Remove btSoftBodySolver_CPU.*

Move btSoftBodySolverData.h to src/BulletMultiThreaded/GpuSoftBodySolvers/Shared/btSoftBodySolverData.h
Attempt to re-enable MiniCL version of OpenCLClothDemo (cloth-capsule collision still broken)
Add optional OpenCL acceleration to SerializeDemo (just for cloth)
This commit is contained in:
erwin.coumans
2011-11-11 19:00:26 +00:00
parent 14352169ab
commit 66c349caa6
40 changed files with 2442 additions and 1649 deletions

View File

@@ -24,9 +24,12 @@ subject to the following restrictions:
#include "../OpenCLC10/UpdateNormals.cl"
#include "../OpenCLC10/UpdatePositions.cl"
#include "../OpenCLC10/UpdatePositionsFromVelocities.cl"
//#include "../OpenCLC10/VSolveLinks.cl"
#include "../OpenCLC10/VSolveLinks.cl"
//#include "../OpenCLC10/SolveCollisionsAndUpdateVelocities.cl"
MINICL_REGISTER(PrepareLinksKernel)
MINICL_REGISTER(VSolveLinksKernel)
MINICL_REGISTER(UpdatePositionsFromVelocitiesKernel)
MINICL_REGISTER(SolvePositionsFromLinksKernel)
MINICL_REGISTER(updateVelocitiesFromPositionsWithVelocitiesKernel)
@@ -38,3 +41,208 @@ MINICL_REGISTER(NormalizeNormalsAndAreasKernel)
MINICL_REGISTER(UpdateSoftBodiesKernel)
float mydot3a(float4 a, float4 b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
}
typedef struct
{
int firstObject;
int endObject;
} CollisionObjectIndices;
typedef struct
{
float4 shapeTransform[4]; // column major 4x4 matrix
float4 linearVelocity;
float4 angularVelocity;
int softBodyIdentifier;
int collisionShapeType;
// Shape information
// Compressed from the union
float radius;
float halfHeight;
int upAxis;
float margin;
float friction;
int padding0;
} CollisionShapeDescription;
// From btBroadphaseProxy.h
__constant int CAPSULE_SHAPE_PROXYTYPE = 10;
// Multiply column-major matrix against vector
float4 matrixVectorMul( float4 matrix[4], float4 vector )
{
float4 returnVector;
float4 row0 = float4(matrix[0].x, matrix[1].x, matrix[2].x, matrix[3].x);
float4 row1 = float4(matrix[0].y, matrix[1].y, matrix[2].y, matrix[3].y);
float4 row2 = float4(matrix[0].z, matrix[1].z, matrix[2].z, matrix[3].z);
float4 row3 = float4(matrix[0].w, matrix[1].w, matrix[2].w, matrix[3].w);
returnVector.x = dot(row0, vector);
returnVector.y = dot(row1, vector);
returnVector.z = dot(row2, vector);
returnVector.w = dot(row3, vector);
return returnVector;
}
__kernel void
SolveCollisionsAndUpdateVelocitiesKernel(
const int numNodes,
const float isolverdt,
__global int *g_vertexClothIdentifier,
__global float4 *g_vertexPreviousPositions,
__global float * g_perClothFriction,
__global float * g_clothDampingFactor,
__global CollisionObjectIndices * g_perClothCollisionObjectIndices,
__global CollisionShapeDescription * g_collisionObjectDetails,
__global float4 * g_vertexForces,
__global float4 *g_vertexVelocities,
__global float4 *g_vertexPositions GUID_ARG)
{
int nodeID = get_global_id(0);
float4 forceOnVertex = (float4)(0.f, 0.f, 0.f, 0.f);
if( get_global_id(0) < numNodes )
{
int clothIdentifier = g_vertexClothIdentifier[nodeID];
// Abort if this is not a valid cloth
if( clothIdentifier < 0 )
return;
float4 position (g_vertexPositions[nodeID].xyz, 1.f);
float4 previousPosition (g_vertexPreviousPositions[nodeID].xyz, 1.f);
float clothFriction = g_perClothFriction[clothIdentifier];
float dampingFactor = g_clothDampingFactor[clothIdentifier];
float velocityCoefficient = (1.f - dampingFactor);
float4 difference = position - previousPosition;
float4 velocity = difference*velocityCoefficient*isolverdt;
CollisionObjectIndices collisionObjectIndices = g_perClothCollisionObjectIndices[clothIdentifier];
int numObjects = collisionObjectIndices.endObject - collisionObjectIndices.firstObject;
if( numObjects > 0 )
{
// We have some possible collisions to deal with
for( int collision = collisionObjectIndices.firstObject; collision < collisionObjectIndices.endObject; ++collision )
{
CollisionShapeDescription shapeDescription = g_collisionObjectDetails[collision];
float colliderFriction = shapeDescription.friction;
if( shapeDescription.collisionShapeType == CAPSULE_SHAPE_PROXYTYPE )
{
// Colliding with a capsule
float capsuleHalfHeight = shapeDescription.halfHeight;
float capsuleRadius = shapeDescription.radius;
float capsuleMargin = shapeDescription.margin;
int capsuleupAxis = shapeDescription.upAxis;
// Four columns of worldTransform matrix
float4 worldTransform[4];
worldTransform[0] = shapeDescription.shapeTransform[0];
worldTransform[1] = shapeDescription.shapeTransform[1];
worldTransform[2] = shapeDescription.shapeTransform[2];
worldTransform[3] = shapeDescription.shapeTransform[3];
// Correctly define capsule centerline vector
float4 c1 (0.f, 0.f, 0.f, 1.f);
float4 c2 (0.f, 0.f, 0.f, 1.f);
c1.x = select( 0.f, -capsuleHalfHeight, capsuleupAxis == 0 );
c1.y = select( 0.f, -capsuleHalfHeight, capsuleupAxis == 1 );
c1.z = select( 0.f, -capsuleHalfHeight, capsuleupAxis == 2 );
c2.x = -c1.x;
c2.y = -c1.y;
c2.z = -c1.z;
float4 worldC1 = matrixVectorMul(worldTransform, c1);
float4 worldC2 = matrixVectorMul(worldTransform, c2);
float4 segment = (worldC2 - worldC1);
// compute distance of tangent to vertex along line segment in capsule
float distanceAlongSegment = -( mydot3a( (worldC1 - position), segment ) / mydot3a(segment, segment) );
float4 closestPoint = (worldC1 + (segment * distanceAlongSegment));
float distanceFromLine = length(position - closestPoint);
float distanceFromC1 = length(worldC1 - position);
float distanceFromC2 = length(worldC2 - position);
// Final distance from collision, point to push from, direction to push in
// for impulse force
float dist;
float4 normalVector;
if( distanceAlongSegment < 0 )
{
dist = distanceFromC1;
normalVector = float4(normalize(position - worldC1).xyz, 0.f);
} else if( distanceAlongSegment > 1.f ) {
dist = distanceFromC2;
normalVector = float4(normalize(position - worldC2).xyz, 0.f);
} else {
dist = distanceFromLine;
normalVector = float4(normalize(position - closestPoint).xyz, 0.f);
}
float4 colliderLinearVelocity = shapeDescription.linearVelocity;
float4 colliderAngularVelocity = shapeDescription.angularVelocity;
float4 velocityOfSurfacePoint = colliderLinearVelocity + cross(colliderAngularVelocity, position - float4(worldTransform[0].w, worldTransform[1].w, worldTransform[2].w, 0.f));
float minDistance = capsuleRadius + capsuleMargin;
// In case of no collision, this is the value of velocity
velocity = (position - previousPosition) * velocityCoefficient * isolverdt;
// Check for a collision
if( dist < minDistance )
{
// Project back to surface along normal
position = position + float4(normalVector*(minDistance - dist)*0.9f);
velocity = (position - previousPosition) * velocityCoefficient * isolverdt;
float4 relativeVelocity = velocity - velocityOfSurfacePoint;
float4 p1 = normalize(cross(normalVector, segment));
float4 p2 = normalize(cross(p1, normalVector));
// Full friction is sum of velocities in each direction of plane
float4 frictionVector = p1*mydot3a(relativeVelocity, p1) + p2*mydot3a(relativeVelocity, p2);
// Real friction is peak friction corrected by friction coefficients
frictionVector = frictionVector * (colliderFriction*clothFriction);
float approachSpeed = dot(relativeVelocity, normalVector);
if( approachSpeed <= 0.0f )
forceOnVertex -= frictionVector;
}
}
}
}
g_vertexVelocities[nodeID] = float4(velocity.xyz, 0.f);
// Update external force
g_vertexForces[nodeID] = float4(forceOnVertex.xyz, 0.f);
g_vertexPositions[nodeID] = float4(position.xyz, 0.f);
}
}
MINICL_REGISTER(SolveCollisionsAndUpdateVelocitiesKernel);