|
|
|
|
@@ -24,148 +24,113 @@ Generic6DofConstraint::Generic6DofConstraint()
|
|
|
|
|
{
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Generic6DofConstraint::Generic6DofConstraint(RigidBody& rbA,RigidBody& rbB, const SimdVector3& pivotInA,const SimdVector3& pivotInB,
|
|
|
|
|
SimdVector3& axisInA,SimdVector3& axisInB)
|
|
|
|
|
:TypedConstraint(rbA,rbB),m_pivotInA(pivotInA),m_pivotInB(pivotInB),
|
|
|
|
|
m_axisInA(axisInA),
|
|
|
|
|
m_axisInB(axisInB)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Generic6DofConstraint::Generic6DofConstraint(RigidBody& rbA,const SimdVector3& pivotInA,SimdVector3& axisInA)
|
|
|
|
|
:TypedConstraint(rbA),m_pivotInA(pivotInA),m_pivotInB(rbA.getCenterOfMassTransform()(pivotInA)),
|
|
|
|
|
m_axisInA(axisInA),
|
|
|
|
|
//fixed axis in worldspace
|
|
|
|
|
m_axisInB(rbA.getCenterOfMassTransform().getBasis() * -axisInA)
|
|
|
|
|
|
|
|
|
|
Generic6DofConstraint::Generic6DofConstraint(RigidBody& rbA, RigidBody& rbB, const SimdTransform& frameInA, const SimdTransform& frameInB )
|
|
|
|
|
: TypedConstraint(rbA, rbB)
|
|
|
|
|
, m_frameInA(frameInA)
|
|
|
|
|
, m_frameInB(frameInB)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Generic6DofConstraint::BuildJacobian()
|
|
|
|
|
|
|
|
|
|
void Generic6DofConstraint::BuildJacobian()
|
|
|
|
|
{
|
|
|
|
|
SimdVector3 normal(0,0,0);
|
|
|
|
|
|
|
|
|
|
const SimdVector3& pivotInA = m_frameInA.getOrigin();
|
|
|
|
|
const SimdVector3& pivotInB = m_frameInB.getOrigin();
|
|
|
|
|
|
|
|
|
|
//linear part
|
|
|
|
|
for (int i=0;i<3;i++)
|
|
|
|
|
{
|
|
|
|
|
for (int i=0;i<3;i++)
|
|
|
|
|
{
|
|
|
|
|
normal[i] = 1;
|
|
|
|
|
new (&m_jac[i]) JacobianEntry(
|
|
|
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbA.getCenterOfMassTransform()*m_pivotInA - m_rbA.getCenterOfMassPosition(),
|
|
|
|
|
m_rbB.getCenterOfMassTransform()*m_pivotInB - m_rbB.getCenterOfMassPosition(),
|
|
|
|
|
normal,
|
|
|
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbA.getInvMass(),
|
|
|
|
|
m_rbB.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbB.getInvMass());
|
|
|
|
|
normal[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
normal[i] = 1;
|
|
|
|
|
|
|
|
|
|
new (&m_jac[i]) JacobianEntry(
|
|
|
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbA.getCenterOfMassTransform()*pivotInA - m_rbA.getCenterOfMassPosition(),
|
|
|
|
|
m_rbB.getCenterOfMassTransform()*pivotInB - m_rbB.getCenterOfMassPosition(),
|
|
|
|
|
normal,
|
|
|
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbA.getInvMass(),
|
|
|
|
|
m_rbB.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbB.getInvMass());
|
|
|
|
|
|
|
|
|
|
normal[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//calculate two perpendicular jointAxis, orthogonal to hingeAxis
|
|
|
|
|
//these two jointAxis require equal angular velocities for both bodies
|
|
|
|
|
|
|
|
|
|
//this is unused for now, it's a todo
|
|
|
|
|
SimdVector3 axisWorldA = GetRigidBodyA().getCenterOfMassTransform().getBasis() * m_axisInA;
|
|
|
|
|
SimdVector3 jointAxis0;
|
|
|
|
|
SimdVector3 jointAxis1;
|
|
|
|
|
SimdPlaneSpace1(axisWorldA,jointAxis0,jointAxis1);
|
|
|
|
|
|
|
|
|
|
new (&m_jacAng[0]) JacobianEntry(jointAxis0,
|
|
|
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbB.getInvInertiaDiagLocal());
|
|
|
|
|
|
|
|
|
|
new (&m_jacAng[1]) JacobianEntry(jointAxis1,
|
|
|
|
|
m_rbA.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbB.getCenterOfMassTransform().getBasis().transpose(),
|
|
|
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbB.getInvInertiaDiagLocal());
|
|
|
|
|
|
|
|
|
|
// angular part
|
|
|
|
|
for (int i=0;i<3;i++)
|
|
|
|
|
{
|
|
|
|
|
SimdVector3 axisInA = m_frameInA.getBasis().getColumn(i);
|
|
|
|
|
SimdVector3 axisInB = m_frameInA.getBasis().getColumn(i);
|
|
|
|
|
|
|
|
|
|
new (&m_jacAng[i]) JacobianEntry(axisInA, axisInB,
|
|
|
|
|
m_rbA.getInvInertiaDiagLocal(),
|
|
|
|
|
m_rbB.getInvInertiaDiagLocal());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Generic6DofConstraint::SolveConstraint(SimdScalar timeStep)
|
|
|
|
|
{
|
|
|
|
|
SimdScalar tau = 0.3f;
|
|
|
|
|
SimdScalar damping = 1.0f;
|
|
|
|
|
|
|
|
|
|
SimdVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_pivotInA;
|
|
|
|
|
SimdVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_pivotInB;
|
|
|
|
|
SimdVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_frameInA.getOrigin();
|
|
|
|
|
SimdVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_frameInB.getOrigin();
|
|
|
|
|
|
|
|
|
|
SimdVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
|
|
|
|
SimdVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
|
|
|
|
|
|
|
|
|
SimdVector3 angvelA = m_rbA.getCenterOfMassTransform().getBasis().transpose() * m_rbA.getAngularVelocity();
|
|
|
|
|
SimdVector3 angvelB = m_rbB.getCenterOfMassTransform().getBasis().transpose() * m_rbB.getAngularVelocity();
|
|
|
|
|
|
|
|
|
|
SimdVector3 normal(0,0,0);
|
|
|
|
|
SimdScalar tau = 0.3f;
|
|
|
|
|
SimdScalar damping = 1.f;
|
|
|
|
|
|
|
|
|
|
//linear part
|
|
|
|
|
{
|
|
|
|
|
for (int i=0;i<3;i++)
|
|
|
|
|
{
|
|
|
|
|
normal[i] = 1;
|
|
|
|
|
SimdScalar jacDiagABInv = 1.f / m_jac[i].getDiagonal();
|
|
|
|
|
// linear
|
|
|
|
|
for (int i=0;i<3;i++)
|
|
|
|
|
{
|
|
|
|
|
normal[i] = 1;
|
|
|
|
|
SimdScalar jacDiagABInv = 1.f / m_jac[i].getDiagonal();
|
|
|
|
|
|
|
|
|
|
SimdVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
|
|
|
|
|
SimdVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
|
|
|
|
|
|
|
|
|
|
SimdVector3 vel1 = m_rbA.getVelocityInLocalPoint(rel_pos1);
|
|
|
|
|
SimdVector3 vel2 = m_rbB.getVelocityInLocalPoint(rel_pos2);
|
|
|
|
|
SimdVector3 vel = vel1 - vel2;
|
|
|
|
|
SimdScalar rel_vel;
|
|
|
|
|
rel_vel = normal.dot(vel);
|
|
|
|
|
//positional error (zeroth order error)
|
|
|
|
|
SimdScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
|
|
|
|
|
SimdScalar impulse = depth*tau/timeStep * jacDiagABInv - damping * rel_vel * jacDiagABInv * damping;
|
|
|
|
|
//velocity error (first order error)
|
|
|
|
|
SimdScalar rel_vel = m_jac[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
|
|
|
|
|
m_rbB.getLinearVelocity(),angvelB);
|
|
|
|
|
|
|
|
|
|
//positional error (zeroth order error)
|
|
|
|
|
SimdScalar depth = -(pivotAInW - pivotBInW).dot(normal);
|
|
|
|
|
|
|
|
|
|
SimdScalar impulse = (tau*depth/timeStep - damping*rel_vel) * jacDiagABInv;
|
|
|
|
|
|
|
|
|
|
SimdVector3 impulse_vector = normal * impulse;
|
|
|
|
|
m_rbA.applyImpulse(impulse_vector, pivotAInW - m_rbA.getCenterOfMassPosition());
|
|
|
|
|
m_rbB.applyImpulse(-impulse_vector, pivotBInW - m_rbB.getCenterOfMassPosition());
|
|
|
|
|
|
|
|
|
|
normal[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
SimdVector3 impulse_vector = normal * impulse;
|
|
|
|
|
m_rbA.applyImpulse( impulse_vector, rel_pos1);
|
|
|
|
|
m_rbB.applyImpulse(-impulse_vector, rel_pos2);
|
|
|
|
|
|
|
|
|
|
normal[i] = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
///solve angular part
|
|
|
|
|
|
|
|
|
|
// get axes in world space
|
|
|
|
|
SimdVector3 axisA = GetRigidBodyA().getCenterOfMassTransform().getBasis() * m_axisInA;
|
|
|
|
|
SimdVector3 axisB = GetRigidBodyB().getCenterOfMassTransform().getBasis() * m_axisInB;
|
|
|
|
|
|
|
|
|
|
const SimdVector3& angVelA = GetRigidBodyA().getAngularVelocity();
|
|
|
|
|
const SimdVector3& angVelB = GetRigidBodyB().getAngularVelocity();
|
|
|
|
|
SimdVector3 angA = angVelA - axisA * axisA.dot(angVelA);
|
|
|
|
|
SimdVector3 angB = angVelB - axisB * axisB.dot(angVelB);
|
|
|
|
|
SimdVector3 velrel = angA-angB;
|
|
|
|
|
|
|
|
|
|
//solve angular velocity correction
|
|
|
|
|
float relaxation = 1.f;
|
|
|
|
|
float len = velrel.length();
|
|
|
|
|
if (len > 0.00001f)
|
|
|
|
|
// angular
|
|
|
|
|
for (int i=0;i<3;i++)
|
|
|
|
|
{
|
|
|
|
|
SimdVector3 normal = velrel.normalized();
|
|
|
|
|
float denom = GetRigidBodyA().ComputeAngularImpulseDenominator(normal) +
|
|
|
|
|
GetRigidBodyB().ComputeAngularImpulseDenominator(normal);
|
|
|
|
|
// scale for mass and relaxation
|
|
|
|
|
velrel *= (1.f/denom) * 0.9;
|
|
|
|
|
SimdScalar jacDiagABInv = 1.f / m_jacAng[i].getDiagonal();
|
|
|
|
|
|
|
|
|
|
//velocity error (first order error)
|
|
|
|
|
SimdScalar rel_vel = m_jacAng[i].getRelativeVelocity(m_rbA.getLinearVelocity(),angvelA,
|
|
|
|
|
m_rbB.getLinearVelocity(),angvelB);
|
|
|
|
|
|
|
|
|
|
//positional error (zeroth order error)
|
|
|
|
|
SimdVector3 axisA = m_rbA.getCenterOfMassTransform().getBasis() * m_frameInA.getBasis().getColumn(i);
|
|
|
|
|
SimdVector3 axisB = m_rbB.getCenterOfMassTransform().getBasis() * m_frameInB.getBasis().getColumn(i);
|
|
|
|
|
|
|
|
|
|
SimdScalar rel_pos = 0.0f * axisB.dot(axisA);
|
|
|
|
|
|
|
|
|
|
//impulse
|
|
|
|
|
SimdScalar impulse = (tau*rel_pos/timeStep - damping*rel_vel) * jacDiagABInv;
|
|
|
|
|
SimdVector3 impulse_vector = axisA * impulse;
|
|
|
|
|
|
|
|
|
|
//m_rbA.applyTorqueImpulse( impulse_vector);
|
|
|
|
|
//m_rbB.applyTorqueImpulse(-impulse_vector);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//solve angular positional correction
|
|
|
|
|
SimdVector3 angularError = -axisA.cross(axisB) *(1.f/timeStep);
|
|
|
|
|
float len2 = angularError.length();
|
|
|
|
|
if (len2>0.00001f)
|
|
|
|
|
{
|
|
|
|
|
SimdVector3 normal2 = angularError.normalized();
|
|
|
|
|
float denom2 = GetRigidBodyA().ComputeAngularImpulseDenominator(normal2) +
|
|
|
|
|
GetRigidBodyB().ComputeAngularImpulseDenominator(normal2);
|
|
|
|
|
angularError *= (1.f/denom2) * relaxation;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
m_rbA.applyTorqueImpulse(-velrel+angularError);
|
|
|
|
|
m_rbB.applyTorqueImpulse(velrel-angularError);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Generic6DofConstraint::UpdateRHS(SimdScalar timeStep)
|
|
|
|
|
|