Added Dantzig MLCP solver option from Open Dynamics Engine (trying to avoid naming/linking conflicts in case ODE and Bullet is used together)
If an MLCP solver fails, use PGS/SI fallback, add a boolean return value for 'solve' method
This commit is contained in:
2094
src/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
Normal file
2094
src/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
Normal file
File diff suppressed because it is too large
Load Diff
61
src/BulletDynamics/MLCPSolvers/btDantzigLCP.h
Normal file
61
src/BulletDynamics/MLCPSolvers/btDantzigLCP.h
Normal file
@@ -0,0 +1,61 @@
|
||||
/*************************************************************************
|
||||
* *
|
||||
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
|
||||
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
|
||||
* *
|
||||
* This library is free software; you can redistribute it and/or *
|
||||
* modify it under the terms of *
|
||||
* The BSD-style license that is included with this library in *
|
||||
* the file LICENSE-BSD.TXT. *
|
||||
* *
|
||||
* This library is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
|
||||
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
|
||||
* *
|
||||
*************************************************************************/
|
||||
|
||||
/*
|
||||
|
||||
given (A,b,lo,hi), solve the LCP problem: A*x = b+w, where each x(i),w(i)
|
||||
satisfies one of
|
||||
(1) x = lo, w >= 0
|
||||
(2) x = hi, w <= 0
|
||||
(3) lo < x < hi, w = 0
|
||||
A is a matrix of dimension n*n, everything else is a vector of size n*1.
|
||||
lo and hi can be +/- dInfinity as needed. the first `nub' variables are
|
||||
unbounded, i.e. hi and lo are assumed to be +/- dInfinity.
|
||||
|
||||
we restrict lo(i) <= 0 and hi(i) >= 0.
|
||||
|
||||
the original data (A,b) may be modified by this function.
|
||||
|
||||
if the `findex' (friction index) parameter is nonzero, it points to an array
|
||||
of index values. in this case constraints that have findex[i] >= 0 are
|
||||
special. all non-special constraints are solved for, then the lo and hi values
|
||||
for the special constraints are set:
|
||||
hi[i] = abs( hi[i] * x[findex[i]] )
|
||||
lo[i] = -hi[i]
|
||||
and the solution continues. this mechanism allows a friction approximation
|
||||
to be implemented. the first `nub' variables are assumed to have findex < 0.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#ifndef _BT_LCP_H_
|
||||
#define _BT_LCP_H_
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
|
||||
#include "LinearMath/btScalar.h"
|
||||
|
||||
//return false if solving failed
|
||||
bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
|
||||
int nub, btScalar *lo, btScalar *hi, int *findex);
|
||||
|
||||
|
||||
|
||||
#endif //_BT_LCP_H_
|
||||
103
src/BulletDynamics/MLCPSolvers/btDantzigSolver.h
Normal file
103
src/BulletDynamics/MLCPSolvers/btDantzigSolver.h
Normal file
@@ -0,0 +1,103 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
///original version written by Erwin Coumans, October 2013
|
||||
|
||||
#ifndef BT_DANTZIG_SOLVER_H
|
||||
#define BT_DANTZIG_SOLVER_H
|
||||
|
||||
#include "btMLCPSolverInterface.h"
|
||||
#include "btDantzigLCP.h"
|
||||
|
||||
|
||||
class btDantzigSolver : public btMLCPSolverInterface
|
||||
{
|
||||
protected:
|
||||
|
||||
btScalar m_acceptableUpperLimitSolution;
|
||||
|
||||
btAlignedObjectArray<char> m_tempBuffer;
|
||||
public:
|
||||
|
||||
btDantzigSolver()
|
||||
:m_acceptableUpperLimitSolution(btScalar(1000))
|
||||
{
|
||||
}
|
||||
|
||||
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
||||
{
|
||||
bool result = true;
|
||||
int n = b.rows();
|
||||
if (n)
|
||||
{
|
||||
btScalar* AA = (btScalar*) A.getBufferPointer();
|
||||
btScalar* bb = (btScalar* ) b.getBufferPointer();
|
||||
btScalar* xx = (btScalar*) x.getBufferPointer();
|
||||
btScalar* llo = (btScalar*) lo.getBufferPointer();
|
||||
btScalar* hhi = (btScalar*) hi.getBufferPointer();
|
||||
int* findex = (int*) &limitDependency[0];
|
||||
int nub = 0;
|
||||
btAlignedObjectArray<btScalar> ww;
|
||||
ww.resize(n);
|
||||
|
||||
|
||||
|
||||
const btScalar* Aptr = A.getBufferPointer();
|
||||
|
||||
for (int i=0;i<n*n;i++)
|
||||
{
|
||||
AA[i] = Aptr[i];
|
||||
}
|
||||
for (int i=0;i<n;i++)
|
||||
{
|
||||
llo[i] = lo[i];
|
||||
hhi[i] = hi[i];
|
||||
bb[i] = b[i];
|
||||
xx[i] = x[i];
|
||||
}
|
||||
|
||||
extern int numAllocas;
|
||||
numAllocas = 0;
|
||||
|
||||
result = btSolveDantzigLCP (n,AA,xx,bb,&ww[0],nub,llo,hhi,findex);
|
||||
|
||||
// printf("numAllocas = %d\n",numAllocas);
|
||||
for (int i=0;i<n;i++)
|
||||
{
|
||||
x[i] = xx[i];
|
||||
|
||||
//test for NAN
|
||||
if (x[i] != xx[i])
|
||||
{
|
||||
return false;
|
||||
}
|
||||
if (x[i] >= m_acceptableUpperLimitSolution)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
if (x[i] <= -m_acceptableUpperLimitSolution)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
|
||||
#endif //BT_DANTZIG_SOLVER_H
|
||||
@@ -115,10 +115,9 @@ btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,
|
||||
return 0.f;
|
||||
}
|
||||
|
||||
void btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
|
||||
bool btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
|
||||
|
||||
return m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
|
||||
}
|
||||
|
||||
struct btJointNode
|
||||
@@ -400,7 +399,8 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
///todo: use proper cfm values from the constraints (getInfo2)
|
||||
if (1)
|
||||
{
|
||||
// add cfm to the diagonal of m_A
|
||||
@@ -520,6 +520,7 @@ void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
|
||||
|
||||
if (1)
|
||||
{
|
||||
///todo: use proper cfm values from the constraints (getInfo2)
|
||||
// add cfm to the diagonal of m_A
|
||||
for ( int i=0; i<m_A.rows(); ++i)
|
||||
{
|
||||
@@ -543,13 +544,15 @@ void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
|
||||
|
||||
btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
|
||||
{
|
||||
bool result = true;
|
||||
{
|
||||
BT_PROFILE("solveMLCP");
|
||||
// printf("m_A(%d,%d)\n", m_A.rows(),m_A.cols());
|
||||
solveMLCP(infoGlobal);
|
||||
result = solveMLCP(infoGlobal);
|
||||
}
|
||||
|
||||
//check if solution is valid, and otherwise fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations
|
||||
if (result)
|
||||
{
|
||||
BT_PROFILE("process MLCP results");
|
||||
for (int i=0;i<m_allConstraintArray.size();i++)
|
||||
@@ -570,9 +573,11 @@ btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bod
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
|
||||
else
|
||||
{
|
||||
printf("fallback to btSequentialImpulseConstraintSolver\n");
|
||||
btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
|
||||
}
|
||||
|
||||
return 0.f;
|
||||
}
|
||||
@@ -43,7 +43,8 @@ protected:
|
||||
virtual void createMLCP(const btContactSolverInfo& infoGlobal);
|
||||
virtual void createMLCPFast(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
virtual void solveMLCP(const btContactSolverInfo& infoGlobal);
|
||||
//return true is it solves the problem successfully
|
||||
virtual bool solveMLCP(const btContactSolverInfo& infoGlobal);
|
||||
|
||||
public:
|
||||
|
||||
|
||||
@@ -26,7 +26,8 @@ public:
|
||||
{
|
||||
}
|
||||
|
||||
virtual void solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)=0;
|
||||
//return true is it solves the problem successfully
|
||||
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)=0;
|
||||
};
|
||||
|
||||
#endif //BT_MLCP_SOLVER_INTERFACE_H
|
||||
|
||||
@@ -56,14 +56,14 @@ public:
|
||||
}
|
||||
|
||||
|
||||
virtual void solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
||||
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
||||
{
|
||||
MCP_Termination status;
|
||||
|
||||
|
||||
int numVariables = b.rows();
|
||||
if (0==numVariables)
|
||||
return;
|
||||
return true;
|
||||
|
||||
/* - variables - the number of variables in the problem
|
||||
- m_nnz - the number of nonzeros in the M matrix
|
||||
@@ -126,14 +126,20 @@ public:
|
||||
};
|
||||
|
||||
printf("ERROR: The PATH MCP solver failed: %s\n", gReturnMsgs[(unsigned int)status]);// << std::endl;
|
||||
printf("using Projected Gauss Seidel instead\n");
|
||||
//x = Solve_GaussSeidel(A,b,lo,hi,limitDependencies,infoGlobal.m_numIterations);
|
||||
printf("using Projected Gauss Seidel fallback\n");
|
||||
|
||||
return false;
|
||||
} else
|
||||
{
|
||||
for (int i=0;i<numVariables;i++)
|
||||
{
|
||||
x[i] = zResult[i];
|
||||
//check for #NAN
|
||||
if (x[i] != zResult[i])
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -23,7 +23,7 @@ subject to the following restrictions:
|
||||
class btSolveProjectedGaussSeidel : public btMLCPSolverInterface
|
||||
{
|
||||
public:
|
||||
virtual void solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
||||
virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
|
||||
{
|
||||
//A is a m-n matrix, m rows, n columns
|
||||
btAssert(A.rows() == b.rows());
|
||||
|
||||
@@ -131,46 +131,10 @@ struct btMatrixX
|
||||
{
|
||||
if (m_storage[col+row*m_cols]==0.f)
|
||||
{
|
||||
|
||||
|
||||
m_rowNonZeroElements1[row].push_back(col);
|
||||
m_colNonZeroElements[col].push_back(row);
|
||||
/*
|
||||
//we need to keep the m_rowNonZeroElements1/m_colNonZeroElements arrays sorted (it is too slow, so commented out)
|
||||
int f=0;
|
||||
int l=0;
|
||||
m_rowNonZeroElements1[row].findBinarySearch(col,&f,&l);
|
||||
// btAssert(f==l);
|
||||
if (f<m_rowNonZeroElements1[row].size()-1)
|
||||
{
|
||||
m_rowNonZeroElements1[row].expandNonInitializing();
|
||||
for (int j=m_rowNonZeroElements1[row].size()-1;j>f;j--)
|
||||
m_rowNonZeroElements1[row][j] = m_rowNonZeroElements1[row][j-1];
|
||||
m_rowNonZeroElements1[row][f] = col;
|
||||
} else
|
||||
{
|
||||
m_rowNonZeroElements1[row].push_back(col);
|
||||
}
|
||||
m_colNonZeroElements[col].findBinarySearch(row,&f,&l);
|
||||
// btAssert(f==l);
|
||||
if (f<m_colNonZeroElements[col].size()-1)
|
||||
{
|
||||
m_colNonZeroElements[col].expandNonInitializing();
|
||||
for (int j=m_colNonZeroElements[col].size()-1;j>f;j++)
|
||||
m_colNonZeroElements[col][j-1] = m_colNonZeroElements[col][j];
|
||||
m_colNonZeroElements[col][f] = row;
|
||||
} else
|
||||
{
|
||||
m_colNonZeroElements[col].push_back(row);
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
m_storage[row*m_cols+col] = val;
|
||||
} else
|
||||
{
|
||||
|
||||
}
|
||||
m_storage[row*m_cols+col] = val;
|
||||
}
|
||||
}
|
||||
const T& operator() (int row,int col) const
|
||||
|
||||
@@ -257,10 +257,12 @@ inline int btGetVersion()
|
||||
|
||||
///The btScalar type abstracts floating point numbers, to easily switch between double and single floating point precision.
|
||||
#if defined(BT_USE_DOUBLE_PRECISION)
|
||||
|
||||
typedef double btScalar;
|
||||
//this number could be bigger in double precision
|
||||
#define BT_LARGE_FLOAT 1e30
|
||||
#else
|
||||
|
||||
typedef float btScalar;
|
||||
//keep BT_LARGE_FLOAT*BT_LARGE_FLOAT < FLT_MAX
|
||||
#define BT_LARGE_FLOAT 1e18f
|
||||
@@ -412,15 +414,15 @@ SIMD_FORCE_INLINE btScalar btFmod(btScalar x,btScalar y) { return fmodf(x,y); }
|
||||
|
||||
#endif
|
||||
|
||||
#define SIMD_2_PI btScalar(6.283185307179586232)
|
||||
#define SIMD_PI (SIMD_2_PI * btScalar(0.5))
|
||||
#define SIMD_HALF_PI (SIMD_2_PI * btScalar(0.25))
|
||||
#define SIMD_PI btScalar(3.1415926535897932384626433832795029)
|
||||
#define SIMD_2_PI btScalar(2.0) * SIMD_PI
|
||||
#define SIMD_HALF_PI (SIMD_PI * btScalar(0.5))
|
||||
#define SIMD_RADS_PER_DEG (SIMD_2_PI / btScalar(360.0))
|
||||
#define SIMD_DEGS_PER_RAD (btScalar(360.0) / SIMD_2_PI)
|
||||
#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)
|
||||
|
||||
#define btRecipSqrt(x) ((btScalar)(btScalar(1.0)/btSqrt(btScalar(x)))) /* reciprocal square root */
|
||||
|
||||
#define btRecip(x) (btScalar(1.0)/btScalar(x))
|
||||
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
#define SIMD_EPSILON DBL_EPSILON
|
||||
@@ -622,6 +624,35 @@ SIMD_FORCE_INLINE void btSetZero(T* a, int n)
|
||||
--ncurr;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int n)
|
||||
{
|
||||
btScalar p0,q0,m0,p1,q1,m1,sum;
|
||||
sum = 0;
|
||||
n -= 2;
|
||||
while (n >= 0) {
|
||||
p0 = a[0]; q0 = b[0];
|
||||
m0 = p0 * q0;
|
||||
p1 = a[1]; q1 = b[1];
|
||||
m1 = p1 * q1;
|
||||
sum += m0;
|
||||
sum += m1;
|
||||
a += 2;
|
||||
b += 2;
|
||||
n -= 2;
|
||||
}
|
||||
n += 2;
|
||||
while (n > 0) {
|
||||
sum += (*a) * (*b);
|
||||
a++;
|
||||
b++;
|
||||
n--;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
// returns normalized value in range [-SIMD_PI, SIMD_PI]
|
||||
SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user