revert to original agents train/visualize scripts, but using pybullet envs in configs.py (agents lacks a convenient way to extend environments)

This commit is contained in:
Erwin Coumans
2017-09-28 10:19:41 -07:00
parent b44a67b530
commit 345836d670
3 changed files with 307 additions and 59 deletions

View File

@@ -1,8 +1,25 @@
"""The PPO training configuration file for minitaur environments."""
# Copyright 2017 The TensorFlow Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example configurations using the PPO algorithm."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
# pylint: disable=unused-variable
from agents import ppo
from agents.scripts import networks
from pybullet_envs.bullet import minitaur_gym_env
@@ -11,33 +28,33 @@ import pybullet_envs.bullet.minitaur_gym_env as minitaur_gym_env
import pybullet_envs
# pylint: disable=unused-variable
def default():
"""The default configurations."""
"""Default configuration for PPO."""
# General
algorithm = ppo.PPOAlgorithm
num_agents = 25
num_agents = 10
eval_episodes = 25
use_gpu = False
# Network
network = networks.ForwardGaussianPolicy
weight_summaries = dict(
all=r'.*', policy=r'.*/policy/.*', value=r'.*/value/.*')
all=r'.*',
policy=r'.*/policy/.*',
value=r'.*/value/.*')
policy_layers = 200, 100
value_layers = 200, 100
init_mean_factor = 0.2
init_mean_factor = 0.05
init_logstd = -1
network_config = dict()
# Optimization
update_every = 25
policy_optimizer = 'AdamOptimizer'
value_optimizer = 'AdamOptimizer'
update_epochs_policy = 25
update_epochs_value = 25
value_lr = 1e-3
update_epochs_policy = 50
update_epochs_value = 50
policy_lr = 1e-4
value_lr = 3e-4
# Losses
discount = 0.99
discount = 0.985
kl_target = 1e-2
kl_cutoff_factor = 2
kl_cutoff_coef = 1000
@@ -107,4 +124,3 @@ def pybullet_minitaur():
steps = 3e7 # 30M
return locals()

View File

@@ -1,8 +1,22 @@
r"""Script to use Proximal Policy Gradient for the minitaur environments.
# Copyright 2017 The TensorFlow Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Run:
python train_ppo.py --logdif=/tmp/train --config=minitaur_pybullet
r"""Script to train a batch reinforcement learning algorithm.
Command line:
python3 -m agents.scripts.train --logdir=/path/to/logdir --config=pendulum
"""
from __future__ import absolute_import
@@ -10,39 +24,142 @@ from __future__ import division
from __future__ import print_function
import datetime
import functools
import os
import gym
import tensorflow as tf
from agents import tools
from agents.scripts import train
from . import configs
from agents.scripts import utility
from . import config_ppo
flags = tf.app.flags
FLAGS = tf.app.flags.FLAGS
def _create_environment(config):
"""Constructor for an instance of the environment.
flags.DEFINE_string(
'logdir', None,
'Base directory to store logs.')
flags.DEFINE_string(
'config', None,
'Configuration to execute.')
flags.DEFINE_string(
'timestamp', datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
'Sub directory to store logs.')
Args:
config: Object providing configurations via attributes.
Returns:
Wrapped OpenAI Gym environment.
"""
if isinstance(config.env, str):
env = gym.make(config.env)
else:
env = config.env()
if config.max_length:
env = tools.wrappers.LimitDuration(env, config.max_length)
env = tools.wrappers.RangeNormalize(env)
env = tools.wrappers.ClipAction(env)
env = tools.wrappers.ConvertTo32Bit(env)
return env
def _define_loop(graph, logdir, train_steps, eval_steps):
"""Create and configure a training loop with training and evaluation phases.
Args:
graph: Object providing graph elements via attributes.
logdir: Log directory for storing checkpoints and summaries.
train_steps: Number of training steps per epoch.
eval_steps: Number of evaluation steps per epoch.
Returns:
Loop object.
"""
loop = tools.Loop(
logdir, graph.step, graph.should_log, graph.do_report,
graph.force_reset)
loop.add_phase(
'train', graph.done, graph.score, graph.summary, train_steps,
report_every=None,
log_every=train_steps // 2,
checkpoint_every=None,
feed={graph.is_training: True})
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=eval_steps // 2,
checkpoint_every=10 * eval_steps,
feed={graph.is_training: False})
return loop
def train(config, env_processes):
"""Training and evaluation entry point yielding scores.
Resolves some configuration attributes, creates environments, graph, and
training loop. By default, assigns all operations to the CPU.
Args:
config: Object providing configurations via attributes.
env_processes: Whether to step environments in separate processes.
Yields:
Evaluation scores.
"""
tf.reset_default_graph()
with config.unlocked:
config.network = functools.partial(
utility.define_network, config.network, config)
config.policy_optimizer = getattr(tf.train, config.policy_optimizer)
config.value_optimizer = getattr(tf.train, config.value_optimizer)
if config.update_every % config.num_agents:
tf.logging.warn('Number of agents should divide episodes per update.')
with tf.device('/cpu:0'):
batch_env = utility.define_batch_env(
lambda: _create_environment(config),
config.num_agents, env_processes)
graph = utility.define_simulation_graph(
batch_env, config.algorithm, config)
loop = _define_loop(
graph, config.logdir,
config.update_every * config.max_length,
config.eval_episodes * config.max_length)
total_steps = int(
config.steps / config.update_every *
(config.update_every + config.eval_episodes))
# Exclude episode related variables since the Python state of environments is
# not checkpointed and thus new episodes start after resuming.
saver = utility.define_saver(exclude=(r'.*_temporary/.*',))
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
utility.initialize_variables(sess, saver, config.logdir)
for score in loop.run(sess, saver, total_steps):
yield score
batch_env.close()
def main(_):
"""Create or load configuration and launch the trainer."""
config = tools.AttrDict(getattr(config_ppo, FLAGS.config)())
logdir = FLAGS.logdir and os.path.join(
FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config))
utility.save_config(config, logdir)
for score in train.train(config, env_processes=True):
tf.logging.info(str(score))
utility.set_up_logging()
if not FLAGS.config:
raise KeyError('You must specify a configuration.')
logdir = FLAGS.logdir and os.path.expanduser(os.path.join(
FLAGS.logdir, '{}-{}'.format(FLAGS.timestamp, FLAGS.config)))
try:
config = utility.load_config(logdir)
except IOError:
config = tools.AttrDict(getattr(configs, FLAGS.config)())
config = utility.save_config(config, logdir)
for score in train(config, FLAGS.env_processes):
tf.logging.info('Score {}.'.format(score))
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'logdir', None,
'Base directory to store logs.')
tf.app.flags.DEFINE_string(
'timestamp', datetime.datetime.now().strftime('%Y%m%dT%H%M%S'),
'Sub directory to store logs.')
tf.app.flags.DEFINE_string(
'config', None,
'Configuration to execute.')
tf.app.flags.DEFINE_boolean(
'env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.run()

View File

@@ -1,42 +1,157 @@
# Copyright 2017 The TensorFlow Agents Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script to visualize the trained PPO agent.
r"""Script to render videos of the Proximal Policy Gradient algorithm.
python -m pybullet_envs.agents.visualize \
--logdir=ppo
--outdir=/tmp/video/
Command line:
python3 -m agents.scripts.visualize \
--logdir=/path/to/logdir/<time>-<config> --outdir=/path/to/outdir/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import gym
import tensorflow as tf
from agents.scripts import visualize
from agents import tools
from agents.scripts import utility
flags = tf.app.flags
FLAGS = tf.app.flags.FLAGS
flags.DEFINE_string("logdir", None,
"Directory to the checkpoint of a training run.")
flags.DEFINE_string("outdir", None,
"Local directory for storing the monitoring outdir.")
flags.DEFINE_string("checkpoint", None,
"Checkpoint name to load; defaults to most recent.")
flags.DEFINE_integer("num_agents", 1,
"How many environments to step in parallel.")
flags.DEFINE_integer("num_episodes", 1, "Minimum number of episodes to render.")
flags.DEFINE_boolean(
"env_processes", False,
"Step environments in separate processes to circumvent the GIL.")
def _create_environment(config, outdir):
"""Constructor for an instance of the environment.
Args:
config: Object providing configurations via attributes.
outdir: Directory to store videos in.
Returns:
Wrapped OpenAI Gym environment.
"""
if isinstance(config.env, str):
env = gym.make(config.env)
else:
env = config.env()
# Ensure that the environment has the specification attribute set as expected
# by the monitor wrapper.
if not hasattr(env, 'spec'):
setattr(env, 'spec', getattr(env, 'spec', None))
if config.max_length:
env = tools.wrappers.LimitDuration(env, config.max_length)
env = gym.wrappers.Monitor(
env, outdir, lambda unused_episode_number: True)
env = tools.wrappers.RangeNormalize(env)
env = tools.wrappers.ClipAction(env)
env = tools.wrappers.ConvertTo32Bit(env)
return env
def _define_loop(graph, eval_steps):
"""Create and configure an evaluation loop.
Args:
graph: Object providing graph elements via attributes.
eval_steps: Number of evaluation steps per epoch.
Returns:
Loop object.
"""
loop = tools.Loop(
None, graph.step, graph.should_log, graph.do_report, graph.force_reset)
loop.add_phase(
'eval', graph.done, graph.score, graph.summary, eval_steps,
report_every=eval_steps,
log_every=None,
checkpoint_every=None,
feed={graph.is_training: False})
return loop
def visualize(
logdir, outdir, num_agents, num_episodes, checkpoint=None,
env_processes=True):
"""Recover checkpoint and render videos from it.
Args:
logdir: Logging directory of the trained algorithm.
outdir: Directory to store rendered videos in.
num_agents: Number of environments to simulate in parallel.
num_episodes: Total number of episodes to simulate.
checkpoint: Checkpoint name to load; defaults to most recent.
env_processes: Whether to step environments in separate processes.
"""
config = utility.load_config(logdir)
with config.unlocked:
config.network = functools.partial(
utility.define_network, config.network, config)
config.policy_optimizer = getattr(tf.train, config.policy_optimizer)
config.value_optimizer = getattr(tf.train, config.value_optimizer)
with tf.device('/cpu:0'):
batch_env = utility.define_batch_env(
lambda: _create_environment(config, outdir),
num_agents, env_processes)
graph = utility.define_simulation_graph(
batch_env, config.algorithm, config)
total_steps = num_episodes * config.max_length
loop = _define_loop(graph, total_steps)
saver = utility.define_saver(
exclude=(r'.*_temporary/.*', r'global_step'))
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
utility.initialize_variables(
sess, saver, config.logdir, checkpoint, resume=True)
for unused_score in loop.run(sess, saver, total_steps):
pass
batch_env.close()
def main(_):
visualize.visualize(FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents,
FLAGS.num_episodes, FLAGS.checkpoint, FLAGS.env_processes)
"""Load a trained algorithm and render videos."""
utility.set_up_logging()
if not FLAGS.logdir or not FLAGS.outdir:
raise KeyError('You must specify logging and outdirs directories.')
FLAGS.logdir = os.path.expanduser(FLAGS.logdir)
FLAGS.outdir = os.path.expanduser(FLAGS.outdir)
visualize(
FLAGS.logdir, FLAGS.outdir, FLAGS.num_agents, FLAGS.num_episodes,
FLAGS.checkpoint, FLAGS.env_processes)
if __name__ == "__main__":
if __name__ == '__main__':
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'logdir', None,
'Directory to the checkpoint of a training run.')
tf.app.flags.DEFINE_string(
'outdir', None,
'Local directory for storing the monitoring outdir.')
tf.app.flags.DEFINE_string(
'checkpoint', None,
'Checkpoint name to load; defaults to most recent.')
tf.app.flags.DEFINE_integer(
'num_agents', 1,
'How many environments to step in parallel.')
tf.app.flags.DEFINE_integer(
'num_episodes', 5,
'Minimum number of episodes to render.')
tf.app.flags.DEFINE_boolean(
'env_processes', True,
'Step environments in separate processes to circumvent the GIL.')
tf.app.run()