added the btNNCGConstraintSolver, based on the paper "Nonsmooth Nonlinear Conjugate Gradient Method for interactive
contact force problems". The solver needs a lot of iterations, before the quality goes up (~ 1000) Thanks to Gabor PUHR for the contribution! Improved the btLemkeSolver. Remove the sparse optimizations from the btMatrixX.h, replace it with explicit call to rowComputeNonZeroElements (only used in the btSolveProjectedGaussSeidel), it was likely slowing things down, without being useful. Re-enable SIMD in the solver (was accidently disabled in Bullet 2.82 release)
This commit is contained in:
@@ -33,7 +33,8 @@ class btDispatcher;
|
||||
enum btConstraintSolverType
|
||||
{
|
||||
BT_SEQUENTIAL_IMPULSE_SOLVER=1,
|
||||
BT_MLCP_SOLVER=2
|
||||
BT_MLCP_SOLVER=2,
|
||||
BT_NNCG_SOLVER=4
|
||||
};
|
||||
|
||||
class btConstraintSolver
|
||||
|
||||
463
src/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp
Normal file
463
src/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp
Normal file
@@ -0,0 +1,463 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "btNNCGConstraintSolver.h"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
btScalar btNNCGConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
|
||||
{
|
||||
btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
|
||||
|
||||
m_pNC.resizeNoInitialize(m_tmpSolverNonContactConstraintPool.size());
|
||||
m_pC.resizeNoInitialize(m_tmpSolverContactConstraintPool.size());
|
||||
m_pCF.resizeNoInitialize(m_tmpSolverContactFrictionConstraintPool.size());
|
||||
m_pCRF.resizeNoInitialize(m_tmpSolverContactRollingFrictionConstraintPool.size());
|
||||
|
||||
m_deltafNC.resizeNoInitialize(m_tmpSolverNonContactConstraintPool.size());
|
||||
m_deltafC.resizeNoInitialize(m_tmpSolverContactConstraintPool.size());
|
||||
m_deltafCF.resizeNoInitialize(m_tmpSolverContactFrictionConstraintPool.size());
|
||||
m_deltafCRF.resizeNoInitialize(m_tmpSolverContactRollingFrictionConstraintPool.size());
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
btScalar btNNCGConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
|
||||
{
|
||||
|
||||
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
|
||||
int numConstraintPool = m_tmpSolverContactConstraintPool.size();
|
||||
int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
|
||||
|
||||
if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
|
||||
{
|
||||
if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
|
||||
{
|
||||
|
||||
for (int j=0; j<numNonContactPool; ++j) {
|
||||
int tmp = m_orderNonContactConstraintPool[j];
|
||||
int swapi = btRandInt2(j+1);
|
||||
m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
|
||||
m_orderNonContactConstraintPool[swapi] = tmp;
|
||||
}
|
||||
|
||||
//contact/friction constraints are not solved more than
|
||||
if (iteration< infoGlobal.m_numIterations)
|
||||
{
|
||||
for (int j=0; j<numConstraintPool; ++j) {
|
||||
int tmp = m_orderTmpConstraintPool[j];
|
||||
int swapi = btRandInt2(j+1);
|
||||
m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
|
||||
m_orderTmpConstraintPool[swapi] = tmp;
|
||||
}
|
||||
|
||||
for (int j=0; j<numFrictionPool; ++j) {
|
||||
int tmp = m_orderFrictionConstraintPool[j];
|
||||
int swapi = btRandInt2(j+1);
|
||||
m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
|
||||
m_orderFrictionConstraintPool[swapi] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
btScalar deltaflengthsqr = 0;
|
||||
|
||||
if (infoGlobal.m_solverMode & SOLVER_SIMD)
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
|
||||
if (iteration < constraint.m_overrideNumSolverIterations)
|
||||
{
|
||||
btScalar deltaf = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
|
||||
m_deltafNC[j] = deltaf;
|
||||
deltaflengthsqr += deltaf * deltaf;
|
||||
}
|
||||
}
|
||||
} else
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
|
||||
if (iteration < constraint.m_overrideNumSolverIterations)
|
||||
{
|
||||
btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
|
||||
m_deltafNC[j] = deltaf;
|
||||
deltaflengthsqr += deltaf * deltaf;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (m_onlyForNoneContact)
|
||||
{
|
||||
if (iteration==0)
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = m_deltafNC[j];
|
||||
} else {
|
||||
// deltaflengthsqrprev can be 0 only if the solver solved the problem exactly in the previous iteration. In this case we should have quit, but mainly for debug reason with this 'hack' it is now allowed to continue the calculation
|
||||
btScalar beta = m_deltafLengthSqrPrev>0 ? deltaflengthsqr / m_deltafLengthSqrPrev : 2;
|
||||
if (beta>1)
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = 0;
|
||||
} else
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
|
||||
if (iteration < constraint.m_overrideNumSolverIterations)
|
||||
{
|
||||
btScalar additionaldeltaimpulse = beta * m_pNC[j];
|
||||
constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
|
||||
m_pNC[j] = beta * m_pNC[j] + m_deltafNC[j];
|
||||
btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
|
||||
btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
|
||||
const btSolverConstraint& c = constraint;
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
m_deltafLengthSqrPrev = deltaflengthsqr;
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (infoGlobal.m_solverMode & SOLVER_SIMD)
|
||||
{
|
||||
|
||||
if (iteration< infoGlobal.m_numIterations)
|
||||
{
|
||||
for (int j=0;j<numConstraints;j++)
|
||||
{
|
||||
if (constraints[j]->isEnabled())
|
||||
{
|
||||
int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
|
||||
int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
|
||||
btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
|
||||
btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
|
||||
constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
|
||||
}
|
||||
}
|
||||
|
||||
///solve all contact constraints using SIMD, if available
|
||||
if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
|
||||
{
|
||||
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
|
||||
int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;
|
||||
|
||||
for (int c=0;c<numPoolConstraints;c++)
|
||||
{
|
||||
btScalar totalImpulse =0;
|
||||
|
||||
{
|
||||
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
|
||||
btScalar deltaf = resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafC[c] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
totalImpulse = solveManifold.m_appliedImpulse;
|
||||
}
|
||||
bool applyFriction = true;
|
||||
if (applyFriction)
|
||||
{
|
||||
{
|
||||
|
||||
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];
|
||||
|
||||
if (totalImpulse>btScalar(0))
|
||||
{
|
||||
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
|
||||
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
|
||||
btScalar deltaf = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafCF[c*multiplier] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
} else {
|
||||
m_deltafCF[c*multiplier] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
|
||||
{
|
||||
|
||||
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];
|
||||
|
||||
if (totalImpulse>btScalar(0))
|
||||
{
|
||||
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
|
||||
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
|
||||
btScalar deltaf = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafCF[c*multiplier+1] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
} else {
|
||||
m_deltafCF[c*multiplier+1] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
else//SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
|
||||
{
|
||||
//solve the friction constraints after all contact constraints, don't interleave them
|
||||
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
|
||||
int j;
|
||||
|
||||
for (j=0;j<numPoolConstraints;j++)
|
||||
{
|
||||
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
|
||||
//resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
btScalar deltaf = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafC[j] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
}
|
||||
|
||||
|
||||
|
||||
///solve all friction constraints, using SIMD, if available
|
||||
|
||||
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
|
||||
for (j=0;j<numFrictionPoolConstraints;j++)
|
||||
{
|
||||
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
|
||||
btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
|
||||
|
||||
if (totalImpulse>btScalar(0))
|
||||
{
|
||||
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
|
||||
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
|
||||
|
||||
//resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafCF[j] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
} else {
|
||||
m_deltafCF[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
|
||||
for (j=0;j<numRollingFrictionPoolConstraints;j++)
|
||||
{
|
||||
|
||||
btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
|
||||
btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
|
||||
if (totalImpulse>btScalar(0))
|
||||
{
|
||||
btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
|
||||
if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
|
||||
rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
|
||||
|
||||
rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
|
||||
rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
|
||||
|
||||
btScalar deltaf = resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
|
||||
m_deltafCRF[j] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
} else {
|
||||
m_deltafCRF[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
} else
|
||||
{
|
||||
|
||||
if (iteration< infoGlobal.m_numIterations)
|
||||
{
|
||||
for (int j=0;j<numConstraints;j++)
|
||||
{
|
||||
if (constraints[j]->isEnabled())
|
||||
{
|
||||
int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
|
||||
int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
|
||||
btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
|
||||
btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
|
||||
constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
|
||||
}
|
||||
}
|
||||
///solve all contact constraints
|
||||
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
|
||||
for (int j=0;j<numPoolConstraints;j++)
|
||||
{
|
||||
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
|
||||
btScalar deltaf = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafC[j] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
}
|
||||
///solve all friction constraints
|
||||
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
|
||||
for (int j=0;j<numFrictionPoolConstraints;j++)
|
||||
{
|
||||
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
|
||||
btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
|
||||
|
||||
if (totalImpulse>btScalar(0))
|
||||
{
|
||||
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
|
||||
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
|
||||
|
||||
btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
m_deltafCF[j] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
} else {
|
||||
m_deltafCF[j] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
|
||||
for (int j=0;j<numRollingFrictionPoolConstraints;j++)
|
||||
{
|
||||
btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
|
||||
btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
|
||||
if (totalImpulse>btScalar(0))
|
||||
{
|
||||
btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
|
||||
if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
|
||||
rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
|
||||
|
||||
rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
|
||||
rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
|
||||
|
||||
btScalar deltaf = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
|
||||
m_deltafCRF[j] = deltaf;
|
||||
deltaflengthsqr += deltaf*deltaf;
|
||||
} else {
|
||||
m_deltafCRF[j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
if (!m_onlyForNoneContact)
|
||||
{
|
||||
if (iteration==0)
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = m_deltafNC[j];
|
||||
for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++) m_pC[j] = m_deltafC[j];
|
||||
for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++) m_pCF[j] = m_deltafCF[j];
|
||||
if ( (infoGlobal.m_solverMode & SOLVER_SIMD) ==0 || (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS) == 0 )
|
||||
{
|
||||
for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++) m_pCRF[j] = m_deltafCRF[j];
|
||||
}
|
||||
} else
|
||||
{
|
||||
// deltaflengthsqrprev can be 0 only if the solver solved the problem exactly in the previous iteration. In this case we should have quit, but mainly for debug reason with this 'hack' it is now allowed to continue the calculation
|
||||
btScalar beta = m_deltafLengthSqrPrev>0 ? deltaflengthsqr / m_deltafLengthSqrPrev : 2;
|
||||
if (beta>1) {
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) m_pNC[j] = 0;
|
||||
for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++) m_pC[j] = 0;
|
||||
for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++) m_pCF[j] = 0;
|
||||
if ( (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS) == 0 ) {
|
||||
for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++) m_pCRF[j] = 0;
|
||||
}
|
||||
} else {
|
||||
for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
|
||||
if (iteration < constraint.m_overrideNumSolverIterations) {
|
||||
btScalar additionaldeltaimpulse = beta * m_pNC[j];
|
||||
constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
|
||||
m_pNC[j] = beta * m_pNC[j] + m_deltafNC[j];
|
||||
btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
|
||||
btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
|
||||
const btSolverConstraint& c = constraint;
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
|
||||
}
|
||||
}
|
||||
for (int j=0;j<m_tmpSolverContactConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
|
||||
if (iteration< infoGlobal.m_numIterations) {
|
||||
btScalar additionaldeltaimpulse = beta * m_pC[j];
|
||||
constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
|
||||
m_pC[j] = beta * m_pC[j] + m_deltafC[j];
|
||||
btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
|
||||
btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
|
||||
const btSolverConstraint& c = constraint;
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
|
||||
}
|
||||
}
|
||||
for (int j=0;j<m_tmpSolverContactFrictionConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
|
||||
if (iteration< infoGlobal.m_numIterations) {
|
||||
btScalar additionaldeltaimpulse = beta * m_pCF[j];
|
||||
constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
|
||||
m_pCF[j] = beta * m_pCF[j] + m_deltafCF[j];
|
||||
btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
|
||||
btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
|
||||
const btSolverConstraint& c = constraint;
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
|
||||
}
|
||||
}
|
||||
if ( (infoGlobal.m_solverMode & SOLVER_SIMD) ==0 || (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS) == 0 ) {
|
||||
for (int j=0;j<m_tmpSolverContactRollingFrictionConstraintPool.size();j++)
|
||||
{
|
||||
btSolverConstraint& constraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
|
||||
if (iteration< infoGlobal.m_numIterations) {
|
||||
btScalar additionaldeltaimpulse = beta * m_pCRF[j];
|
||||
constraint.m_appliedImpulse = btScalar(constraint.m_appliedImpulse) + additionaldeltaimpulse;
|
||||
m_pCRF[j] = beta * m_pCRF[j] + m_deltafCRF[j];
|
||||
btSolverBody& body1 = m_tmpSolverBodyPool[constraint.m_solverBodyIdA];
|
||||
btSolverBody& body2 = m_tmpSolverBodyPool[constraint.m_solverBodyIdB];
|
||||
const btSolverConstraint& c = constraint;
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,additionaldeltaimpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,additionaldeltaimpulse);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
m_deltafLengthSqrPrev = deltaflengthsqr;
|
||||
}
|
||||
|
||||
return deltaflengthsqr;
|
||||
}
|
||||
|
||||
btScalar btNNCGConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
|
||||
{
|
||||
m_pNC.resizeNoInitialize(0);
|
||||
m_pC.resizeNoInitialize(0);
|
||||
m_pCF.resizeNoInitialize(0);
|
||||
m_pCRF.resizeNoInitialize(0);
|
||||
|
||||
m_deltafNC.resizeNoInitialize(0);
|
||||
m_deltafC.resizeNoInitialize(0);
|
||||
m_deltafCF.resizeNoInitialize(0);
|
||||
m_deltafCRF.resizeNoInitialize(0);
|
||||
|
||||
return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
|
||||
}
|
||||
|
||||
|
||||
|
||||
64
src/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h
Normal file
64
src/BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.h
Normal file
@@ -0,0 +1,64 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_NNCG_CONSTRAINT_SOLVER_H
|
||||
#define BT_NNCG_CONSTRAINT_SOLVER_H
|
||||
|
||||
#include "btSequentialImpulseConstraintSolver.h"
|
||||
|
||||
ATTRIBUTE_ALIGNED16(class) btNNCGConstraintSolver : public btSequentialImpulseConstraintSolver
|
||||
{
|
||||
protected:
|
||||
|
||||
btScalar m_deltafLengthSqrPrev;
|
||||
|
||||
btAlignedObjectArray<btScalar> m_pNC; // p for None Contact constraints
|
||||
btAlignedObjectArray<btScalar> m_pC; // p for Contact constraints
|
||||
btAlignedObjectArray<btScalar> m_pCF; // p for ContactFriction constraints
|
||||
btAlignedObjectArray<btScalar> m_pCRF; // p for ContactRollingFriction constraints
|
||||
|
||||
//These are recalculated in every iterations. We just keep these to prevent reallocation in each iteration.
|
||||
btAlignedObjectArray<btScalar> m_deltafNC; // deltaf for NoneContact constraints
|
||||
btAlignedObjectArray<btScalar> m_deltafC; // deltaf for Contact constraints
|
||||
btAlignedObjectArray<btScalar> m_deltafCF; // deltaf for ContactFriction constraints
|
||||
btAlignedObjectArray<btScalar> m_deltafCRF; // deltaf for ContactRollingFriction constraints
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
|
||||
virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
||||
|
||||
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
|
||||
|
||||
public:
|
||||
|
||||
BT_DECLARE_ALIGNED_ALLOCATOR();
|
||||
|
||||
btNNCGConstraintSolver() : btSequentialImpulseConstraintSolver(), m_onlyForNoneContact(false) {}
|
||||
|
||||
virtual btConstraintSolverType getSolverType() const
|
||||
{
|
||||
return BT_NNCG_SOLVER;
|
||||
}
|
||||
|
||||
bool m_onlyForNoneContact;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
#endif //BT_NNCG_CONSTRAINT_SOLVER_H
|
||||
|
||||
@@ -58,7 +58,7 @@ static inline __m128 btSimdDot3( __m128 vec0, __m128 vec1 )
|
||||
#endif//USE_SIMD
|
||||
|
||||
// Project Gauss Seidel or the equivalent Sequential Impulse
|
||||
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
{
|
||||
#ifdef USE_SIMD
|
||||
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
|
||||
@@ -86,13 +86,14 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
|
||||
body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
|
||||
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
|
||||
body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
|
||||
return deltaImpulse.m128_f32[0];
|
||||
#else
|
||||
resolveSingleConstraintRowGeneric(body1,body2,c);
|
||||
return resolveSingleConstraintRowGeneric(body1,body2,c);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Project Gauss Seidel or the equivalent Sequential Impulse
|
||||
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
{
|
||||
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
|
||||
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
|
||||
@@ -120,9 +121,11 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
|
||||
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
|
||||
|
||||
return deltaImpulse;
|
||||
}
|
||||
|
||||
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
{
|
||||
#ifdef USE_SIMD
|
||||
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
|
||||
@@ -147,13 +150,14 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
|
||||
body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
|
||||
body2.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
|
||||
body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
|
||||
return deltaImpulse.m128_f32[0];
|
||||
#else
|
||||
resolveSingleConstraintRowLowerLimit(body1,body2,c);
|
||||
return resolveSingleConstraintRowLowerLimit(body1,body2,c);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Projected Gauss Seidel or the equivalent Sequential Impulse
|
||||
void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
|
||||
btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
|
||||
{
|
||||
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
|
||||
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity());
|
||||
@@ -173,6 +177,8 @@ void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(
|
||||
}
|
||||
body1.internalApplyImpulse(c.m_contactNormal1*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
|
||||
body2.internalApplyImpulse(c.m_contactNormal2*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
|
||||
|
||||
return deltaImpulse;
|
||||
}
|
||||
|
||||
|
||||
@@ -430,6 +436,7 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
|
||||
btSimdScalar velocityError = desiredVelocity - rel_vel;
|
||||
btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
|
||||
solverConstraint.m_rhs = velocityImpulse;
|
||||
solverConstraint.m_rhsPenetration = 0.f;
|
||||
solverConstraint.m_cfm = cfmSlip;
|
||||
solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
|
||||
solverConstraint.m_upperLimit = solverConstraint.m_friction;
|
||||
@@ -1452,8 +1459,7 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
|
||||
for (j=0;j<numPoolConstraints;j++)
|
||||
{
|
||||
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
|
||||
//resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
|
||||
}
|
||||
|
||||
@@ -1472,8 +1478,7 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
|
||||
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
|
||||
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
|
||||
|
||||
//resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -88,13 +88,10 @@ protected:
|
||||
int getOrInitSolverBody(btCollisionObject& body,btScalar timeStep);
|
||||
void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep);
|
||||
|
||||
void resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
|
||||
void resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
|
||||
void resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
|
||||
void resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
btScalar resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
btScalar resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
btScalar resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
btScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& contactConstraint);
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user