Merge pull request #1345 from bingjeff/fix_bugs_in_jacobian

[pybullet] Fix bugs in calculateJacobian.
This commit is contained in:
erwincoumans
2017-09-27 23:25:14 -07:00
committed by GitHub
3 changed files with 81 additions and 3 deletions

View File

@@ -6667,6 +6667,11 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
}
// Only calculate if the localPosition is non-zero.
if (btInverseDynamics::maxAbs(localPosition) > 0.0) {
// Write the localPosition into world coordinates.
btInverseDynamics::mat33 world_rotation_body;
tree->getBodyTransform(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &world_rotation_body);
localPosition = world_rotation_body * localPosition;
// Correct the translational jacobian.
btInverseDynamics::mat33 skewCrossProduct;
btInverseDynamics::skew(localPosition, &skewCrossProduct);
btInverseDynamics::mat3x jac_l(3, numDofs + baseDofs);

View File

@@ -0,0 +1,66 @@
import pybullet as p
def getJointStates(robot):
joint_states = p.getJointStates(robot, range(p.getNumJoints(robot)))
joint_positions = [state[0] for state in joint_states]
joint_velocities = [state[1] for state in joint_states]
joint_torques = [state[3] for state in joint_states]
return joint_positions, joint_velocities, joint_torques
def setJointPosition(robot, position, kp=1.0, kv=0.3):
num_joints = p.getNumJoints(robot)
zero_vec = [0.0] * num_joints
if len(position) == num_joints:
p.setJointMotorControlArray(robot, range(num_joints), p.POSITION_CONTROL,
targetPositions=position, targetVelocities=zero_vec,
positionGains=[kp] * num_joints, velocityGains=[kv] * num_joints)
else:
print("Not setting torque. "
"Expected torque vector of "
"length {}, got {}".format(num_joints, len(torque)))
def multiplyJacobian(jacobian, vector):
result = [0.0, 0.0, 0.0]
for c in range(len(vector)):
for r in range(3):
result[r] += jacobian[r][c] * vector[c]
return result
clid = p.connect(p.SHARED_MEMORY)
if (clid<0):
p.connect(p.DIRECT)
time_step = 0.001
gravity_constant = -9.81
p.resetSimulation()
p.setTimeStep(time_step)
p.setGravity(0.0, 0.0, gravity_constant)
p.loadURDF("plane.urdf",[0,0,-0.3])
kukaId = p.loadURDF("kuka_iiwa/model.urdf",[0,0,0])
p.resetBasePositionAndOrientation(kukaId,[0,0,0],[0,0,0,1])
kukaEndEffectorIndex = 6
numJoints = p.getNumJoints(kukaId)
if (numJoints!=7):
exit()
# Set a joint target for the position control and step the sim.
setJointPosition(kukaId, [0.1] * p.getNumJoints(kukaId))
p.stepSimulation()
# Get the joint and link state directly from Bullet.
pos, vel, torq = getJointStates(kukaId)
result = p.getLinkState(kukaId, kukaEndEffectorIndex, computeLinkVelocity=1, computeForwardKinematics=1)
link_trn, link_rot, com_trn, com_rot, frame_pos, frame_rot, link_vt, link_vr = result
# Get the Jacobians for the CoM of the end-effector link.
# Note that in this example com_rot = identity, and we would need to use com_rot.T * com_trn.
# The localPosition is always defined in terms of the link frame coordinates.
zero_vec = [0.0] * numJoints
jac_t, jac_r = p.calculateJacobian(kukaId, kukaEndEffectorIndex, com_trn, pos, zero_vec, zero_vec)
print ("Link linear velocity of CoM from getLinkState:")
print (link_vt)
print ("Link linear velocity of CoM from linearJacobian * q_dot:")
print (multiplyJacobian(jac_t, vel))
print ("Link angular velocity of CoM from getLinkState:")
print (link_vr)
print ("Link angular velocity of CoM from angularJacobian * q_dot:")
print (multiplyJacobian(jac_r, vel))

View File

@@ -7411,13 +7411,20 @@ static PyMethodDef SpamMethods[] = {
"Get the state (position, velocity etc) for multiple joints on a body."},
{"getLinkState", (PyCFunction)pybullet_getLinkState, METH_VARARGS | METH_KEYWORDS,
"position_linkcom_world, world_rotation_linkcom,\n"
"position_linkcom_frame, frame_rotation_linkcom,\n"
"position_frame_world, world_rotation_frame,\n"
"linearVelocity_linkcom_world, angularVelocity_linkcom_world\n"
" = getLinkState(objectUniqueId, linkIndex, computeLinkVelocity=0,\n"
" computeForwardKinematics=0, physicsClientId=0)\n"
"Provides extra information such as the Cartesian world coordinates"
" center of mass (COM) of the link, relative to the world reference"
" frame."},
{"resetJointState", (PyCFunction)pybullet_resetJointState, METH_VARARGS | METH_KEYWORDS,
"Reset the state (position, velocity etc) for a joint on a body "
"instantaneously, not through physics simulation."},
"resetJointState(objectUniqueId, jointIndex, targetValue, targetVelocity=0, physicsClientId=0)\n"
"Reset the state (position, velocity etc) for a joint on a body "
"instantaneously, not through physics simulation."},
{"changeDynamics", (PyCFunction)pybullet_changeDynamicsInfo, METH_VARARGS | METH_KEYWORDS,
"change dynamics information such as mass, lateral friction coefficient."},
@@ -7563,7 +7570,7 @@ static PyMethodDef SpamMethods[] = {
"Args:\n"
" bodyIndex - a scalar defining the unique object id.\n"
" linkIndex - a scalar identifying the link containing the local point.\n"
" localPosition - a list of [x, y, z] of the coordinates of the local point.\n"
" localPosition - a list of [x, y, z] of the coordinates defined in the link frame.\n"
" objPositions - a list of the joint positions.\n"
" objVelocities - a list of the joint velocities.\n"
" objAccelerations - a list of the joint accelerations.\n"