNormal2 == -m_contactNormal1, but not always, so

use a separate contactNormal1/contactNormal2 for each body in btSolverConstraint.

Thanks to Richard McDaniel for the patch.
This commit is contained in:
erwin.coumans
2012-12-12 23:21:51 +00:00
parent fe92502332
commit 1d4a5d950d
8 changed files with 111 additions and 86 deletions

View File

@@ -137,6 +137,9 @@ void btConeTwistConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const bt
btVector3 a1neg = -a1;
a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
}
info->m_J2linearAxis[0] = -1;
info->m_J2linearAxis[info->rowskip+1] = -1;
info->m_J2linearAxis[2*info->rowskip+2] = -1;
btVector3 a2 = transB.getBasis() * m_rbBFrame.getOrigin();
{
btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);

View File

@@ -781,17 +781,16 @@ int btGeneric6DofConstraint::get_limit_motor_info2(
if (powered || limit)
{ // if the joint is powered, or has joint limits, add in the extra row
btScalar *J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
btScalar *J2 = rotational ? info->m_J2angularAxis : 0;
btScalar *J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
J1[srow+0] = ax1[0];
J1[srow+1] = ax1[1];
J1[srow+2] = ax1[2];
if(rotational)
{
J2[srow+0] = -ax1[0];
J2[srow+1] = -ax1[1];
J2[srow+2] = -ax1[2];
}
if((!rotational))
J2[srow+0] = -ax1[0];
J2[srow+1] = -ax1[1];
J2[srow+2] = -ax1[2];
if((!rotational))
{
if (m_useOffsetForConstraintFrame)
{

View File

@@ -369,6 +369,10 @@ void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransf
info->m_J1angularAxis[i*skip+1]=0;
info->m_J1angularAxis[i*skip+2]=0;
info->m_J2linearAxis[i*skip]=0;
info->m_J2linearAxis[i*skip+1]=0;
info->m_J2linearAxis[i*skip+2]=0;
info->m_J2angularAxis[i*skip]=0;
info->m_J2angularAxis[i*skip+1]=0;
info->m_J2angularAxis[i*skip+2]=0;
@@ -384,6 +388,10 @@ void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransf
info->m_J1linearAxis[0] = 1;
info->m_J1linearAxis[skip + 1] = 1;
info->m_J1linearAxis[2 * skip + 2] = 1;
info->m_J2linearAxis[0] = -1;
info->m_J2linearAxis[skip + 1] = -1;
info->m_J2linearAxis[2 * skip + 2] = -1;
}
@@ -797,7 +805,11 @@ void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info
for (i=0; i<3; i++) info->m_J1linearAxis[s0+i] = p[i];
for (i=0; i<3; i++) info->m_J1linearAxis[s1+i] = q[i];
for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = ax1[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s0+i] = -p[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s1+i] = -q[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -ax1[i];
// compute three elements of right hand side
btScalar rhs = k * p.dot(ofs);

View File

@@ -116,10 +116,9 @@ void btPoint2PointConstraint::getInfo2NonVirtual (btConstraintInfo2* info, const
a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
}
/*info->m_J2linearAxis[0] = -1;
info->m_J2linearAxis[s+1] = -1;
info->m_J2linearAxis[2*s+2] = -1;
*/
info->m_J2linearAxis[0] = -1;
info->m_J2linearAxis[info->rowskip+1] = -1;
info->m_J2linearAxis[2*info->rowskip+2] = -1;
btVector3 a2 = body1_trans.getBasis()*getPivotInB();

View File

@@ -14,6 +14,8 @@ subject to the following restrictions:
*/
//#define COMPUTE_IMPULSE_DENOM 1
//#define BT_ADDITIONAL_DEBUG
//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms.
#include "btSequentialImpulseConstraintSolver.h"
@@ -63,8 +65,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),btSimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128,body2.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
@@ -77,12 +79,12 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
__m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal2).mVec128,body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSingleConstraintRowGeneric(body1,body2,c);
@@ -93,8 +95,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
// const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
@@ -116,8 +118,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
c.m_appliedImpulse = sum;
}
body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
@@ -127,8 +129,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),btSimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128,body2.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
@@ -138,12 +140,12 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
__m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128,body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSingleConstraintRowLowerLimit(body1,body2,c);
@@ -154,8 +156,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity());
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
@@ -169,8 +171,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
{
c.m_appliedImpulse = sum;
}
body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
@@ -183,8 +185,8 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
{
gNumSplitImpulseRecoveries++;
btScalar deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity());
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity());
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
@@ -198,8 +200,8 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
{
c.m_appliedPushImpulse = sum;
}
body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
body1.internalApplyPushImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
body2.internalApplyPushImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
}
@@ -215,8 +217,8 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
__m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
__m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
__m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_sub_ps(btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),btSimdDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128,body1.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128,body2.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
@@ -226,12 +228,12 @@ void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFri
__m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
c.m_appliedPushImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128);
__m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128,body1.internalGetInvMass().mVec128);
__m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128,body2.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetPushVelocity().mVec128 = _mm_add_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
#else
resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c);
@@ -349,7 +351,8 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
{
solverConstraint.m_contactNormal = normalAxis;
solverConstraint.m_contactNormal1 = normalAxis;
solverConstraint.m_contactNormal2 = -normalAxis;
btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
@@ -366,12 +369,12 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
solverConstraint.m_appliedPushImpulse = 0.f;
{
btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal);
btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal1);
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0);
}
{
btVector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal);
btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal2);
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0);
}
@@ -398,9 +401,9 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?solverBodyA.m_linearVelocity:btVector3(0,0,0))
btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity:btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?solverBodyB.m_linearVelocity:btVector3(0,0,0))
btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity:btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
rel_vel = vel1Dotn+vel2Dotn;
@@ -436,7 +439,8 @@ void btSequentialImpulseConstraintSolver::setupRollingFrictionConstraint( btSolv
btVector3 normalAxis(0,0,0);
solverConstraint.m_contactNormal = normalAxis;
solverConstraint.m_contactNormal1 = normalAxis;
solverConstraint.m_contactNormal2 = -normalAxis;
btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
@@ -477,9 +481,9 @@ void btSequentialImpulseConstraintSolver::setupRollingFrictionConstraint( btSolv
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?solverBodyA.m_linearVelocity:btVector3(0,0,0))
btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity:btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?solverBodyB.m_linearVelocity:btVector3(0,0,0))
btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(body1?solverBodyB.m_linearVelocity:btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:btVector3(0,0,0));
rel_vel = vel1Dotn+vel2Dotn;
@@ -597,7 +601,8 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
solverConstraint.m_jacDiagABInv = denom;
}
solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
@@ -632,9 +637,9 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
{
solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
if (rb0)
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
if (rb1)
bodyB->internalApplyImpulse(solverConstraint.m_contactNormal*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
} else
{
solverConstraint.m_appliedImpulse = 0.f;
@@ -643,9 +648,9 @@ void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstra
solverConstraint.m_appliedPushImpulse = 0.f;
{
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?bodyA->m_linearVelocity:btVector3(0,0,0))
btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rb0?bodyA->m_linearVelocity:btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(rb0?bodyA->m_angularVelocity:btVector3(0,0,0));
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?bodyB->m_linearVelocity:btVector3(0,0,0))
btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rb1?bodyB->m_linearVelocity:btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(rb1?bodyB->m_angularVelocity:btVector3(0,0,0));
btScalar rel_vel = vel1Dotn+vel2Dotn;
@@ -713,9 +718,9 @@ void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolver
{
frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
if (rb0)
bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal1*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
if (rb1)
bodyB->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse);
bodyB->internalApplyImpulse(-frictionConstraint1.m_contactNormal2*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse);
} else
{
frictionConstraint1.m_appliedImpulse = 0.f;
@@ -729,9 +734,9 @@ void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolver
{
frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
if (rb0)
bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal1*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
if (rb1)
bodyB->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse);
bodyB->internalApplyImpulse(-frictionConstraint2.m_contactNormal2*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse);
} else
{
frictionConstraint2.m_appliedImpulse = 0.f;
@@ -912,7 +917,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
m_maxOverrideNumSolverIterations = 0;
#ifdef BT_DEBUG
#ifdef BT_ADDITIONAL_DEBUG
//make sure that dynamic bodies exist for all (enabled) constraints
for (int i=0;i<numConstraints;i++)
{
@@ -979,7 +984,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btAssert(found);
}
}
#endif //BT_DEBUG
#endif //BT_ADDITIONAL_DEBUG
for (int i = 0; i < numBodies; i++)
@@ -1119,9 +1124,9 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
btTypedConstraint::btConstraintInfo2 info2;
info2.fps = 1.f/infoGlobal.m_timeStep;
info2.erp = infoGlobal.m_erp;
info2.m_J1linearAxis = currentConstraintRow->m_contactNormal;
info2.m_J1linearAxis = currentConstraintRow->m_contactNormal1;
info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
info2.m_J2linearAxis = 0;
info2.m_J2linearAxis = currentConstraintRow->m_contactNormal2;
info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this
///the size of btSolverConstraint needs be a multiple of btScalar
@@ -1162,14 +1167,14 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
{
btVector3 iMJlA = solverConstraint.m_contactNormal*rbA.getInvMass();
btVector3 iMJlA = solverConstraint.m_contactNormal1*rbA.getInvMass();
btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
btVector3 iMJlB = solverConstraint.m_contactNormal*rbB.getInvMass();//sign of normal?
btVector3 iMJlB = solverConstraint.m_contactNormal2*rbB.getInvMass();//sign of normal?
btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal);
btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal1);
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
sum += iMJlB.dot(solverConstraint.m_contactNormal);
sum += iMJlB.dot(solverConstraint.m_contactNormal2);
sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
btScalar fsum = btFabs(sum);
btAssert(fsum > SIMD_EPSILON);
@@ -1181,8 +1186,8 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
///todo: add force/torque accelerators
{
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
rel_vel = vel1Dotn+vel2Dotn;
@@ -1580,10 +1585,10 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCo
btJointFeedback* fb = constr->getJointFeedback();
if (fb)
{
fb->m_appliedForceBodyA += solverConstr.m_contactNormal*solverConstr.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
fb->m_appliedForceBodyB += -solverConstr.m_contactNormal*solverConstr.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
fb->m_appliedForceBodyA += solverConstr.m_contactNormal1*solverConstr.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
fb->m_appliedForceBodyB += solverConstr.m_contactNormal2*solverConstr.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
fb->m_appliedTorqueBodyB += -solverConstr.m_relpos1CrossNormal* constr->getRigidBodyB().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
fb->m_appliedTorqueBodyB += solverConstr.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
}

View File

@@ -426,6 +426,8 @@ void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTra
for (i=0; i<3; i++) info->m_J2angularAxis[s3+i] = -tmpB[i];
for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
}
else
{ // old way - maybe incorrect if bodies are not on the slider axis
@@ -440,6 +442,8 @@ void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTra
for (i=0; i<3; i++) info->m_J1linearAxis[s2+i] = p[i];
for (i=0; i<3; i++) info->m_J1linearAxis[s3+i] = q[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s2+i] = -p[i];
for (i=0; i<3; i++) info->m_J2linearAxis[s3+i] = -q[i];
}
// compute two elements of right hand side
@@ -479,6 +483,9 @@ void btSliderConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTra
info->m_J1linearAxis[srow+0] = ax1[0];
info->m_J1linearAxis[srow+1] = ax1[1];
info->m_J1linearAxis[srow+2] = ax1[2];
info->m_J2linearAxis[srow+0] = -ax1[0];
info->m_J2linearAxis[srow+1] = -ax1[1];
info->m_J2linearAxis[srow+2] = -ax1[2];
// linear torque decoupling step:
//
// we have to be careful that the linear constraint forces (+/- ax1) applied to the two bodies

View File

@@ -32,10 +32,10 @@ ATTRIBUTE_ALIGNED16 (struct) btSolverConstraint
BT_DECLARE_ALIGNED_ALLOCATOR();
btVector3 m_relpos1CrossNormal;
btVector3 m_contactNormal;
btVector3 m_contactNormal1;
btVector3 m_relpos2CrossNormal;
//btVector3 m_contactNormal2;//usually m_contactNormal2 == -m_contactNormal
btVector3 m_contactNormal2; //usually m_contactNormal2 == -m_contactNormal1, but not always
btVector3 m_angularComponentA;
btVector3 m_angularComponentB;

View File

@@ -54,8 +54,8 @@ unsigned char ATTRIBUTE_ALIGNED128(tmp_buff[TMP_BUFF_BYTES]);
{
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal.dot(getBtVector3(body1.mDeltaLinearVelocity)) + c.m_relpos1CrossNormal.dot(getBtVector3(body1.mDeltaAngularVelocity));
const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(getBtVector3(body2.mDeltaLinearVelocity)) + c.m_relpos2CrossNormal.dot(getBtVector3(body2.mDeltaAngularVelocity));
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(getBtVector3(body1.mDeltaLinearVelocity)) + c.m_relpos1CrossNormal.dot(getBtVector3(body1.mDeltaAngularVelocity));
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(getBtVector3(body2.mDeltaLinearVelocity)) + c.m_relpos2CrossNormal.dot(getBtVector3(body2.mDeltaAngularVelocity));
// const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
@@ -79,7 +79,7 @@ unsigned char ATTRIBUTE_ALIGNED128(tmp_buff[TMP_BUFF_BYTES]);
if (body1.mMassInv)
{
btVector3 linearComponent = c.m_contactNormal*body1.mMassInv;
btVector3 linearComponent = c.m_contactNormal1*body1.mMassInv;
body1.mDeltaLinearVelocity += vmVector3(linearComponent.getX()*deltaImpulse,linearComponent.getY()*deltaImpulse,linearComponent.getZ()*deltaImpulse);
btVector3 tmp=c.m_angularComponentA*(btVector3(deltaImpulse,deltaImpulse,deltaImpulse));
body1.mDeltaAngularVelocity += vmVector3(tmp.getX(),tmp.getY(),tmp.getZ());
@@ -87,14 +87,14 @@ unsigned char ATTRIBUTE_ALIGNED128(tmp_buff[TMP_BUFF_BYTES]);
if (body2.mMassInv)
{
btVector3 linearComponent = -c.m_contactNormal*body2.mMassInv;
btVector3 linearComponent = c.m_contactNormal2*body2.mMassInv;
body2.mDeltaLinearVelocity += vmVector3(linearComponent.getX()*deltaImpulse,linearComponent.getY()*deltaImpulse,linearComponent.getZ()*deltaImpulse);
btVector3 tmp = c.m_angularComponentB*((btVector3(deltaImpulse,deltaImpulse,deltaImpulse)));//*m_angularFactor);
body2.mDeltaAngularVelocity += vmVector3(tmp.getX(),tmp.getY(),tmp.getZ());
}
//body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
//body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
//body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
//body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
}
@@ -1381,9 +1381,9 @@ btScalar btParallelConstraintSolver::solveGroup(btCollisionObject** bodies1,int
btTypedConstraint::btConstraintInfo2 info2;
info2.fps = 1.f/infoGlobal.m_timeStep;
info2.erp = infoGlobal.m_erp;
info2.m_J1linearAxis = currentConstraintRow->m_contactNormal;
info2.m_J1linearAxis = currentConstraintRow->m_contactNormal1;
info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
info2.m_J2linearAxis = 0;
info2.m_J2linearAxis = currentConstraintRow->m_contactNormal2;
info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this
///the size of btSolverConstraint needs be a multiple of btScalar
@@ -1418,14 +1418,14 @@ btScalar btParallelConstraintSolver::solveGroup(btCollisionObject** bodies1,int
}
{
btVector3 iMJlA = solverConstraint.m_contactNormal*rbA.getInvMass();
btVector3 iMJlA = solverConstraint.m_contactNormal1*rbA.getInvMass();
btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
btVector3 iMJlB = solverConstraint.m_contactNormal*rbB.getInvMass();//sign of normal?
btVector3 iMJlB = solverConstraint.m_contactNormal2*rbB.getInvMass();//sign of normal?
btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal);
btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal1);
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
sum += iMJlB.dot(solverConstraint.m_contactNormal);
sum += iMJlB.dot(solverConstraint.m_contactNormal2);
sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
solverConstraint.m_jacDiagABInv = btScalar(1.)/sum;
@@ -1436,8 +1436,8 @@ btScalar btParallelConstraintSolver::solveGroup(btCollisionObject** bodies1,int
///todo: add force/torque accelerators
{
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity());
btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity());
rel_vel = vel1Dotn+vel2Dotn;