Optimization work on SpuRaycastTask:

For ray vs. optimized bvh mesh traverse tree once for entire packet of rays
Avoid DMAing ray output data until we have a hit
This commit is contained in:
johnmccutchan
2008-02-14 22:11:56 +00:00
parent fe426229a7
commit 594963b25d
3 changed files with 338 additions and 92 deletions

View File

@@ -18,6 +18,8 @@
2. support compound objects
*/
#define CALLBACK_ALL
struct RaycastTask_LocalStoreMemory
{
ATTRIBUTE_ALIGNED16(char gColObj [sizeof(btCollisionObject)+16]);
@@ -159,21 +161,131 @@ void small_cache_read_triple( void* ls0, ppu_address_t ea0,
void performRaycastAgainstConvex (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr);
class spuRaycastNodeCallback : public btNodeOverlapCallback
class spuRaycastNodeCallback1 : public btNodeOverlapCallback
{
RaycastGatheredObjectData* m_gatheredObjectData;
const SpuRaycastTaskWorkUnit& m_workUnit;
SpuRaycastTaskWorkUnitOut* m_workUnitOut;
const SpuRaycastTaskWorkUnit* m_workUnits;
SpuRaycastTaskWorkUnitOut* m_workUnitsOut;
int m_workUnit;
RaycastTask_LocalStoreMemory* m_lsMemPtr;
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
//ATTRIBUTE_ALIGNED16(int spuIndices[16]);
public:
spuRaycastNodeCallback(RaycastGatheredObjectData* gatheredObjectData,const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
spuRaycastNodeCallback1(RaycastGatheredObjectData* gatheredObjectData,const SpuRaycastTaskWorkUnit* workUnits, SpuRaycastTaskWorkUnitOut* workUnitsOut, RaycastTask_LocalStoreMemory* lsMemPtr)
: m_gatheredObjectData(gatheredObjectData),
m_workUnit(workUnit),
m_workUnitOut(workUnitOut),
m_workUnits(workUnits),
m_workUnitsOut(workUnitsOut),
m_workUnit(0),
m_lsMemPtr (lsMemPtr)
{
}
void setWorkUnit (int workUnit) { m_workUnit = workUnit; }
virtual void processNode(int subPart, int triangleIndex)
{
///Create a triangle on the stack, call process collision, with GJK
///DMA the vertices, can benefit from software caching
// spu_printf("processNode with triangleIndex %d\n",triangleIndex);
// ugly solution to support both 16bit and 32bit indices
if (m_lsMemPtr->bvhShapeData.gIndexMesh.m_indexType == PHY_SHORT)
{
short int* indexBasePtr = (short int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
ATTRIBUTE_ALIGNED16(short int tmpIndices[3]);
small_cache_read_triple(&tmpIndices[0],(ppu_address_t)&indexBasePtr[0],
&tmpIndices[1],(ppu_address_t)&indexBasePtr[1],
&tmpIndices[2],(ppu_address_t)&indexBasePtr[2],
sizeof(short int));
m_lsMemPtr->spuIndices[0] = int(tmpIndices[0]);
m_lsMemPtr->spuIndices[1] = int(tmpIndices[1]);
m_lsMemPtr->spuIndices[2] = int(tmpIndices[2]);
} else
{
int* indexBasePtr = (int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0],
&m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1],
&m_lsMemPtr->spuIndices[2],(ppu_address_t)&indexBasePtr[2],
sizeof(int));
}
//printf("%d %d %d\n", m_lsMemPtr->spuIndices[0], m_lsMemPtr->spuIndices[1], m_lsMemPtr->spuIndices[2]);
// spu_printf("SPU index0=%d ,",spuIndices[0]);
// spu_printf("SPU index1=%d ,",spuIndices[1]);
// spu_printf("SPU index2=%d ,",spuIndices[2]);
// spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr);
const btVector3& meshScaling = m_lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getScaling();
for (int j=2;btLikely( j>=0 );j--)
{
int graphicsindex = m_lsMemPtr->spuIndices[j];
//spu_printf("SPU index=%d ,",graphicsindex);
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexStride);
// spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr);
///handle un-aligned vertices...
//another DMA for each vertex
small_cache_read_triple(&spuUnscaledVertex[0],(ppu_address_t)&graphicsbasePtr[0],
&spuUnscaledVertex[1],(ppu_address_t)&graphicsbasePtr[1],
&spuUnscaledVertex[2],(ppu_address_t)&graphicsbasePtr[2],
sizeof(btScalar));
//printf("%f %f %f\n", spuUnscaledVertex[0],spuUnscaledVertex[1],spuUnscaledVertex[2]);
spuTriangleVertices[j] = btVector3(
spuUnscaledVertex[0]*meshScaling.getX(),
spuUnscaledVertex[1]*meshScaling.getY(),
spuUnscaledVertex[2]*meshScaling.getZ());
//spu_printf("SPU:triangle vertices:%f,%f,%f\n",spuTriangleVertices[j].x(),spuTriangleVertices[j].y(),spuTriangleVertices[j].z());
}
RaycastGatheredObjectData triangleGatheredObjectData (*m_gatheredObjectData);
triangleGatheredObjectData.m_shapeType = TRIANGLE_SHAPE_PROXYTYPE;
triangleGatheredObjectData.m_spuCollisionShape = &spuTriangleVertices[0];
//printf("%f %f %f\n", spuTriangleVertices[0][0],spuTriangleVertices[0][1],spuTriangleVertices[0][2]);
//printf("%f %f %f\n", spuTriangleVertices[1][0],spuTriangleVertices[1][1],spuTriangleVertices[1][2]);
//printf("%f %f %f\n", spuTriangleVertices[2][0],spuTriangleVertices[2][1],spuTriangleVertices[2][2]);
SpuRaycastTaskWorkUnitOut out;
out.hitFraction = 1.0;
performRaycastAgainstConvex (&triangleGatheredObjectData, m_workUnits[m_workUnit], &out, m_lsMemPtr);
/* XXX: For now only take the closest hit */
if (out.hitFraction < m_workUnitsOut[m_workUnit].hitFraction)
{
m_workUnitsOut[m_workUnit].hitFraction = out.hitFraction;
m_workUnitsOut[m_workUnit].hitNormal = out.hitNormal;
}
}
};
class spuRaycastNodeCallback : public btNodeOverlapCallback
{
RaycastGatheredObjectData* m_gatheredObjectData;
const SpuRaycastTaskWorkUnit* m_workUnits;
SpuRaycastTaskWorkUnitOut* m_workUnitsOut;
int m_numWorkUnits;
RaycastTask_LocalStoreMemory* m_lsMemPtr;
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
//ATTRIBUTE_ALIGNED16(int spuIndices[16]);
public:
spuRaycastNodeCallback(RaycastGatheredObjectData* gatheredObjectData,const SpuRaycastTaskWorkUnit* workUnits, SpuRaycastTaskWorkUnitOut* workUnitsOut, int numWorkUnits, RaycastTask_LocalStoreMemory* lsMemPtr)
: m_gatheredObjectData(gatheredObjectData),
m_workUnits(workUnits),
m_workUnitsOut(workUnitsOut),
m_numWorkUnits(numWorkUnits),
m_lsMemPtr (lsMemPtr)
{
}
@@ -251,42 +363,59 @@ public:
//printf("%f %f %f\n", spuTriangleVertices[0][0],spuTriangleVertices[0][1],spuTriangleVertices[0][2]);
//printf("%f %f %f\n", spuTriangleVertices[1][0],spuTriangleVertices[1][1],spuTriangleVertices[1][2]);
//printf("%f %f %f\n", spuTriangleVertices[2][0],spuTriangleVertices[2][1],spuTriangleVertices[2][2]);
SpuRaycastTaskWorkUnitOut out;
out.hitFraction = 1.0;
performRaycastAgainstConvex (&triangleGatheredObjectData, m_workUnit, &out, m_lsMemPtr);
/* XXX: For now only take the closest hit */
if (out.hitFraction < m_workUnitOut->hitFraction)
for (int i = 0; i < m_numWorkUnits; i++)
{
m_workUnitOut->hitFraction = out.hitFraction;
m_workUnitOut->hitNormal = out.hitNormal;
SpuRaycastTaskWorkUnitOut out;
out.hitFraction = 1.0;
performRaycastAgainstConvex (&triangleGatheredObjectData, m_workUnits[i], &out, m_lsMemPtr);
/* XXX: For now only take the closest hit */
if (out.hitFraction < m_workUnitsOut[i].hitFraction)
{
m_workUnitsOut[i].hitFraction = out.hitFraction;
m_workUnitsOut[i].hitNormal = out.hitNormal;
}
}
}
};
void spuWalkStacklessQuantizedTreeAgainstRay(RaycastTask_LocalStoreMemory* lsMemPtr, btNodeOverlapCallback* nodeCallback,const btVector3& raySource, const btVector3& rayTarget,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode, int startNodeIndex,int endNodeIndex)
{
void spuWalkStacklessQuantizedTreeAgainstRays(RaycastTask_LocalStoreMemory* lsMemPtr,
btNodeOverlapCallback* nodeCallback,
const btVector3* rayFrom,
const btVector3* rayTo,
int numWorkUnits,
unsigned short int* quantizedQueryAabbMin,
unsigned short int* quantizedQueryAabbMax,
const btQuantizedBvhNode* rootNode,
int startNodeIndex,int endNodeIndex)
{
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
int escapeIndex;
unsigned int boxBoxOverlap, rayBoxOverlap;
unsigned int boxBoxOverlap, rayBoxOverlap, anyRayBoxOverlap;
unsigned int isLeafNode;
#define RAYAABB2
#ifdef RAYAABB2
btScalar lambda_max = 1.0;
btVector3 rayFrom = raySource;
btVector3 rayDirection = (rayTarget-raySource);
rayDirection.normalize ();
lambda_max = rayDirection.dot(rayTarget-raySource);
rayDirection[0] = btScalar(1.0) / rayDirection[0];
rayDirection[1] = btScalar(1.0) / rayDirection[1];
rayDirection[2] = btScalar(1.0) / rayDirection[2];
unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
unsigned int sign[numWorkUnits][3];
btVector3 rayInvDirection[numWorkUnits];
btScalar lambda_max[numWorkUnits];
for (int i = 0; i < numWorkUnits; i++)
{
btVector3 rayDirection = (rayTo[i]-rayFrom[i]);
rayDirection.normalize ();
lambda_max[i] = rayDirection.dot(rayTo[i]-rayFrom[i]);
rayInvDirection[i][0] = btScalar(1.0) / rayDirection[0];
rayInvDirection[i][1] = btScalar(1.0) / rayDirection[1];
rayInvDirection[i][2] = btScalar(1.0) / rayDirection[2];
sign[i][0] = rayDirection[0] < 0.0;
sign[i][1] = rayDirection[1] < 0.0;
sign[i][2] = rayDirection[2] < 0.0;
}
#endif
while (curIndex < endNodeIndex)
@@ -295,32 +424,65 @@ void spuWalkStacklessQuantizedTreeAgainstRay(RaycastTask_LocalStoreMemory* lsMem
assert (walkIterations < subTreeSize);
walkIterations++;
boxBoxOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
rayBoxOverlap = 0;
btScalar param = 1.0;
btVector3 normal;
if (boxBoxOverlap)
anyRayBoxOverlap = 0;
for (int i = 0; i < numWorkUnits; i++)
{
unsigned short int* quamin = (quantizedQueryAabbMin + 3 * i);
unsigned short int* quamax = (quantizedQueryAabbMax + 3 * i);
boxBoxOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quamin,quamax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
if (!boxBoxOverlap)
continue;
rayBoxOverlap = 0;
btScalar param = 1.0;
btVector3 normal;
btVector3 bounds[2];
bounds[0] = lsMemPtr->bvhShapeData.getOptimizedBvh()->unQuantize(rootNode->m_quantizedAabbMin);
bounds[1] = lsMemPtr->bvhShapeData.getOptimizedBvh()->unQuantize(rootNode->m_quantizedAabbMax);
#ifdef RAYAABB2
rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max);
rayBoxOverlap = btRayAabb2 (rayFrom[i], rayInvDirection[i], sign[i], bounds, param, 0.0, lambda_max[i]);
#else
rayBoxOverlap = btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
rayBoxOverlap = btRayAabb(rayFrom[i], rayTo[i], bounds[0], bounds[1], param, normal);
#endif
#ifndef CALLBACK_ALL
anyRayBoxOverlap = rayBoxOverlap || anyRayBoxOverlap;
/* If we have any ray vs. box overlap and this isn't a leaf node
we know that we need to dig deeper
*/
if (!isLeafNode && anyRayBoxOverlap)
break;
if (isLeafNode && rayBoxOverlap)
{
spuRaycastNodeCallback1* callback = (spuRaycastNodeCallback1*)nodeCallback;
callback->setWorkUnit (i);
nodeCallback->processNode (0, rootNode->getTriangleIndex());
}
#else
/* If we have any ray vs. box overlap and this isn't a leaf node
we know that we need to dig deeper
*/
if (rayBoxOverlap)
{
anyRayBoxOverlap = 1;
break;
}
#endif
}
if (isLeafNode && rayBoxOverlap)
#ifdef CALLBACK_ALL
if (isLeafNode && anyRayBoxOverlap)
{
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
nodeCallback->processNode(0,rootNode->getTriangleIndex());
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
}
nodeCallback->processNode (0, rootNode->getTriangleIndex());
}
#endif
if (rayBoxOverlap || isLeafNode)
if (anyRayBoxOverlap || isLeafNode)
{
rootNode++;
curIndex++;
@@ -334,7 +496,8 @@ void spuWalkStacklessQuantizedTreeAgainstRay(RaycastTask_LocalStoreMemory* lsMem
}
void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit* workUnits, SpuRaycastTaskWorkUnitOut* workUnitsOut, int numWorkUnits, RaycastTask_LocalStoreMemory* lsMemPtr)
{
//order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite
register int dmaSize;
@@ -345,32 +508,42 @@ void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData
//need the mesh interface, for access to triangle vertices
dmaBvhShapeData (&(lsMemPtr->bvhShapeData), trimeshShape);
btVector3 aabbMin;
btVector3 aabbMax;
unsigned short int quantizedQueryAabbMin[numWorkUnits][3];
unsigned short int quantizedQueryAabbMax[numWorkUnits][3];
btVector3 rayFromInTriangleSpace[numWorkUnits];
btVector3 rayToInTriangleSpace[numWorkUnits];
/* Calculate the AABB for the ray in the triangle mesh shape */
btTransform rayInTriangleSpace;
rayInTriangleSpace = gatheredObjectData->m_worldTransform.inverse();
btVector3 rayFromInTriangleSpace = rayInTriangleSpace(workUnit.rayFrom);
btVector3 rayToInTriangleSpace = rayInTriangleSpace(workUnit.rayTo);
for (int i = 0; i < numWorkUnits; i++)
{
btVector3 aabbMin;
btVector3 aabbMax;
aabbMin = rayFromInTriangleSpace;
aabbMin.setMin (rayToInTriangleSpace);
aabbMax = rayFromInTriangleSpace;
aabbMax.setMax (rayToInTriangleSpace);
rayFromInTriangleSpace[i] = rayInTriangleSpace(workUnits[i].rayFrom);
rayToInTriangleSpace[i] = rayInTriangleSpace(workUnits[i].rayTo);
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0);
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1);
aabbMin = rayFromInTriangleSpace[i];
aabbMin.setMin (rayToInTriangleSpace[i]);
aabbMax = rayFromInTriangleSpace[i];
aabbMax.setMax (rayToInTriangleSpace[i]);
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin[i],aabbMin,0);
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax[i],aabbMax,1);
}
QuantizedNodeArray& nodeArray = lsMemPtr->bvhShapeData.getOptimizedBvh()->getQuantizedNodeArray();
//spu_printf("SPU: numNodes = %d\n",nodeArray.size());
BvhSubtreeInfoArray& subTrees = lsMemPtr->bvhShapeData.getOptimizedBvh()->getSubtreeInfoArray();
spuRaycastNodeCallback nodeCallback (gatheredObjectData, workUnit, workUnitOut, lsMemPtr);
#ifdef CALLBACK_ALL
spuRaycastNodeCallback nodeCallback (gatheredObjectData, workUnits, workUnitsOut, numWorkUnits, lsMemPtr);
#else
spuRaycastNodeCallback1 nodeCallback (gatheredObjectData, workUnits, workUnitsOut, lsMemPtr);
#endif
IndexedMeshArray& indexArray = lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getIndexedMeshArray();
@@ -402,7 +575,14 @@ void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData
{
const btBvhSubtreeInfo& subtree = lsMemPtr->bvhShapeData.gSubtreeHeaders[j];
unsigned int overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
unsigned int overlap = 1;
for (int boxId = 0; boxId < numWorkUnits; boxId++)
{
overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin[boxId],quantizedQueryAabbMax[boxId],subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap)
break;
}
if (overlap)
{
btAssert(subtree.m_subtreeSize);
@@ -415,10 +595,14 @@ void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData
/* Walk this subtree */
{
spuWalkStacklessQuantizedTreeAgainstRay(lsMemPtr, &nodeCallback,rayFromInTriangleSpace, rayToInTriangleSpace, quantizedQueryAabbMin,quantizedQueryAabbMax,
&lsMemPtr->bvhShapeData.gSubtreeNodes[0],
0,
subtree.m_subtreeSize);
spuWalkStacklessQuantizedTreeAgainstRays(lsMemPtr,
&nodeCallback,
&rayFromInTriangleSpace[0],
&rayToInTriangleSpace[0],
numWorkUnits,
&quantizedQueryAabbMin[0][0],&quantizedQueryAabbMax[0][0],
&lsMemPtr->bvhShapeData.gSubtreeNodes[0], 0, subtree.m_subtreeSize);
}
}
// spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize);
@@ -471,7 +655,7 @@ performRaycastAgainstConvex (RaycastGatheredObjectData* gatheredObjectData, cons
}
/* performRaycast */
SpuSubsimplexRayCast caster (gatheredObjectData->m_spuCollisionShape, &lsMemPtr->convexVertexData, gatheredObjectData->m_shapeType, 0.0, &simplexSolver);
SpuSubsimplexRayCast caster (gatheredObjectData->m_spuCollisionShape, &lsMemPtr->convexVertexData, gatheredObjectData->m_shapeType, gatheredObjectData->m_collisionMargin, &simplexSolver);
bool r = caster.calcTimeOfImpact (rayFromTrans, rayToTrans, gatheredObjectData->m_worldTransform, gatheredObjectData->m_worldTransform,result);
if (r)
@@ -494,42 +678,100 @@ void processRaycastTask(void* userPtr, void* lsMemory)
for (int objectId = 0; objectId < taskDesc.numSpuCollisionObjectWrappers; objectId++)
{
RaycastGatheredObjectData gatheredObjectData;
GatherCollisionObjectAndShapeData (&gatheredObjectData, localMemory, (ppu_address_t)&cows[objectId]);
/* load initial collision shape */
for (int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
GatherCollisionObjectAndShapeData (&gatheredObjectData, localMemory, (ppu_address_t)&cows[objectId]);
if (btBroadphaseProxy::isConcave (gatheredObjectData.m_shapeType))
{
const SpuRaycastTaskWorkUnit& workUnit = taskDesc.workUnits[rayId];
ATTRIBUTE_ALIGNED16(SpuRaycastTaskWorkUnitOut workUnitOut);
dmaLoadRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
SpuRaycastTaskWorkUnitOut tWorkUnitOut;
tWorkUnitOut.hitFraction = 1.0;
if (btBroadphaseProxy::isConvex (gatheredObjectData.m_shapeType))
SpuRaycastTaskWorkUnitOut tWorkUnitsOut[taskDesc.numWorkUnits];
for (int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
{
performRaycastAgainstConvex (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
tWorkUnitsOut[rayId].hitFraction = 1.0;
}
else if (btBroadphaseProxy::isCompound (gatheredObjectData.m_shapeType)) {
performRaycastAgainstConcave (&gatheredObjectData, &taskDesc.workUnits[0], &tWorkUnitsOut[0], taskDesc.numWorkUnits, localMemory);
for (int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
{
const SpuRaycastTaskWorkUnit& workUnit = taskDesc.workUnits[rayId];
if (tWorkUnitsOut[rayId].hitFraction == 1.0)
continue;
ATTRIBUTE_ALIGNED16(SpuRaycastTaskWorkUnitOut workUnitOut);
dmaLoadRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
/* XXX Only support taking the closest hit for now */
if (tWorkUnitsOut[rayId].hitFraction < workUnitOut.hitFraction)
{
workUnitOut.hitFraction = tWorkUnitsOut[rayId].hitFraction;
workUnitOut.hitNormal = tWorkUnitsOut[rayId].hitNormal;
}
/* write ray cast data back */
dmaStoreRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
} else if (btBroadphaseProxy::isConvex (gatheredObjectData.m_shapeType)) {
for (unsigned int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
{
const SpuRaycastTaskWorkUnit& workUnit = taskDesc.workUnits[rayId];
btVector3 objectBoxMin, objectBoxMax;
computeAabb (objectBoxMin, objectBoxMax, (btConvexInternalShape*)gatheredObjectData.m_spuCollisionShape, gatheredObjectData.m_collisionShape, gatheredObjectData.m_shapeType, gatheredObjectData.m_worldTransform);
btScalar ignored_param = 1.0;
btVector3 ignored_normal;
if (btRayAabb(workUnit.rayFrom, workUnit.rayTo, objectBoxMin, objectBoxMax, ignored_param, ignored_normal))
{
ATTRIBUTE_ALIGNED16(SpuRaycastTaskWorkUnitOut workUnitOut);
SpuRaycastTaskWorkUnitOut tWorkUnitOut;
tWorkUnitOut.hitFraction = 1.0;
performRaycastAgainstConvex (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
if (tWorkUnitOut.hitFraction == 1.0)
continue;
dmaLoadRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
/* XXX Only support taking the closest hit for now */
if (tWorkUnitOut.hitFraction < workUnitOut.hitFraction)
{
workUnitOut.hitFraction = tWorkUnitOut.hitFraction;
workUnitOut.hitNormal = tWorkUnitOut.hitNormal;
/* write ray cast data back */
dmaStoreRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
}
}
} else if (btBroadphaseProxy::isCompound (gatheredObjectData.m_shapeType)) {
for (unsigned int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
{
const SpuRaycastTaskWorkUnit& workUnit = taskDesc.workUnits[rayId];
ATTRIBUTE_ALIGNED16(SpuRaycastTaskWorkUnitOut workUnitOut);
SpuRaycastTaskWorkUnitOut tWorkUnitOut;
tWorkUnitOut.hitFraction = 1.0;
performRaycastAgainstCompound (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
} else if (btBroadphaseProxy::isConcave (gatheredObjectData.m_shapeType)) {
performRaycastAgainstConcave (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
if (tWorkUnitOut.hitFraction == 1.0)
continue;
dmaLoadRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
/* XXX Only support taking the closest hit for now */
if (tWorkUnitOut.hitFraction < workUnitOut.hitFraction)
{
workUnitOut.hitFraction = tWorkUnitOut.hitFraction;
workUnitOut.hitNormal = tWorkUnitOut.hitNormal;
}
/* write ray cast data back */
dmaStoreRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
/* XXX Only support taking the closest hit for now */
if (tWorkUnitOut.hitFraction < workUnitOut.hitFraction)
{
workUnitOut.hitFraction = tWorkUnitOut.hitFraction;
workUnitOut.hitNormal = tWorkUnitOut.hitNormal;
}
/* write ray cast data back */
dmaStoreRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
}
}
}