Added multi-threaded collision detection. Original code is written for Cell SPU, but wrappers are provided to run on multi-core using Win32 Threads.
SpuLibspe2Support is on the todo list, so it can run on Cell Blade & PS3 Linux.
This commit is contained in:
@@ -0,0 +1,162 @@
|
||||
/* [SCE CONFIDENTIAL DOCUMENT]
|
||||
* PLAYSTATION(R)3 SPU Optimized Bullet Physics Library (http://bulletphysics.com)
|
||||
* Copyright (C) 2007 Sony Computer Entertainment Inc.
|
||||
* All Rights Reserved.
|
||||
*/
|
||||
|
||||
#include "SpuContactResult.h"
|
||||
|
||||
|
||||
//#define DEBUG_SPU_COLLISION_DETECTION 1
|
||||
|
||||
|
||||
#include "SpuContactResult.h"
|
||||
|
||||
|
||||
SpuContactResult::SpuContactResult()
|
||||
{
|
||||
m_manifoldAddress = 0;
|
||||
m_spuManifold = NULL;
|
||||
m_RequiresWriteBack = false;
|
||||
}
|
||||
|
||||
SpuContactResult::~SpuContactResult()
|
||||
{
|
||||
g_manifoldDmaExport.swapBuffers();
|
||||
}
|
||||
|
||||
void SpuContactResult::setContactInfo(btPersistentManifold* spuManifold, uint64_t manifoldAddress,const btTransform& worldTrans0,const btTransform& worldTrans1)
|
||||
{
|
||||
// spu_printf("SpuContactResult::setContactInfo\n");
|
||||
m_rootWorldTransform0 = worldTrans0;
|
||||
m_rootWorldTransform1 = worldTrans1;
|
||||
m_manifoldAddress = manifoldAddress;
|
||||
m_spuManifold = spuManifold;
|
||||
}
|
||||
|
||||
void SpuContactResult::setShapeIdentifiers(int partId0,int index0, int partId1,int index1)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
///return true if it requires a dma transfer back
|
||||
bool ManifoldResultAddContactPoint(const btVector3& normalOnBInWorld,
|
||||
const btVector3& pointInWorld,
|
||||
float depth,
|
||||
btPersistentManifold* manifoldPtr,
|
||||
btTransform& transA,
|
||||
btTransform& transB
|
||||
)
|
||||
{
|
||||
|
||||
float contactTreshold = manifoldPtr->getContactBreakingThreshold();
|
||||
|
||||
//spu_printf("SPU: add contactpoint, depth:%f, contactTreshold %f, manifoldPtr %llx\n",depth,contactTreshold,manifoldPtr);
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU: contactTreshold %f\n",contactTreshold);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
if (depth > manifoldPtr->getContactBreakingThreshold())
|
||||
return false;
|
||||
|
||||
//provide inverses or just calculate?
|
||||
btTransform transAInv = transA.inverse();//m_body0->m_cachedInvertedWorldTransform;
|
||||
btTransform transBInv= transB.inverse();//m_body1->m_cachedInvertedWorldTransform;
|
||||
|
||||
btVector3 pointA = pointInWorld + normalOnBInWorld * depth;
|
||||
btVector3 localA = transAInv(pointA );
|
||||
btVector3 localB = transBInv(pointInWorld);
|
||||
btManifoldPoint newPt(localA,localB,normalOnBInWorld,depth);
|
||||
|
||||
int insertIndex = manifoldPtr->getCacheEntry(newPt);
|
||||
if (insertIndex >= 0)
|
||||
{
|
||||
// manifoldPtr->replaceContactPoint(newPt,insertIndex);
|
||||
// return true;
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU: same contact detected, nothing done\n");
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
// This is not needed, just use the old info! saves a DMA transfer as well
|
||||
} else
|
||||
{
|
||||
|
||||
newPt.m_combinedFriction = 0.25f;//calculateCombinedFriction(m_body0,m_body1);
|
||||
newPt.m_combinedRestitution = 0.0f;//calculateCombinedRestitution(m_body0,m_body1);
|
||||
|
||||
/*
|
||||
//potential TODO: SPU callbacks, either immediate (local on the SPU), or deferred
|
||||
//User can override friction and/or restitution
|
||||
if (gContactAddedCallback &&
|
||||
//and if either of the two bodies requires custom material
|
||||
((m_body0->m_collisionFlags & btCollisionObject::customMaterialCallback) ||
|
||||
(m_body1->m_collisionFlags & btCollisionObject::customMaterialCallback)))
|
||||
{
|
||||
//experimental feature info, for per-triangle material etc.
|
||||
(*gContactAddedCallback)(newPt,m_body0,m_partId0,m_index0,m_body1,m_partId1,m_index1);
|
||||
}
|
||||
*/
|
||||
manifoldPtr->AddManifoldPoint(newPt);
|
||||
return true;
|
||||
|
||||
}
|
||||
return false;
|
||||
|
||||
}
|
||||
|
||||
|
||||
void SpuContactResult::writeDoubleBufferedManifold(btPersistentManifold* lsManifold, btPersistentManifold* mmManifold)
|
||||
{
|
||||
memcpy(g_manifoldDmaExport.getFront(),lsManifold,sizeof(btPersistentManifold));
|
||||
|
||||
g_manifoldDmaExport.swapBuffers();
|
||||
g_manifoldDmaExport.backBufferDmaPut((uint64_t)mmManifold, sizeof(btPersistentManifold), DMA_TAG(9));
|
||||
// Should there be any kind of wait here? What if somebody tries to use this tag again? What if we call this function again really soon?
|
||||
//no, the swapBuffers does the wait
|
||||
}
|
||||
|
||||
void SpuContactResult::addContactPoint(const btVector3& normalOnBInWorld,const btPoint3& pointInWorld,float depth)
|
||||
{
|
||||
// spu_printf("*** SpuContactResult::addContactPoint: depth = %f\n",depth);
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
// int sman = sizeof(rage::phManifold);
|
||||
// spu_printf("sizeof_manifold = %i\n",sman);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
btPersistentManifold* localManifold = m_spuManifold;
|
||||
|
||||
btVector3 normalB(normalOnBInWorld.getX(),normalOnBInWorld.getY(),normalOnBInWorld.getZ());
|
||||
btVector3 pointWrld(pointInWorld.getX(),pointInWorld.getY(),pointInWorld.getZ());
|
||||
|
||||
//process the contact point
|
||||
const bool retVal = ManifoldResultAddContactPoint(normalB,
|
||||
pointWrld,
|
||||
depth,
|
||||
localManifold,
|
||||
m_rootWorldTransform0,
|
||||
m_rootWorldTransform1
|
||||
);
|
||||
m_RequiresWriteBack = m_RequiresWriteBack || retVal;
|
||||
}
|
||||
|
||||
void SpuContactResult::flush()
|
||||
{
|
||||
if (m_RequiresWriteBack)
|
||||
{
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU: Start rage::phManifold Write (Put) DMA\n");
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
// spu_printf("writeDoubleBufferedManifold\n");
|
||||
writeDoubleBufferedManifold(m_spuManifold, (btPersistentManifold*)m_manifoldAddress);
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU: Finished (Put) DMA\n");
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
}
|
||||
m_spuManifold = NULL;
|
||||
m_RequiresWriteBack = false;
|
||||
}
|
||||
|
||||
|
||||
@@ -0,0 +1,101 @@
|
||||
#ifndef SPU_CONTACT_RESULT2_H
|
||||
#define SPU_CONTACT_RESULT2_H
|
||||
|
||||
|
||||
#ifndef WIN32
|
||||
#include <stdint.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef WIN32
|
||||
#include "SpuDoubleBuffer.h"
|
||||
#else
|
||||
#include "SPU_Common/SpuDefines.h"
|
||||
#include "SPU_Common/SpuDoubleBuffer.h"
|
||||
#include <spu_printf.h>
|
||||
#endif //WIN32
|
||||
|
||||
|
||||
#include "LinearMath/btTransform.h"
|
||||
#include "LinearMath/btPoint3.h"
|
||||
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
|
||||
|
||||
|
||||
struct SpuCollisionPairInput
|
||||
{
|
||||
uint64_t m_collisionShapes[2];
|
||||
void* m_spuCollisionShapes[2];
|
||||
|
||||
uint64_t m_persistentManifoldPtr;
|
||||
btVector3 m_primitiveDimensions0;
|
||||
btVector3 m_primitiveDimensions1;
|
||||
int m_shapeType0;
|
||||
int m_shapeType1;
|
||||
float m_collisionMargin0;
|
||||
float m_collisionMargin1;
|
||||
|
||||
btTransform m_worldTransform0;
|
||||
btTransform m_worldTransform1;
|
||||
|
||||
bool m_isSwapped;
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
struct SpuClosestPointInput
|
||||
{
|
||||
SpuClosestPointInput()
|
||||
:m_maximumDistanceSquared(float(1e30)),
|
||||
m_stackAlloc(0)
|
||||
{
|
||||
}
|
||||
|
||||
btTransform m_transformA;
|
||||
btTransform m_transformB;
|
||||
float m_maximumDistanceSquared;
|
||||
class btStackAlloc* m_stackAlloc;
|
||||
struct SpuConvexPolyhedronVertexData* m_convexVertexData;
|
||||
};
|
||||
|
||||
///SpuContactResult exports the contact points using double-buffered DMA transfers, only when needed
|
||||
///So when an existing contact point is duplicated, no transfer/refresh is performed.
|
||||
class SpuContactResult
|
||||
{
|
||||
btTransform m_rootWorldTransform0;
|
||||
btTransform m_rootWorldTransform1;
|
||||
uint64_t m_manifoldAddress;
|
||||
|
||||
btPersistentManifold* m_spuManifold;
|
||||
bool m_RequiresWriteBack;
|
||||
|
||||
DoubleBuffer<btPersistentManifold, 1> g_manifoldDmaExport;
|
||||
|
||||
public:
|
||||
SpuContactResult();
|
||||
virtual ~SpuContactResult();
|
||||
|
||||
btPersistentManifold* GetSpuManifold() const
|
||||
{
|
||||
return m_spuManifold;
|
||||
}
|
||||
|
||||
virtual void setShapeIdentifiers(int partId0,int index0, int partId1,int index1);
|
||||
|
||||
void setContactInfo(btPersistentManifold* spuManifold, uint64_t manifoldAddress,const btTransform& worldTrans0,const btTransform& worldTrans1);
|
||||
|
||||
void writeDoubleBufferedManifold(btPersistentManifold* lsManifold, btPersistentManifold* mmManifold);
|
||||
|
||||
virtual void addContactPoint(const btVector3& normalOnBInWorld,const btPoint3& pointInWorld,float depth);
|
||||
|
||||
void flush();
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif //SPU_CONTACT_RESULT2_H
|
||||
|
||||
@@ -0,0 +1,56 @@
|
||||
/* [SCE CONFIDENTIAL DOCUMENT]
|
||||
* PLAYSTATION(R)3 SPU Optimized Bullet Physics Library (http://bulletphysics.com)
|
||||
* Copyright (C) 2007 Sony Computer Entertainment Inc.
|
||||
* All Rights Reserved.
|
||||
*/
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#ifndef CONVEX_PENETRATION_DEPTH_H
|
||||
#define CONVEX_PENETRATION_DEPTH_H
|
||||
|
||||
|
||||
|
||||
class btStackAlloc;
|
||||
class btIDebugDraw;
|
||||
class SpuVoronoiSimplexSolver;
|
||||
|
||||
#include <LinearMath/btTransform.h>
|
||||
#include <LinearMath/btPoint3.h>
|
||||
|
||||
|
||||
///ConvexPenetrationDepthSolver provides an interface for penetration depth calculation.
|
||||
class SpuConvexPenetrationDepthSolver
|
||||
{
|
||||
public:
|
||||
|
||||
virtual ~SpuConvexPenetrationDepthSolver() {};
|
||||
virtual bool calcPenDepth( SpuVoronoiSimplexSolver& simplexSolver,
|
||||
void* convexA,void* convexB,int shapeTypeA, int shapeTypeB, float marginA, float marginB,
|
||||
btTransform& transA,const btTransform& transB,
|
||||
btVector3& v, btPoint3& pa, btPoint3& pb,
|
||||
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc,
|
||||
struct SpuConvexPolyhedronVertexData* convexVertexData
|
||||
) const = 0;
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif //CONVEX_PENETRATION_DEPTH_H
|
||||
|
||||
@@ -0,0 +1,399 @@
|
||||
|
||||
#include "SpuGatheringCollisionTask.h"
|
||||
|
||||
#include "SpuDoubleBuffer.h"
|
||||
|
||||
#include "../SpuCollisionTaskProcess.h"
|
||||
#include "../SpuGatheringCollisionDispatcher.h" //for SPU_BATCHSIZE_BROADPHASE_PAIRS
|
||||
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "SpuContactManifoldCollisionAlgorithm.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||||
#include "SpuContactResult.h"
|
||||
#include "BulletCollision/CollisionShapes/btOptimizedBvh.h"
|
||||
#include "BulletCollision/CollisionShapes/btTriangleIndexVertexArray.h"
|
||||
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
|
||||
#include "SpuMinkowskiPenetrationDepthSolver.h"
|
||||
#include "SpuGjkPairDetector.h"
|
||||
#include "SpuVoronoiSimplexSolver.h"
|
||||
|
||||
#include "SpuLocalSupport.h" //definition of SpuConvexPolyhedronVertexData
|
||||
|
||||
|
||||
#ifdef WIN32
|
||||
#define spu_printf printf
|
||||
#include <stdio.h>
|
||||
#endif
|
||||
|
||||
|
||||
//int gNumConvexPoints0=0;
|
||||
|
||||
///Make sure no destructors are called on this memory
|
||||
struct CollisionTask_LocalStoreMemory
|
||||
{
|
||||
|
||||
DoubleBuffer<unsigned char, MIDPHASE_WORKUNIT_PAGE_SIZE> g_workUnitTaskBuffers;
|
||||
btBroadphasePair gBroadphasePairs[SPU_BATCHSIZE_BROADPHASE_PAIRS];
|
||||
//SpuContactManifoldCollisionAlgorithm gSpuContactManifoldAlgo;
|
||||
ATTRIBUTE_ALIGNED16(char gSpuContactManifoldAlgo[sizeof(SpuContactManifoldCollisionAlgorithm)+128]);
|
||||
SpuContactManifoldCollisionAlgorithm* getlocalCollisionAlgorithm()
|
||||
{
|
||||
return (SpuContactManifoldCollisionAlgorithm*)&gSpuContactManifoldAlgo;
|
||||
|
||||
}
|
||||
btPersistentManifold gPersistentManifold;
|
||||
btBroadphaseProxy gProxy0;
|
||||
btBroadphaseProxy gProxy1;
|
||||
btCollisionObject gColObj0;
|
||||
btCollisionObject gColObj1;
|
||||
|
||||
static const int maxShapeSize = 256;//todo: make some compile-time assert that this is value is larger then sizeof(btCollisionShape)
|
||||
|
||||
ATTRIBUTE_ALIGNED16(char gCollisionShape0[maxShapeSize]);
|
||||
ATTRIBUTE_ALIGNED16(char gCollisionShape1[maxShapeSize]);
|
||||
|
||||
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
|
||||
ATTRIBUTE_ALIGNED16(int spuIndices[16]);
|
||||
|
||||
ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh);
|
||||
ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterface);
|
||||
///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment
|
||||
ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh);
|
||||
|
||||
#define MAX_SPU_SUBTREE_HEADERS 32
|
||||
//1024
|
||||
ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]);
|
||||
ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]);
|
||||
|
||||
SpuConvexPolyhedronVertexData* convexVertexData;
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
void* createCollisionLocalStoreMemory()
|
||||
{
|
||||
return new CollisionTask_LocalStoreMemory;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
|
||||
{
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
//spu_printf("SPU: ProcessSpuConvexConvexCollision\n");
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
//CollisionShape* shape0 = (CollisionShape*)wuInput->m_collisionShapes[0];
|
||||
//CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1];
|
||||
btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr;
|
||||
|
||||
|
||||
|
||||
bool genericGjk = true;
|
||||
|
||||
|
||||
|
||||
if (genericGjk)
|
||||
{
|
||||
//try generic GJK
|
||||
|
||||
SpuVoronoiSimplexSolver vsSolver;
|
||||
SpuMinkowskiPenetrationDepthSolver penetrationSolver;
|
||||
|
||||
void* shape0Ptr = wuInput->m_spuCollisionShapes[0];
|
||||
void* shape1Ptr = wuInput->m_spuCollisionShapes[1];
|
||||
int shapeType0 = wuInput->m_shapeType0;
|
||||
int shapeType1 = wuInput->m_shapeType1;
|
||||
float marginA = wuInput->m_collisionMargin0;
|
||||
float marginB = wuInput->m_collisionMargin1;
|
||||
|
||||
SpuClosestPointInput cpInput;
|
||||
cpInput.m_convexVertexData = lsMemPtr->convexVertexData;
|
||||
cpInput.m_transformA = wuInput->m_worldTransform0;
|
||||
cpInput.m_transformB = wuInput->m_worldTransform1;
|
||||
float sumMargin = (marginA+marginB);
|
||||
cpInput.m_maximumDistanceSquared = sumMargin * sumMargin;
|
||||
|
||||
uint64_t manifoldAddress = (uint64_t)manifold;
|
||||
btPersistentManifold* spuManifold=&lsMemPtr->gPersistentManifold;
|
||||
spuContacts.setContactInfo(spuManifold,manifoldAddress,wuInput->m_worldTransform0,wuInput->m_worldTransform1);
|
||||
|
||||
|
||||
SpuGjkPairDetector gjk(shape0Ptr,shape1Ptr,shapeType0,shapeType1,marginA,marginB,&vsSolver,&penetrationSolver);
|
||||
gjk.getClosestPoints(cpInput,spuContacts);//,debugDraw);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
void processCollisionTask(void* userPtr, void* lsMemPtr)
|
||||
{
|
||||
|
||||
SpuGatherAndProcessPairsTaskDesc* taskDescPtr = (SpuGatherAndProcessPairsTaskDesc*)userPtr;
|
||||
SpuGatherAndProcessPairsTaskDesc& taskDesc = *taskDescPtr;
|
||||
CollisionTask_LocalStoreMemory* colMemPtr = (CollisionTask_LocalStoreMemory*)lsMemPtr;
|
||||
CollisionTask_LocalStoreMemory& lsMem = *(colMemPtr);
|
||||
|
||||
SpuContactResult spuContacts;
|
||||
|
||||
uint64_t dmaInPtr = taskDesc.inPtr;
|
||||
unsigned int numPages = taskDesc.numPages;
|
||||
unsigned int numOnLastPage = taskDesc.numOnLastPage;
|
||||
|
||||
// prefetch first set of inputs and wait
|
||||
unsigned int nextNumOnPage = (numPages > 1)? MIDPHASE_NUM_WORKUNITS_PER_PAGE : numOnLastPage;
|
||||
lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3));
|
||||
dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE;
|
||||
|
||||
for (unsigned int i = 0; i < numPages; i++)
|
||||
{
|
||||
// wait for back buffer dma and swap buffers
|
||||
unsigned char *inputPtr = lsMem.g_workUnitTaskBuffers.swapBuffers();
|
||||
|
||||
// number on current page is number prefetched last iteration
|
||||
unsigned int numOnPage = nextNumOnPage;
|
||||
|
||||
unsigned int j;
|
||||
|
||||
|
||||
// prefetch next set of inputs
|
||||
if (i < numPages-1)
|
||||
{
|
||||
nextNumOnPage = (i == numPages-2)? numOnLastPage : MIDPHASE_NUM_WORKUNITS_PER_PAGE;
|
||||
lsMem.g_workUnitTaskBuffers.backBufferDmaGet(dmaInPtr, nextNumOnPage*sizeof(SpuGatherAndProcessWorkUnitInput), DMA_TAG(3));
|
||||
dmaInPtr += MIDPHASE_WORKUNIT_PAGE_SIZE;
|
||||
}
|
||||
|
||||
SpuGatherAndProcessWorkUnitInput* wuInputs = reinterpret_cast<SpuGatherAndProcessWorkUnitInput *>(inputPtr);
|
||||
|
||||
for (j = 0; j < numOnPage; j++)
|
||||
{
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
printMidphaseInput(&wuInputs[j]);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
|
||||
int numPairs = wuInputs[j].m_endIndex - wuInputs[j].m_startIndex;
|
||||
|
||||
// printf("startIndex=%d, endIndex = %d\n",wuInputs[j].m_startIndex,wuInputs[j].m_endIndex);
|
||||
|
||||
|
||||
if (numPairs)
|
||||
{
|
||||
|
||||
{
|
||||
int dmaSize = numPairs*sizeof(SpuGatherAndProcessPairsTaskDesc);
|
||||
uint64_t dmaPpuAddress = wuInputs[j].m_pairArrayPtr+wuInputs[j].m_startIndex * sizeof(btBroadphasePair);
|
||||
cellDmaGet(&lsMem.gBroadphasePairs, dmaPpuAddress , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
|
||||
for (int p=0;p<numPairs;p++)
|
||||
{
|
||||
//for each broadphase pair, do something
|
||||
|
||||
btBroadphasePair& pair = lsMem.gBroadphasePairs[p];
|
||||
int userInfo = int(pair.m_userInfo);
|
||||
|
||||
if (userInfo == 2 && pair.m_algorithm && pair.m_pProxy0 && pair.m_pProxy1)
|
||||
{
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(SpuContactManifoldCollisionAlgorithm);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_algorithm;
|
||||
cellDmaGet(&lsMem.gSpuContactManifoldAlgo, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
|
||||
|
||||
|
||||
SpuCollisionPairInput collisionPairInput;
|
||||
collisionPairInput.m_persistentManifoldPtr = (uint64_t) lsMem.getlocalCollisionAlgorithm()->getContactManifoldPtr();
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU: manifoldPtr: %llx",collisionPairInput->m_persistentManifoldPtr);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(btBroadphaseProxy);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy0;
|
||||
cellDmaGet(&lsMem.gProxy0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
{
|
||||
int dmaSize = sizeof(btBroadphaseProxy);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)pair.m_pProxy1;
|
||||
cellDmaGet(&lsMem.gProxy1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
|
||||
//btCollisionObject* colObj0 = (btCollisionObject*)gProxy0.m_clientObject;
|
||||
//btCollisionObject* colObj1 = (btCollisionObject*)gProxy1.m_clientObject;
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(btCollisionObject);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy0.m_clientObject;
|
||||
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
{
|
||||
int dmaSize = sizeof(btCollisionObject);
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gProxy1.m_clientObject;
|
||||
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
|
||||
|
||||
|
||||
///can wait on the combined DMA_MASK, or dma on the same tag
|
||||
|
||||
collisionPairInput.m_shapeType0 = lsMem.getlocalCollisionAlgorithm()->getShapeType0();
|
||||
collisionPairInput.m_shapeType1 = lsMem.getlocalCollisionAlgorithm()->getShapeType1();
|
||||
collisionPairInput.m_collisionMargin0 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin0();
|
||||
collisionPairInput.m_collisionMargin1 = lsMem.getlocalCollisionAlgorithm()->getCollisionMargin1();
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU collisionPairInput->m_shapeType0 = %d\n",collisionPairInput->m_shapeType0);
|
||||
spu_printf("SPU collisionPairInput->m_shapeType1 = %d\n",collisionPairInput->m_shapeType1);
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
if (1)
|
||||
{
|
||||
|
||||
collisionPairInput.m_worldTransform0 = lsMem.gColObj0.getWorldTransform();
|
||||
collisionPairInput.m_worldTransform1 = lsMem.gColObj1.getWorldTransform();
|
||||
|
||||
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("SPU worldTrans0.origin = (%f,%f,%f)\n",
|
||||
collisionPairInput->m_worldTransform0.getOrigin().getX(),
|
||||
collisionPairInput->m_worldTransform0.getOrigin().getY(),
|
||||
collisionPairInput->m_worldTransform0.getOrigin().getZ());
|
||||
|
||||
spu_printf("SPU worldTrans1.origin = (%f,%f,%f)\n",
|
||||
collisionPairInput->m_worldTransform1.getOrigin().getX(),
|
||||
collisionPairInput->m_worldTransform1.getOrigin().getY(),
|
||||
collisionPairInput->m_worldTransform1.getOrigin().getZ());
|
||||
#endif //DEBUG_SPU_COLLISION_DETECTION
|
||||
|
||||
|
||||
{
|
||||
int dmaSize = sizeof(btPersistentManifold);
|
||||
uint64_t dmaPpuAddress2 = collisionPairInput.m_persistentManifoldPtr;
|
||||
cellDmaGet(&lsMem.gPersistentManifold, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
|
||||
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)
|
||||
&& btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
|
||||
{
|
||||
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
|
||||
btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0;
|
||||
btConvexShape* spuConvexShape1 = (btConvexShape*)lsMem.gCollisionShape1;
|
||||
|
||||
btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions();
|
||||
btVector3 dim1 = spuConvexShape1->getImplicitShapeDimensions();
|
||||
|
||||
collisionPairInput.m_primitiveDimensions0 = dim0;
|
||||
collisionPairInput.m_primitiveDimensions1 = dim1;
|
||||
collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0;
|
||||
collisionPairInput.m_spuCollisionShapes[1] = spuConvexShape1;
|
||||
ProcessSpuConvexConvexCollision(&collisionPairInput,&lsMem, spuContacts);
|
||||
} else
|
||||
{
|
||||
//a non-convex shape is involved
|
||||
|
||||
bool isSwapped = false;
|
||||
bool handleConvexConcave = false;
|
||||
|
||||
if (btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType0) &&
|
||||
btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
|
||||
{
|
||||
isSwapped = true;
|
||||
spu_printf("SPU convex/concave swapped, unsupported!\n");
|
||||
handleConvexConcave = true;
|
||||
}
|
||||
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)&&
|
||||
btBroadphaseProxy::isConcave(collisionPairInput.m_shapeType1))
|
||||
{
|
||||
handleConvexConcave = true;
|
||||
}
|
||||
if (handleConvexConcave && !isSwapped)
|
||||
{
|
||||
// spu_printf("SPU: non-convex detected\n");
|
||||
|
||||
{
|
||||
// uint64_t dmaPpuAddress2 = (uint64_t)gProxy1.m_clientObject;
|
||||
// spu_printf("SPU: gColObj1 trimesh = %llx\n",dmaPpuAddress2);
|
||||
}
|
||||
|
||||
///dma and initialize the convex object
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
cellDmaGet(lsMem.gCollisionShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(1));
|
||||
}
|
||||
///dma and initialize the convex object
|
||||
{
|
||||
int dmaSize = lsMem.maxShapeSize;
|
||||
uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
// spu_printf("SPU: trimesh = %llx\n",dmaPpuAddress2);
|
||||
cellDmaGet(lsMem.gCollisionShape1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
|
||||
cellDmaWaitTagStatusAll(DMA_MASK(2));
|
||||
}
|
||||
btConvexShape* spuConvexShape0 = (btConvexShape*)lsMem.gCollisionShape0;
|
||||
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)lsMem.gCollisionShape1;
|
||||
|
||||
btVector3 dim0 = spuConvexShape0->getImplicitShapeDimensions();
|
||||
collisionPairInput.m_primitiveDimensions0 = dim0;
|
||||
collisionPairInput.m_collisionShapes[0] = (uint64_t)lsMem.gColObj0.getCollisionShape();
|
||||
collisionPairInput.m_collisionShapes[1] = (uint64_t)lsMem.gColObj1.getCollisionShape();
|
||||
collisionPairInput.m_spuCollisionShapes[0] = spuConvexShape0;
|
||||
collisionPairInput.m_spuCollisionShapes[1] = trimeshShape;
|
||||
|
||||
btAssert(0);
|
||||
//ProcessConvexConcaveSpuCollision(&collisionPairInput,spuContacts);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
spuContacts.flush();
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -0,0 +1,11 @@
|
||||
|
||||
#ifndef SPU_GATHERING_COLLISION_TASK_H
|
||||
#define SPU_GATHERING_COLLISION_TASK_H
|
||||
|
||||
struct SpuGatherAndProcessPairsTaskDesc;
|
||||
|
||||
void processCollisionTask(void* userPtr, void* lsMemory);
|
||||
|
||||
void* createCollisionLocalStoreMemory();
|
||||
|
||||
#endif //SPU_GATHERING_COLLISION_TASK_H
|
||||
@@ -0,0 +1,310 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "SpuGjkPairDetector.h"
|
||||
#include "SpuConvexPenetrationDepthSolver.h"
|
||||
#include "SpuLocalSupport.h"
|
||||
|
||||
|
||||
#if defined(DEBUG) || defined (_DEBUG)
|
||||
#include <stdio.h> //for debug printf
|
||||
#ifdef __SPU__
|
||||
#include <spu_printf.h>
|
||||
#define printf spu_printf
|
||||
#endif //__SPU__
|
||||
#endif
|
||||
|
||||
//must be above the machine epsilon
|
||||
#define REL_ERROR2 btScalar(1.0e-6)
|
||||
|
||||
//temp globals, to improve GJK/EPA/penetration calculations
|
||||
int gSpuNumDeepPenetrationChecks = 0;
|
||||
int gSpuNumGjkChecks = 0;
|
||||
|
||||
|
||||
|
||||
SpuGjkPairDetector::SpuGjkPairDetector(void* objectA,void* objectB,int shapeTypeA, int shapeTypeB, float marginA,float marginB,SpuVoronoiSimplexSolver* simplexSolver, const SpuConvexPenetrationDepthSolver* penetrationDepthSolver)
|
||||
:m_cachedSeparatingAxis(float(0.),float(0.),float(1.)),
|
||||
m_penetrationDepthSolver(penetrationDepthSolver),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_minkowskiA(objectA),
|
||||
m_minkowskiB(objectB),
|
||||
m_shapeTypeA(shapeTypeA),
|
||||
m_shapeTypeB(shapeTypeB),
|
||||
m_marginA(marginA),
|
||||
m_marginB(marginB),
|
||||
m_ignoreMargin(false),
|
||||
m_lastUsedMethod(-1),
|
||||
m_catchDegeneracies(1)
|
||||
{
|
||||
}
|
||||
|
||||
void SpuGjkPairDetector::getClosestPoints(const SpuClosestPointInput& input,SpuContactResult& output)
|
||||
{
|
||||
btScalar distance=btScalar(0.);
|
||||
btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
btVector3 pointOnA,pointOnB;
|
||||
btTransform localTransA = input.m_transformA;
|
||||
btTransform localTransB = input.m_transformB;
|
||||
btVector3 positionOffset = (localTransA.getOrigin() + localTransB.getOrigin()) * btScalar(0.5);
|
||||
localTransA.getOrigin() -= positionOffset;
|
||||
localTransB.getOrigin() -= positionOffset;
|
||||
|
||||
btScalar marginA = m_marginA;
|
||||
btScalar marginB = m_marginB;
|
||||
|
||||
gSpuNumGjkChecks++;
|
||||
|
||||
//for CCD we don't use margins
|
||||
if (m_ignoreMargin)
|
||||
{
|
||||
marginA = btScalar(0.);
|
||||
marginB = btScalar(0.);
|
||||
}
|
||||
|
||||
m_curIter = 0;
|
||||
int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
|
||||
m_cachedSeparatingAxis.setValue(0,1,0);
|
||||
|
||||
bool isValid = false;
|
||||
bool checkSimplex = false;
|
||||
bool checkPenetration = true;
|
||||
m_degenerateSimplex = 0;
|
||||
|
||||
m_lastUsedMethod = -1;
|
||||
|
||||
{
|
||||
btScalar squaredDistance = SIMD_INFINITY;
|
||||
btScalar delta = btScalar(0.);
|
||||
|
||||
btScalar margin = marginA + marginB;
|
||||
|
||||
|
||||
|
||||
m_simplexSolver->reset();
|
||||
|
||||
for ( ; ; )
|
||||
//while (true)
|
||||
{
|
||||
|
||||
btVector3 seperatingAxisInA = (-m_cachedSeparatingAxis)* input.m_transformA.getBasis();
|
||||
btVector3 seperatingAxisInB = m_cachedSeparatingAxis* input.m_transformB.getBasis();
|
||||
|
||||
// btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
|
||||
// btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
|
||||
|
||||
btVector3 pInA = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData);//, &featureIndexA);
|
||||
btVector3 qInB = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData);//, &featureIndexB);
|
||||
|
||||
|
||||
btPoint3 pWorld = localTransA(pInA);
|
||||
btPoint3 qWorld = localTransB(qInB);
|
||||
|
||||
btVector3 w = pWorld - qWorld;
|
||||
delta = m_cachedSeparatingAxis.dot(w);
|
||||
|
||||
// potential exit, they don't overlap
|
||||
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
||||
{
|
||||
checkPenetration = false;
|
||||
break;
|
||||
}
|
||||
|
||||
//exit 0: the new point is already in the simplex, or we didn't come any closer
|
||||
if (m_simplexSolver->inSimplex(w))
|
||||
{
|
||||
m_degenerateSimplex = 1;
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
// are we getting any closer ?
|
||||
btScalar f0 = squaredDistance - delta;
|
||||
btScalar f1 = squaredDistance * REL_ERROR2;
|
||||
|
||||
if (f0 <= f1)
|
||||
{
|
||||
if (f0 <= btScalar(0.))
|
||||
{
|
||||
m_degenerateSimplex = 2;
|
||||
}
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
//add current vertex to simplex
|
||||
m_simplexSolver->addVertex(w, pWorld, qWorld);
|
||||
|
||||
//calculate the closest point to the origin (update vector v)
|
||||
if (!m_simplexSolver->closest(m_cachedSeparatingAxis))
|
||||
{
|
||||
m_degenerateSimplex = 3;
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
btScalar previousSquaredDistance = squaredDistance;
|
||||
squaredDistance = m_cachedSeparatingAxis.length2();
|
||||
|
||||
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
|
||||
//are we getting any closer ?
|
||||
if (previousSquaredDistance - squaredDistance <= SIMD_EPSILON * previousSquaredDistance)
|
||||
{
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
|
||||
if (m_curIter++ > gGjkMaxIter)
|
||||
{
|
||||
#if defined(DEBUG) || defined (_DEBUG)
|
||||
|
||||
printf("SpuGjkPairDetector maxIter exceeded:%i\n",m_curIter);
|
||||
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
|
||||
m_cachedSeparatingAxis.getX(),
|
||||
m_cachedSeparatingAxis.getY(),
|
||||
m_cachedSeparatingAxis.getZ(),
|
||||
squaredDistance,
|
||||
m_shapeTypeA,
|
||||
m_shapeTypeB);
|
||||
|
||||
#endif
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool check = (!m_simplexSolver->fullSimplex());
|
||||
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > SIMD_EPSILON * m_simplexSolver->maxVertex());
|
||||
|
||||
if (!check)
|
||||
{
|
||||
//do we need this backup_closest here ?
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (checkSimplex)
|
||||
{
|
||||
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
normalInB = pointOnA-pointOnB;
|
||||
btScalar lenSqr = m_cachedSeparatingAxis.length2();
|
||||
//valid normal
|
||||
if (lenSqr < 0.0001)
|
||||
{
|
||||
m_degenerateSimplex = 5;
|
||||
}
|
||||
if (lenSqr > SIMD_EPSILON*SIMD_EPSILON)
|
||||
{
|
||||
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
|
||||
normalInB *= rlen; //normalize
|
||||
btScalar s = btSqrt(squaredDistance);
|
||||
|
||||
btAssert(s > btScalar(0.0));
|
||||
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
|
||||
pointOnB += m_cachedSeparatingAxis * (marginB / s);
|
||||
distance = ((btScalar(1.)/rlen) - margin);
|
||||
isValid = true;
|
||||
|
||||
m_lastUsedMethod = 1;
|
||||
} else
|
||||
{
|
||||
m_lastUsedMethod = 2;
|
||||
}
|
||||
}
|
||||
|
||||
bool catchDegeneratePenetrationCase =
|
||||
(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01));
|
||||
|
||||
//if (checkPenetration && !isValid)
|
||||
if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
|
||||
{
|
||||
//penetration case
|
||||
|
||||
//if there is no way to handle penetrations, bail out
|
||||
if (m_penetrationDepthSolver)
|
||||
{
|
||||
// Penetration depth case.
|
||||
btVector3 tmpPointOnA,tmpPointOnB;
|
||||
|
||||
gSpuNumDeepPenetrationChecks++;
|
||||
|
||||
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
|
||||
*m_simplexSolver,
|
||||
m_minkowskiA,m_minkowskiB,
|
||||
m_shapeTypeA, m_shapeTypeB,
|
||||
marginA, marginB,
|
||||
localTransA,localTransB,
|
||||
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
|
||||
0,input.m_stackAlloc,input.m_convexVertexData
|
||||
);
|
||||
|
||||
if (isValid2)
|
||||
{
|
||||
btVector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
|
||||
btScalar lenSqr = tmpNormalInB.length2();
|
||||
if (lenSqr > (SIMD_EPSILON*SIMD_EPSILON))
|
||||
{
|
||||
tmpNormalInB /= btSqrt(lenSqr);
|
||||
btScalar distance2 = -(tmpPointOnA-tmpPointOnB).length();
|
||||
//only replace valid penetrations when the result is deeper (check)
|
||||
if (!isValid || (distance2 < distance))
|
||||
{
|
||||
distance = distance2;
|
||||
pointOnA = tmpPointOnA;
|
||||
pointOnB = tmpPointOnB;
|
||||
normalInB = tmpNormalInB;
|
||||
isValid = true;
|
||||
m_lastUsedMethod = 3;
|
||||
} else
|
||||
{
|
||||
|
||||
}
|
||||
} else
|
||||
{
|
||||
//isValid = false;
|
||||
m_lastUsedMethod = 4;
|
||||
}
|
||||
} else
|
||||
{
|
||||
m_lastUsedMethod = 5;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (isValid)
|
||||
{
|
||||
#ifdef __SPU__
|
||||
//spu_printf("distance\n");
|
||||
#endif //__CELLOS_LV2__
|
||||
|
||||
|
||||
output.addContactPoint(
|
||||
normalInB,
|
||||
pointOnB+positionOffset,
|
||||
distance);
|
||||
//printf("gjk add:%f",distance);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,98 @@
|
||||
/* [SCE CONFIDENTIAL DOCUMENT]
|
||||
* PLAYSTATION(R)3 SPU Optimized Bullet Physics Library (http://bulletphysics.com)
|
||||
* Copyright (C) 2007 Sony Computer Entertainment Inc.
|
||||
* All Rights Reserved.
|
||||
*/
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
#ifndef SPU_GJK_PAIR_DETECTOR_H
|
||||
#define SPU_GJK_PAIR_DETECTOR_H
|
||||
|
||||
|
||||
|
||||
#include "SpuContactResult.h"
|
||||
|
||||
|
||||
#include "SpuVoronoiSimplexSolver.h"
|
||||
class SpuConvexPenetrationDepthSolver;
|
||||
|
||||
/// btGjkPairDetector uses GJK to implement the btDiscreteCollisionDetectorInterface
|
||||
class SpuGjkPairDetector
|
||||
{
|
||||
|
||||
|
||||
btVector3 m_cachedSeparatingAxis;
|
||||
const SpuConvexPenetrationDepthSolver* m_penetrationDepthSolver;
|
||||
SpuVoronoiSimplexSolver* m_simplexSolver;
|
||||
void* m_minkowskiA;
|
||||
void* m_minkowskiB;
|
||||
int m_shapeTypeA;
|
||||
int m_shapeTypeB;
|
||||
float m_marginA;
|
||||
float m_marginB;
|
||||
bool m_ignoreMargin;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
//some debugging to fix degeneracy problems
|
||||
int m_lastUsedMethod;
|
||||
int m_curIter;
|
||||
int m_degenerateSimplex;
|
||||
int m_catchDegeneracies;
|
||||
|
||||
|
||||
SpuGjkPairDetector(void* objectA,void* objectB,int m_shapeTypeA, int m_shapeTypeB, float marginA, float marginB, SpuVoronoiSimplexSolver* simplexSolver, const SpuConvexPenetrationDepthSolver* penetrationDepthSolver);
|
||||
virtual ~SpuGjkPairDetector() {};
|
||||
|
||||
virtual void getClosestPoints(const SpuClosestPointInput& input,SpuContactResult& output);
|
||||
|
||||
void setMinkowskiA(void* minkA)
|
||||
{
|
||||
m_minkowskiA = minkA;
|
||||
}
|
||||
|
||||
void setMinkowskiB(void* minkB)
|
||||
{
|
||||
m_minkowskiB = minkB;
|
||||
}
|
||||
|
||||
void setCachedSeperatingAxis(const btVector3& seperatingAxis)
|
||||
{
|
||||
m_cachedSeparatingAxis = seperatingAxis;
|
||||
}
|
||||
|
||||
void setPenetrationDepthSolver(SpuConvexPenetrationDepthSolver* penetrationDepthSolver)
|
||||
{
|
||||
m_penetrationDepthSolver = penetrationDepthSolver;
|
||||
}
|
||||
|
||||
///don't use setIgnoreMargin, it's for Bullet's internal use
|
||||
void setIgnoreMargin(bool ignoreMargin)
|
||||
{
|
||||
m_ignoreMargin = ignoreMargin;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif //SPU_GJK_PAIR_DETECTOR_H
|
||||
@@ -0,0 +1,332 @@
|
||||
/*
|
||||
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include "SpuGjkPairDetector.h"
|
||||
#include "SpuConvexPenetrationDepthSolver.h"
|
||||
#include "SpuLocalSupport.h"
|
||||
|
||||
//#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
|
||||
#if defined(DEBUG) || defined (_DEBUG)
|
||||
#include <stdio.h> //for debug printf
|
||||
#ifdef __SPU__
|
||||
#include <spu_printf.h>
|
||||
#define printf spu_printf
|
||||
#endif //__SPU__
|
||||
#endif
|
||||
|
||||
//must be above the machine epsilon
|
||||
#define REL_ERROR2 float(1.0e-6)
|
||||
|
||||
//temp globals, to improve GJK/EPA/penetration calculations
|
||||
int gSpuNumDeepPenetrationChecks = 0;
|
||||
int gSpuNumGjkChecks = 0;
|
||||
|
||||
|
||||
|
||||
SpuGjkPairDetector::SpuGjkPairDetector(void* objectA,void* objectB,int shapeTypeA, int shapeTypeB, float marginA,float marginB,SpuVoronoiSimplexSolver* simplexSolver, const SpuConvexPenetrationDepthSolver* penetrationDepthSolver)
|
||||
:m_cachedSeparatingAxis(float(0.),float(0.),float(1.)),
|
||||
m_penetrationDepthSolver(penetrationDepthSolver),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_minkowskiA(objectA),
|
||||
m_minkowskiB(objectB),
|
||||
m_shapeTypeA(shapeTypeA),
|
||||
m_shapeTypeB(shapeTypeB),
|
||||
m_marginA(marginA),
|
||||
m_marginB(marginB),
|
||||
m_ignoreMargin(false),
|
||||
m_lastUsedMethod(-1),
|
||||
m_catchDegeneracies(1)
|
||||
{
|
||||
}
|
||||
|
||||
void SpuGjkPairDetector::getClosestPoints(const SpuClosestPointInput& input,SpuContactResult& output)
|
||||
{
|
||||
float distance=float(0.);
|
||||
Vectormath::Aos::Vector3 normalInB(float(0.),float(0.),float(0.));
|
||||
Vectormath::Aos::Point3 pointOnA,pointOnB;
|
||||
Vectormath::Aos::Transform3 localTransA = input.m_transformA;
|
||||
Vectormath::Aos::Transform3 localTransB = input.m_transformB;
|
||||
|
||||
// World space coordinate
|
||||
Vectormath::Aos::Vector3 localOriginA = localTransA.getTranslation();
|
||||
Vectormath::Aos::Vector3 localOriginB = localTransB.getTranslation();
|
||||
|
||||
// Average instance position.
|
||||
Vectormath::Aos::Vector3 positionOffset = (localOriginA + localOriginB) * float(0.5);
|
||||
|
||||
// Adjust the instance positions so that they're equidistant from the origin.
|
||||
localTransA.setTranslation(localOriginA - positionOffset);
|
||||
localTransB.setTranslation(localOriginB - positionOffset);
|
||||
|
||||
float marginA = m_marginA;
|
||||
float marginB = m_marginB;
|
||||
|
||||
gSpuNumGjkChecks++;
|
||||
|
||||
//for CCD we don't use margins
|
||||
if (m_ignoreMargin)
|
||||
{
|
||||
marginA = float(0.);
|
||||
marginB = float(0.);
|
||||
}
|
||||
|
||||
m_curIter = 0;
|
||||
int gGjkMaxIter = 1000;//this is to catch invalid input, perhaps check for #NaN?
|
||||
m_cachedSeparatingAxis = Vectormath::Aos::Vector3(0.f,1.f,0.f);
|
||||
|
||||
bool isValid = false;
|
||||
bool checkSimplex = false;
|
||||
bool checkPenetration = true;
|
||||
m_degenerateSimplex = 0;
|
||||
|
||||
m_lastUsedMethod = -1;
|
||||
|
||||
{
|
||||
float squaredDistance = 1e30f;
|
||||
// There's no reason to have this delta declared out here, it's set in the loop before it's used and it's not used outside of the loop.
|
||||
float delta = float(0.);
|
||||
|
||||
float margin = marginA + marginB;
|
||||
|
||||
m_simplexSolver->reset();
|
||||
|
||||
while (true)
|
||||
{
|
||||
// Get the separating axes into each bound's local space.
|
||||
Vectormath::Aos::Vector3 seperatingAxisInA = orthoInverse(input.m_transformA) * (-m_cachedSeparatingAxis);
|
||||
Vectormath::Aos::Vector3 seperatingAxisInB = orthoInverse(input.m_transformB) * m_cachedSeparatingAxis;
|
||||
|
||||
int shapeTypeA = m_shapeTypeA;
|
||||
int shapeTypeB = m_shapeTypeB;
|
||||
// int featureIndexA = 0, featureIndexB = 0; // Feature index basically means vertex index.
|
||||
Vectormath::Aos::Point3 pInA = localGetSupportingVertexWithoutMargin(shapeTypeA, m_minkowskiA, seperatingAxisInA);//, &featureIndexA);
|
||||
Vectormath::Aos::Point3 qInB = localGetSupportingVertexWithoutMargin(shapeTypeB, m_minkowskiB, seperatingAxisInB);//, &featureIndexB);
|
||||
|
||||
// These are in a 'translated' world space where the origin of that world space corresponds to 'positionOffset' in the 'real' world space.
|
||||
Vectormath::Aos::Point3 pWorld = localTransA * pInA;
|
||||
Vectormath::Aos::Point3 qWorld = localTransB * qInB;
|
||||
|
||||
//spu_printf("support point A: %f %f %f\n", pWorld.getX(), pWorld.getY(), pWorld.getZ());
|
||||
//spu_printf("support point B: %f %f %f\n", qWorld.getX(), qWorld.getY(), qWorld.getZ());
|
||||
|
||||
// delta is sort of the distance between the current 'closest points' ...
|
||||
// This seems kind of weird to me since m_cachedSeparatingAxis isn't a unit vector, so I'm not really sure what this signifies.
|
||||
Vectormath::Aos::Vector3 w = pWorld - qWorld;
|
||||
delta = dot(m_cachedSeparatingAxis, w);
|
||||
|
||||
// potential exit, they don't overlap
|
||||
if ((delta > float(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
||||
{
|
||||
checkPenetration = false;
|
||||
break;
|
||||
}
|
||||
|
||||
//exit 0: the new point is already in the simplex, or we didn't come any closer
|
||||
if (m_simplexSolver->inSimplex(w))
|
||||
{
|
||||
m_degenerateSimplex = 1;
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
// are we getting any closer ?
|
||||
float f0 = squaredDistance - delta;
|
||||
float f1 = squaredDistance * REL_ERROR2;
|
||||
|
||||
// Are we close enough
|
||||
if (f0 <= f1)
|
||||
{
|
||||
if (f0 <= float(0.))
|
||||
{
|
||||
m_degenerateSimplex = 2;
|
||||
}
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
//add current vertex to simplex
|
||||
m_simplexSolver->addVertex(w, pWorld, qWorld);//, featureIndexA, featureIndexB);
|
||||
|
||||
//calculate the closest point to the origin (update vector v)
|
||||
if (!m_simplexSolver->closest(m_cachedSeparatingAxis))
|
||||
{
|
||||
m_degenerateSimplex = 3;
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
float previousSquaredDistance = squaredDistance;
|
||||
squaredDistance = lengthSqr(m_cachedSeparatingAxis);
|
||||
|
||||
//redundant m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
|
||||
//are we getting any closer ?
|
||||
if (previousSquaredDistance - squaredDistance <= FLT_EPSILON * previousSquaredDistance)
|
||||
{
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
checkSimplex = true;
|
||||
break;
|
||||
}
|
||||
|
||||
//degeneracy, this is typically due to invalid/uninitialized worldtransforms for a btCollisionObject
|
||||
if (m_curIter++ > gGjkMaxIter)
|
||||
{
|
||||
#if defined(DEBUG) || defined (_DEBUG)
|
||||
|
||||
printf("SpuGjkPairDetector maxIter exceeded:%i\n",m_curIter);
|
||||
printf("sepAxis=(%f,%f,%f), squaredDistance = %f, shapeTypeA=%i,shapeTypeB=%i\n",
|
||||
m_cachedSeparatingAxis.getX(),
|
||||
m_cachedSeparatingAxis.getY(),
|
||||
m_cachedSeparatingAxis.getZ(),
|
||||
squaredDistance,
|
||||
shapeTypeA,
|
||||
shapeTypeB);
|
||||
|
||||
#endif
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool check = (!m_simplexSolver->fullSimplex());
|
||||
//bool check = (!m_simplexSolver->fullSimplex() && squaredDistance > FLT_EPSILON * m_simplexSolver->maxVertex());
|
||||
|
||||
if (!check)
|
||||
{
|
||||
//do we need this backup_closest here ?
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (checkSimplex)
|
||||
{
|
||||
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
normalInB = pointOnA-pointOnB;
|
||||
float lenSqr = lengthSqr(m_cachedSeparatingAxis);
|
||||
//valid normal
|
||||
if (lenSqr < 0.0001)
|
||||
{
|
||||
m_degenerateSimplex = 5;
|
||||
}
|
||||
if (lenSqr > FLT_EPSILON*FLT_EPSILON)
|
||||
{
|
||||
float rlen = float(1.) / sqrtf(lenSqr );
|
||||
normalInB *= rlen; //normalize
|
||||
float s = sqrtf(squaredDistance);
|
||||
|
||||
btAssert(s > float(0.0));
|
||||
pointOnA -= m_cachedSeparatingAxis * (marginA / s);
|
||||
pointOnB += m_cachedSeparatingAxis * (marginB / s);
|
||||
distance = ((float(1.)/rlen) - margin);
|
||||
isValid = true;
|
||||
|
||||
m_lastUsedMethod = 1;
|
||||
} else
|
||||
{
|
||||
m_lastUsedMethod = 2;
|
||||
}
|
||||
}
|
||||
|
||||
bool catchDegeneratePenetrationCase =
|
||||
(m_catchDegeneracies && m_penetrationDepthSolver && m_degenerateSimplex && ((distance+margin) < 0.01));
|
||||
|
||||
//if (checkPenetration && !isValid)
|
||||
if (checkPenetration && (!isValid || catchDegeneratePenetrationCase ))
|
||||
{
|
||||
//penetration case
|
||||
|
||||
//if there is no way to handle penetrations, bail out
|
||||
if (m_penetrationDepthSolver)
|
||||
{
|
||||
// Penetration depth case.
|
||||
Vectormath::Aos::Point3 tmpPointOnA,tmpPointOnB;
|
||||
|
||||
// spu_printf("SPU: deep penetration check\n");
|
||||
gSpuNumDeepPenetrationChecks++;
|
||||
|
||||
bool isValid2 = m_penetrationDepthSolver->calcPenDepth(
|
||||
*m_simplexSolver,
|
||||
m_minkowskiA,m_minkowskiB,
|
||||
m_shapeTypeA, m_shapeTypeB,
|
||||
marginA, marginB,
|
||||
localTransA,localTransB,
|
||||
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
|
||||
0,input.m_stackAlloc
|
||||
);
|
||||
|
||||
|
||||
if (isValid2)
|
||||
{
|
||||
Vectormath::Aos::Vector3 tmpNormalInB = tmpPointOnB-tmpPointOnA;
|
||||
float lenSqr = lengthSqr(tmpNormalInB);
|
||||
if (lenSqr > (FLT_EPSILON*FLT_EPSILON))
|
||||
{
|
||||
tmpNormalInB /= sqrtf(lenSqr);
|
||||
float distance2 = -dist(tmpPointOnA,tmpPointOnB);
|
||||
//only replace valid penetrations when the result is deeper (check)
|
||||
if (!isValid || (distance2 < distance))
|
||||
{
|
||||
distance = distance2;
|
||||
pointOnA = tmpPointOnA;
|
||||
pointOnB = tmpPointOnB;
|
||||
normalInB = tmpNormalInB;
|
||||
isValid = true;
|
||||
m_lastUsedMethod = 3;
|
||||
} else
|
||||
{
|
||||
|
||||
}
|
||||
} else
|
||||
{
|
||||
//isValid = false;
|
||||
m_lastUsedMethod = 4;
|
||||
}
|
||||
} else
|
||||
{
|
||||
m_lastUsedMethod = 5;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (isValid)
|
||||
{
|
||||
#ifdef __SPU__
|
||||
//spu_printf("distance\n");
|
||||
#endif //__CELLOS_LV2__
|
||||
|
||||
|
||||
Vectormath::Aos::Point3 tmpPtOnB=pointOnB+positionOffset;
|
||||
Vectormath::Aos::Point3 vmPtOnB(tmpPtOnB.getX(),tmpPtOnB.getY(),tmpPtOnB.getZ());
|
||||
Vectormath::Aos::Vector3 vmNormalOnB(normalInB.getX(),normalInB.getY(),normalInB.getZ());
|
||||
|
||||
output.addContactPoint(
|
||||
vmNormalOnB,
|
||||
vmPtOnB,
|
||||
distance
|
||||
);
|
||||
|
||||
|
||||
//printf("gjk add:%f",distance);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,236 @@
|
||||
/* [SCE CONFIDENTIAL DOCUMENT]
|
||||
* PLAYSTATION(R)3 SPU Optimized Bullet Physics Library (http://bulletphysics.com)
|
||||
* Copyright (C) 2007 Sony Computer Entertainment Inc.
|
||||
* All Rights Reserved.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
|
||||
|
||||
|
||||
struct SpuConvexPolyhedronVertexData
|
||||
{
|
||||
void* gSpuConvexShapePtr0;
|
||||
void* gSpuConvexShapePtr1;
|
||||
btPoint3* gConvexPoints0;
|
||||
btPoint3* gConvexPoints1;
|
||||
int gNumConvexPoints0;
|
||||
int gNumConvexPoints1;
|
||||
};
|
||||
|
||||
|
||||
inline btPoint3 localGetSupportingVertexWithoutMargin(int shapeType, void* shape, btVector3 localDir,struct SpuConvexPolyhedronVertexData* convexVertexData)//, int *featureIndex)
|
||||
{
|
||||
switch (shapeType)
|
||||
{
|
||||
case SPHERE_SHAPE_PROXYTYPE:
|
||||
{
|
||||
return btPoint3(0,0,0);
|
||||
}
|
||||
case BOX_SHAPE_PROXYTYPE:
|
||||
{
|
||||
// spu_printf("SPU: getSupport BOX_SHAPE_PROXYTYPE\n");
|
||||
btConvexShape* convexShape = (btConvexShape*)shape;
|
||||
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
|
||||
float margin = convexShape->getMarginNV();
|
||||
halfExtents -= btVector3(margin,margin,margin);
|
||||
return btPoint3(
|
||||
localDir.getX() < 0.0f ? -halfExtents.x() : halfExtents.x(),
|
||||
localDir.getY() < 0.0f ? -halfExtents.y() : halfExtents.y(),
|
||||
localDir.getZ() < 0.0f ? -halfExtents.z() : halfExtents.z());
|
||||
}
|
||||
|
||||
case TRIANGLE_SHAPE_PROXYTYPE:
|
||||
{
|
||||
|
||||
btVector3 dir(localDir.getX(),localDir.getY(),localDir.getZ());
|
||||
btVector3* vertices = (btVector3*)shape;
|
||||
btVector3 dots(dir.dot(vertices[0]), dir.dot(vertices[1]), dir.dot(vertices[2]));
|
||||
btVector3 sup = vertices[dots.maxAxis()];
|
||||
return btPoint3(sup.getX(),sup.getY(),sup.getZ());
|
||||
break;
|
||||
}
|
||||
|
||||
case CYLINDER_SHAPE_PROXYTYPE:
|
||||
{
|
||||
btCylinderShape* cylShape = (btCylinderShape*)shape;
|
||||
|
||||
//mapping of halfextents/dimension onto radius/height depends on how cylinder local orientation is (upAxis)
|
||||
|
||||
btVector3 halfExtents = cylShape->getImplicitShapeDimensions();
|
||||
btVector3 v(localDir.getX(),localDir.getY(),localDir.getZ());
|
||||
|
||||
int cylinderUpAxis = cylShape->getUpAxis();
|
||||
int XX(1),YY(0),ZZ(2);
|
||||
|
||||
switch (cylinderUpAxis)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
XX = 1;
|
||||
YY = 0;
|
||||
ZZ = 2;
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
XX = 0;
|
||||
YY = 1;
|
||||
ZZ = 2;
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
XX = 0;
|
||||
YY = 2;
|
||||
ZZ = 1;
|
||||
break;
|
||||
}
|
||||
default:
|
||||
btAssert(0);
|
||||
//printf("SPU:localGetSupportingVertexWithoutMargin unknown Cylinder up-axis\n");
|
||||
};
|
||||
|
||||
btScalar radius = halfExtents[XX];
|
||||
btScalar halfHeight = halfExtents[cylinderUpAxis];
|
||||
|
||||
btVector3 tmp;
|
||||
btScalar d ;
|
||||
|
||||
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
|
||||
if (s != btScalar(0.0))
|
||||
{
|
||||
d = radius / s;
|
||||
tmp[XX] = v[XX] * d;
|
||||
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
|
||||
tmp[ZZ] = v[ZZ] * d;
|
||||
return btPoint3(tmp.getX(),tmp.getY(),tmp.getZ());
|
||||
}
|
||||
else
|
||||
{
|
||||
tmp[XX] = radius;
|
||||
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
|
||||
tmp[ZZ] = btScalar(0.0);
|
||||
return btPoint3(tmp.getX(),tmp.getY(),tmp.getZ());
|
||||
}
|
||||
}
|
||||
|
||||
case CAPSULE_SHAPE_PROXYTYPE:
|
||||
{
|
||||
//spu_printf("SPU: todo: getSupport CAPSULE_SHAPE_PROXYTYPE\n");
|
||||
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
|
||||
|
||||
btConvexShape* cnvxShape = (btConvexShape*)shape;
|
||||
btVector3 halfExtents = cnvxShape->getImplicitShapeDimensions();
|
||||
btScalar halfHeight = halfExtents.getY();
|
||||
btScalar radius = halfExtents.getX();
|
||||
btVector3 supVec(0,0,0);
|
||||
|
||||
btScalar maxDot(btScalar(-1e30));
|
||||
|
||||
btVector3 vec = vec0;
|
||||
btScalar lenSqr = vec.length2();
|
||||
if (lenSqr < btScalar(0.0001))
|
||||
{
|
||||
vec.setValue(1,0,0);
|
||||
} else
|
||||
{
|
||||
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
|
||||
vec *= rlen;
|
||||
}
|
||||
btVector3 vtx;
|
||||
btScalar newDot;
|
||||
{
|
||||
btVector3 pos(0,halfHeight,0);
|
||||
vtx = pos +vec*(radius);
|
||||
newDot = vec.dot(vtx);
|
||||
if (newDot > maxDot)
|
||||
{
|
||||
maxDot = newDot;
|
||||
supVec = vtx;
|
||||
}
|
||||
}
|
||||
{
|
||||
btVector3 pos(0,-halfHeight,0);
|
||||
vtx = pos +vec*(radius);
|
||||
newDot = vec.dot(vtx);
|
||||
if (newDot > maxDot)
|
||||
{
|
||||
maxDot = newDot;
|
||||
supVec = vtx;
|
||||
}
|
||||
}
|
||||
return btPoint3(supVec.getX(),supVec.getY(),supVec.getZ());
|
||||
break;
|
||||
};
|
||||
|
||||
case CONVEX_HULL_SHAPE_PROXYTYPE:
|
||||
{
|
||||
//spu_printf("SPU: todo: getSupport CONVEX_HULL_SHAPE_PROXYTYPE\n");
|
||||
|
||||
|
||||
|
||||
btPoint3* points = 0;
|
||||
int numPoints = 0;
|
||||
if (shape==convexVertexData->gSpuConvexShapePtr0)
|
||||
{
|
||||
points = convexVertexData->gConvexPoints0;
|
||||
numPoints = convexVertexData->gNumConvexPoints0;
|
||||
}
|
||||
if (shape == convexVertexData->gSpuConvexShapePtr1)
|
||||
{
|
||||
points = convexVertexData->gConvexPoints1;
|
||||
numPoints = convexVertexData->gNumConvexPoints1;
|
||||
}
|
||||
|
||||
// spu_printf("numPoints = %d\n",numPoints);
|
||||
|
||||
btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
btScalar newDot,maxDot = btScalar(-1e30);
|
||||
|
||||
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
|
||||
btVector3 vec = vec0;
|
||||
btScalar lenSqr = vec.length2();
|
||||
if (lenSqr < btScalar(0.0001))
|
||||
{
|
||||
vec.setValue(1,0,0);
|
||||
} else
|
||||
{
|
||||
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
|
||||
vec *= rlen;
|
||||
}
|
||||
|
||||
|
||||
for (int i=0;i<numPoints;i++)
|
||||
{
|
||||
btPoint3 vtx = points[i];// * m_localScaling;
|
||||
|
||||
newDot = vec.dot(vtx);
|
||||
if (newDot > maxDot)
|
||||
{
|
||||
maxDot = newDot;
|
||||
supVec = vtx;
|
||||
}
|
||||
}
|
||||
return btPoint3(supVec.getX(),supVec.getY(),supVec.getZ());
|
||||
|
||||
break;
|
||||
};
|
||||
|
||||
default:
|
||||
|
||||
//spu_printf("SPU:(type %i) missing support function\n",shapeType);
|
||||
|
||||
|
||||
#if __ASSERT
|
||||
spu_printf("localGetSupportingVertexWithoutMargin() - Unsupported bound type: %d.\n", shapeType);
|
||||
#endif // __ASSERT
|
||||
return btPoint3(0.f, 0.f, 0.f);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -0,0 +1,339 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "SpuMinkowskiPenetrationDepthSolver.h"
|
||||
#include "SpuVoronoiSimplexSolver.h"
|
||||
#include "SpuGjkPairDetector.h"
|
||||
#include "SpuContactResult.h"
|
||||
|
||||
|
||||
#include "SpuLocalSupport.h"
|
||||
|
||||
#define NUM_UNITSPHERE_POINTS 42
|
||||
static btVector3 sPenetrationDirections[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2] =
|
||||
{
|
||||
btVector3(btScalar(0.000000) , btScalar(-0.000000),btScalar(-1.000000)),
|
||||
btVector3(btScalar(0.723608) , btScalar(-0.525725),btScalar(-0.447219)),
|
||||
btVector3(btScalar(-0.276388) , btScalar(-0.850649),btScalar(-0.447219)),
|
||||
btVector3(btScalar(-0.894426) , btScalar(-0.000000),btScalar(-0.447216)),
|
||||
btVector3(btScalar(-0.276388) , btScalar(0.850649),btScalar(-0.447220)),
|
||||
btVector3(btScalar(0.723608) , btScalar(0.525725),btScalar(-0.447219)),
|
||||
btVector3(btScalar(0.276388) , btScalar(-0.850649),btScalar(0.447220)),
|
||||
btVector3(btScalar(-0.723608) , btScalar(-0.525725),btScalar(0.447219)),
|
||||
btVector3(btScalar(-0.723608) , btScalar(0.525725),btScalar(0.447219)),
|
||||
btVector3(btScalar(0.276388) , btScalar(0.850649),btScalar(0.447219)),
|
||||
btVector3(btScalar(0.894426) , btScalar(0.000000),btScalar(0.447216)),
|
||||
btVector3(btScalar(-0.000000) , btScalar(0.000000),btScalar(1.000000)),
|
||||
btVector3(btScalar(0.425323) , btScalar(-0.309011),btScalar(-0.850654)),
|
||||
btVector3(btScalar(-0.162456) , btScalar(-0.499995),btScalar(-0.850654)),
|
||||
btVector3(btScalar(0.262869) , btScalar(-0.809012),btScalar(-0.525738)),
|
||||
btVector3(btScalar(0.425323) , btScalar(0.309011),btScalar(-0.850654)),
|
||||
btVector3(btScalar(0.850648) , btScalar(-0.000000),btScalar(-0.525736)),
|
||||
btVector3(btScalar(-0.525730) , btScalar(-0.000000),btScalar(-0.850652)),
|
||||
btVector3(btScalar(-0.688190) , btScalar(-0.499997),btScalar(-0.525736)),
|
||||
btVector3(btScalar(-0.162456) , btScalar(0.499995),btScalar(-0.850654)),
|
||||
btVector3(btScalar(-0.688190) , btScalar(0.499997),btScalar(-0.525736)),
|
||||
btVector3(btScalar(0.262869) , btScalar(0.809012),btScalar(-0.525738)),
|
||||
btVector3(btScalar(0.951058) , btScalar(0.309013),btScalar(0.000000)),
|
||||
btVector3(btScalar(0.951058) , btScalar(-0.309013),btScalar(0.000000)),
|
||||
btVector3(btScalar(0.587786) , btScalar(-0.809017),btScalar(0.000000)),
|
||||
btVector3(btScalar(0.000000) , btScalar(-1.000000),btScalar(0.000000)),
|
||||
btVector3(btScalar(-0.587786) , btScalar(-0.809017),btScalar(0.000000)),
|
||||
btVector3(btScalar(-0.951058) , btScalar(-0.309013),btScalar(-0.000000)),
|
||||
btVector3(btScalar(-0.951058) , btScalar(0.309013),btScalar(-0.000000)),
|
||||
btVector3(btScalar(-0.587786) , btScalar(0.809017),btScalar(-0.000000)),
|
||||
btVector3(btScalar(-0.000000) , btScalar(1.000000),btScalar(-0.000000)),
|
||||
btVector3(btScalar(0.587786) , btScalar(0.809017),btScalar(-0.000000)),
|
||||
btVector3(btScalar(0.688190) , btScalar(-0.499997),btScalar(0.525736)),
|
||||
btVector3(btScalar(-0.262869) , btScalar(-0.809012),btScalar(0.525738)),
|
||||
btVector3(btScalar(-0.850648) , btScalar(0.000000),btScalar(0.525736)),
|
||||
btVector3(btScalar(-0.262869) , btScalar(0.809012),btScalar(0.525738)),
|
||||
btVector3(btScalar(0.688190) , btScalar(0.499997),btScalar(0.525736)),
|
||||
btVector3(btScalar(0.525730) , btScalar(0.000000),btScalar(0.850652)),
|
||||
btVector3(btScalar(0.162456) , btScalar(-0.499995),btScalar(0.850654)),
|
||||
btVector3(btScalar(-0.425323) , btScalar(-0.309011),btScalar(0.850654)),
|
||||
btVector3(btScalar(-0.425323) , btScalar(0.309011),btScalar(0.850654)),
|
||||
btVector3(btScalar(0.162456) , btScalar(0.499995),btScalar(0.850654))
|
||||
};
|
||||
|
||||
bool SpuMinkowskiPenetrationDepthSolver::calcPenDepth( SpuVoronoiSimplexSolver& simplexSolver,
|
||||
void* convexA,void* convexB,int shapeTypeA, int shapeTypeB, float marginA, float marginB,
|
||||
btTransform& transA,const btTransform& transB,
|
||||
btVector3& v, btPoint3& pa, btPoint3& pb,
|
||||
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc,
|
||||
struct SpuConvexPolyhedronVertexData* convexVertexData
|
||||
) const
|
||||
{
|
||||
|
||||
(void)stackAlloc;
|
||||
(void)v;
|
||||
|
||||
|
||||
struct btIntermediateResult : public SpuContactResult
|
||||
{
|
||||
|
||||
btIntermediateResult():m_hasResult(false)
|
||||
{
|
||||
}
|
||||
|
||||
btVector3 m_normalOnBInWorld;
|
||||
btVector3 m_pointInWorld;
|
||||
btScalar m_depth;
|
||||
bool m_hasResult;
|
||||
|
||||
virtual void setShapeIdentifiers(int partId0,int index0, int partId1,int index1)
|
||||
{
|
||||
(void)partId0;
|
||||
(void)index0;
|
||||
(void)partId1;
|
||||
(void)index1;
|
||||
}
|
||||
void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
|
||||
{
|
||||
m_normalOnBInWorld = normalOnBInWorld;
|
||||
m_pointInWorld = pointInWorld;
|
||||
m_depth = depth;
|
||||
m_hasResult = true;
|
||||
}
|
||||
};
|
||||
|
||||
//just take fixed number of orientation, and sample the penetration depth in that direction
|
||||
btScalar minProj = btScalar(1e30);
|
||||
btVector3 minNorm;
|
||||
btVector3 minVertex;
|
||||
btVector3 minA,minB;
|
||||
btVector3 seperatingAxisInA,seperatingAxisInB;
|
||||
btVector3 pInA,qInB,pWorld,qWorld,w;
|
||||
|
||||
//#define USE_BATCHED_SUPPORT 1
|
||||
#ifdef USE_BATCHED_SUPPORT
|
||||
|
||||
btVector3 supportVerticesABatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
|
||||
btVector3 supportVerticesBBatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
|
||||
btVector3 seperatingAxisInABatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
|
||||
btVector3 seperatingAxisInBBatch[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2];
|
||||
int i;
|
||||
|
||||
int numSampleDirections = NUM_UNITSPHERE_POINTS;
|
||||
|
||||
for (i=0;i<numSampleDirections;i++)
|
||||
{
|
||||
const btVector3& norm = sPenetrationDirections[i];
|
||||
seperatingAxisInABatch[i] = (-norm) * transA.getBasis() ;
|
||||
seperatingAxisInBBatch[i] = norm * transB.getBasis() ;
|
||||
}
|
||||
|
||||
{
|
||||
int numPDA = convexA->getNumPreferredPenetrationDirections();
|
||||
if (numPDA)
|
||||
{
|
||||
for (int i=0;i<numPDA;i++)
|
||||
{
|
||||
btVector3 norm;
|
||||
convexA->getPreferredPenetrationDirection(i,norm);
|
||||
norm = transA.getBasis() * norm;
|
||||
sPenetrationDirections[numSampleDirections] = norm;
|
||||
seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis();
|
||||
seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis();
|
||||
numSampleDirections++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int numPDB = convexB->getNumPreferredPenetrationDirections();
|
||||
if (numPDB)
|
||||
{
|
||||
for (int i=0;i<numPDB;i++)
|
||||
{
|
||||
btVector3 norm;
|
||||
convexB->getPreferredPenetrationDirection(i,norm);
|
||||
norm = transB.getBasis() * norm;
|
||||
sPenetrationDirections[numSampleDirections] = norm;
|
||||
seperatingAxisInABatch[numSampleDirections] = (-norm) * transA.getBasis();
|
||||
seperatingAxisInBBatch[numSampleDirections] = norm * transB.getBasis();
|
||||
numSampleDirections++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
convexA->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch,supportVerticesABatch,numSampleDirections);
|
||||
convexB->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch,supportVerticesBBatch,numSampleDirections);
|
||||
|
||||
for (i=0;i<numSampleDirections;i++)
|
||||
{
|
||||
const btVector3& norm = sPenetrationDirections[i];
|
||||
seperatingAxisInA = seperatingAxisInABatch[i];
|
||||
seperatingAxisInB = seperatingAxisInBBatch[i];
|
||||
|
||||
pInA = supportVerticesABatch[i];
|
||||
qInB = supportVerticesBBatch[i];
|
||||
|
||||
pWorld = transA(pInA);
|
||||
qWorld = transB(qInB);
|
||||
w = qWorld - pWorld;
|
||||
btScalar delta = norm.dot(w);
|
||||
//find smallest delta
|
||||
if (delta < minProj)
|
||||
{
|
||||
minProj = delta;
|
||||
minNorm = norm;
|
||||
minA = pWorld;
|
||||
minB = qWorld;
|
||||
}
|
||||
}
|
||||
#else
|
||||
|
||||
int numSampleDirections = NUM_UNITSPHERE_POINTS;
|
||||
|
||||
#ifdef DO_PREFERRED_DIRECTIONS
|
||||
{
|
||||
int numPDA = convexA->getNumPreferredPenetrationDirections();
|
||||
if (numPDA)
|
||||
{
|
||||
for (int i=0;i<numPDA;i++)
|
||||
{
|
||||
btVector3 norm;
|
||||
convexA->getPreferredPenetrationDirection(i,norm);
|
||||
norm = transA.getBasis() * norm;
|
||||
sPenetrationDirections[numSampleDirections] = norm;
|
||||
numSampleDirections++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int numPDB = convexB->getNumPreferredPenetrationDirections();
|
||||
if (numPDB)
|
||||
{
|
||||
for (int i=0;i<numPDB;i++)
|
||||
{
|
||||
btVector3 norm;
|
||||
convexB->getPreferredPenetrationDirection(i,norm);
|
||||
norm = transB.getBasis() * norm;
|
||||
sPenetrationDirections[numSampleDirections] = norm;
|
||||
numSampleDirections++;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif //DO_PREFERRED_DIRECTIONS
|
||||
|
||||
for (int i=0;i<numSampleDirections;i++)
|
||||
{
|
||||
const btVector3& norm = sPenetrationDirections[i];
|
||||
seperatingAxisInA = (-norm)* transA.getBasis();
|
||||
seperatingAxisInB = norm* transB.getBasis();
|
||||
|
||||
pInA = localGetSupportingVertexWithoutMargin(shapeTypeA, convexA, seperatingAxisInA,convexVertexData);//, NULL);
|
||||
qInB = localGetSupportingVertexWithoutMargin(shapeTypeB, convexB, seperatingAxisInB,convexVertexData);//, NULL);
|
||||
|
||||
// pInA = convexA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
|
||||
// qInB = convexB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
|
||||
|
||||
pWorld = transA(pInA);
|
||||
qWorld = transB(qInB);
|
||||
w = qWorld - pWorld;
|
||||
btScalar delta = norm.dot(w);
|
||||
//find smallest delta
|
||||
if (delta < minProj)
|
||||
{
|
||||
minProj = delta;
|
||||
minNorm = norm;
|
||||
minA = pWorld;
|
||||
minB = qWorld;
|
||||
}
|
||||
}
|
||||
#endif //USE_BATCHED_SUPPORT
|
||||
|
||||
//add the margins
|
||||
|
||||
minA += minNorm*marginA;
|
||||
minB -= minNorm*marginB;
|
||||
//no penetration
|
||||
if (minProj < btScalar(0.))
|
||||
return false;
|
||||
|
||||
minProj += (marginA + marginB);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//#define DEBUG_DRAW 1
|
||||
#ifdef DEBUG_DRAW
|
||||
if (debugDraw)
|
||||
{
|
||||
btVector3 color(0,1,0);
|
||||
debugDraw->drawLine(minA,minB,color);
|
||||
color = btVector3 (1,1,1);
|
||||
btVector3 vec = minB-minA;
|
||||
btScalar prj2 = minNorm.dot(vec);
|
||||
debugDraw->drawLine(minA,minA+(minNorm*minProj),color);
|
||||
|
||||
}
|
||||
#endif //DEBUG_DRAW
|
||||
|
||||
|
||||
|
||||
SpuGjkPairDetector gjkdet(convexA,convexB,shapeTypeA,shapeTypeB,marginA,marginB,&simplexSolver,0);
|
||||
|
||||
btScalar offsetDist = minProj;
|
||||
btVector3 offset = minNorm * offsetDist;
|
||||
|
||||
|
||||
SpuClosestPointInput input;
|
||||
|
||||
btVector3 newOrg = transA.getOrigin() + offset;
|
||||
|
||||
btTransform displacedTrans = transA;
|
||||
displacedTrans.setOrigin(newOrg);
|
||||
|
||||
input.m_transformA = displacedTrans;
|
||||
input.m_transformB = transB;
|
||||
input.m_maximumDistanceSquared = btScalar(1e30);//minProj;
|
||||
|
||||
btIntermediateResult res;
|
||||
gjkdet.getClosestPoints(input,res);
|
||||
|
||||
btScalar correctedMinNorm = minProj - res.m_depth;
|
||||
|
||||
|
||||
//the penetration depth is over-estimated, relax it
|
||||
btScalar penetration_relaxation= btScalar(1.);
|
||||
minNorm*=penetration_relaxation;
|
||||
|
||||
if (res.m_hasResult)
|
||||
{
|
||||
|
||||
pa = res.m_pointInWorld - minNorm * correctedMinNorm;
|
||||
pb = res.m_pointInWorld;
|
||||
|
||||
#ifdef DEBUG_DRAW
|
||||
if (debugDraw)
|
||||
{
|
||||
btVector3 color(1,0,0);
|
||||
debugDraw->drawLine(pa,pb,color);
|
||||
}
|
||||
#endif//DEBUG_DRAW
|
||||
|
||||
|
||||
}
|
||||
return res.m_hasResult;
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -0,0 +1,51 @@
|
||||
/* [SCE CONFIDENTIAL DOCUMENT]
|
||||
* PLAYSTATION(R)3 SPU Optimized Bullet Physics Library (http://bulletphysics.com)
|
||||
* Copyright (C) 2007 Sony Computer Entertainment Inc.
|
||||
* All Rights Reserved.
|
||||
*/
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef MINKOWSKI_PENETRATION_DEPTH_SOLVER_H
|
||||
#define MINKOWSKI_PENETRATION_DEPTH_SOLVER_H
|
||||
|
||||
|
||||
#include "SpuConvexPenetrationDepthSolver.h"
|
||||
|
||||
class btStackAlloc;
|
||||
class btIDebugDraw;
|
||||
class SpuVoronoiSimplexSolver;
|
||||
|
||||
///MinkowskiPenetrationDepthSolver implements bruteforce penetration depth estimation.
|
||||
///Implementation is based on sampling the depth using support mapping, and using GJK step to get the witness points.
|
||||
class SpuMinkowskiPenetrationDepthSolver : public SpuConvexPenetrationDepthSolver
|
||||
{
|
||||
public:
|
||||
|
||||
virtual bool calcPenDepth( SpuVoronoiSimplexSolver& simplexSolver,
|
||||
void* convexA,void* convexB,int shapeTypeA, int shapeTypeB, float marginA, float marginB,
|
||||
btTransform& transA,const btTransform& transB,
|
||||
btVector3& v, btPoint3& pa, btPoint3& pb,
|
||||
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc,
|
||||
struct SpuConvexPolyhedronVertexData* convexVertexData
|
||||
) const;
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif //MINKOWSKI_PENETRATION_DEPTH_SOLVER_H
|
||||
|
||||
@@ -0,0 +1,606 @@
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Elsevier CDROM license agreements grants nonexclusive license to use the software
|
||||
for any purpose, commercial or non-commercial as long as the following credit is included
|
||||
identifying the original source of the software:
|
||||
|
||||
Parts of the source are "from the book Real-Time Collision Detection by
|
||||
Christer Ericson, published by Morgan Kaufmann Publishers,
|
||||
(c) 2005 Elsevier Inc."
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include "SpuVoronoiSimplexSolver.h"
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define VERTA 0
|
||||
#define VERTB 1
|
||||
#define VERTC 2
|
||||
#define VERTD 3
|
||||
|
||||
#define CATCH_DEGENERATE_TETRAHEDRON 1
|
||||
void SpuVoronoiSimplexSolver::removeVertex(int index)
|
||||
{
|
||||
|
||||
assert(m_numVertices>0);
|
||||
m_numVertices--;
|
||||
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
|
||||
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
|
||||
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
|
||||
}
|
||||
|
||||
void SpuVoronoiSimplexSolver::reduceVertices (const SpuUsageBitfield& usedVerts)
|
||||
{
|
||||
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
|
||||
removeVertex(3);
|
||||
|
||||
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
|
||||
removeVertex(2);
|
||||
|
||||
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
|
||||
removeVertex(1);
|
||||
|
||||
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
|
||||
removeVertex(0);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//clear the simplex, remove all the vertices
|
||||
void SpuVoronoiSimplexSolver::reset()
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
m_numVertices = 0;
|
||||
m_needsUpdate = true;
|
||||
m_lastW = btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30));
|
||||
m_cachedBC.reset();
|
||||
}
|
||||
|
||||
|
||||
|
||||
//add a vertex
|
||||
void SpuVoronoiSimplexSolver::addVertex(const btVector3& w, const btPoint3& p, const btPoint3& q)
|
||||
{
|
||||
m_lastW = w;
|
||||
m_needsUpdate = true;
|
||||
|
||||
m_simplexVectorW[m_numVertices] = w;
|
||||
m_simplexPointsP[m_numVertices] = p;
|
||||
m_simplexPointsQ[m_numVertices] = q;
|
||||
|
||||
m_numVertices++;
|
||||
}
|
||||
|
||||
bool SpuVoronoiSimplexSolver::updateClosestVectorAndPoints()
|
||||
{
|
||||
|
||||
if (m_needsUpdate)
|
||||
{
|
||||
m_cachedBC.reset();
|
||||
|
||||
m_needsUpdate = false;
|
||||
|
||||
switch (numVertices())
|
||||
{
|
||||
case 0:
|
||||
m_cachedValidClosest = false;
|
||||
break;
|
||||
case 1:
|
||||
{
|
||||
m_cachedP1 = m_simplexPointsP[0];
|
||||
m_cachedP2 = m_simplexPointsQ[0];
|
||||
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
|
||||
m_cachedBC.reset();
|
||||
m_cachedBC.setBarycentricCoordinates(btScalar(1.),btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
break;
|
||||
};
|
||||
case 2:
|
||||
{
|
||||
//closest point origin from line segment
|
||||
const btVector3& from = m_simplexVectorW[0];
|
||||
const btVector3& to = m_simplexVectorW[1];
|
||||
btVector3 nearest;
|
||||
|
||||
btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
btVector3 diff = p - from;
|
||||
btVector3 v = to - from;
|
||||
btScalar t = v.dot(diff);
|
||||
|
||||
if (t > 0) {
|
||||
btScalar dotVV = v.dot(v);
|
||||
if (t < dotVV) {
|
||||
t /= dotVV;
|
||||
diff -= t*v;
|
||||
m_cachedBC.m_usedVertices.usedVertexA = true;
|
||||
m_cachedBC.m_usedVertices.usedVertexB = true;
|
||||
} else {
|
||||
t = 1;
|
||||
diff -= v;
|
||||
//reduce to 1 point
|
||||
m_cachedBC.m_usedVertices.usedVertexB = true;
|
||||
}
|
||||
} else
|
||||
{
|
||||
t = 0;
|
||||
//reduce to 1 point
|
||||
m_cachedBC.m_usedVertices.usedVertexA = true;
|
||||
}
|
||||
m_cachedBC.setBarycentricCoordinates(1-t,t);
|
||||
nearest = from + t*v;
|
||||
|
||||
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
|
||||
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
|
||||
m_cachedV = m_cachedP1 - m_cachedP2;
|
||||
|
||||
reduceVertices(m_cachedBC.m_usedVertices);
|
||||
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
//closest point origin from triangle
|
||||
btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
|
||||
const btVector3& a = m_simplexVectorW[0];
|
||||
const btVector3& b = m_simplexVectorW[1];
|
||||
const btVector3& c = m_simplexVectorW[2];
|
||||
|
||||
closestPtPointTriangle(p,a,b,c,m_cachedBC);
|
||||
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedV = m_cachedP1-m_cachedP2;
|
||||
|
||||
reduceVertices (m_cachedBC.m_usedVertices);
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
|
||||
|
||||
btVector3 p (btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
|
||||
const btVector3& a = m_simplexVectorW[0];
|
||||
const btVector3& b = m_simplexVectorW[1];
|
||||
const btVector3& c = m_simplexVectorW[2];
|
||||
const btVector3& d = m_simplexVectorW[3];
|
||||
|
||||
bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
|
||||
|
||||
if (hasSeperation)
|
||||
{
|
||||
|
||||
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedV = m_cachedP1-m_cachedP2;
|
||||
reduceVertices (m_cachedBC.m_usedVertices);
|
||||
} else
|
||||
{
|
||||
// printf("sub distance got penetration\n");
|
||||
|
||||
if (m_cachedBC.m_degenerate)
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
} else
|
||||
{
|
||||
m_cachedValidClosest = true;
|
||||
//degenerate case == false, penetration = true + zero
|
||||
m_cachedV.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
|
||||
//closest point origin from tetrahedron
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
return m_cachedValidClosest;
|
||||
|
||||
}
|
||||
|
||||
//return/calculate the closest vertex
|
||||
bool SpuVoronoiSimplexSolver::closest(btVector3& v)
|
||||
{
|
||||
bool succes = updateClosestVectorAndPoints();
|
||||
v = m_cachedV;
|
||||
return succes;
|
||||
}
|
||||
|
||||
|
||||
|
||||
btScalar SpuVoronoiSimplexSolver::maxVertex()
|
||||
{
|
||||
int i, numverts = numVertices();
|
||||
btScalar maxV = btScalar(0.);
|
||||
for (i=0;i<numverts;i++)
|
||||
{
|
||||
btScalar curLen2 = m_simplexVectorW[i].length2();
|
||||
if (maxV < curLen2)
|
||||
maxV = curLen2;
|
||||
}
|
||||
return maxV;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//return the current simplex
|
||||
int SpuVoronoiSimplexSolver::getSimplex(btPoint3 *pBuf, btPoint3 *qBuf, btVector3 *yBuf) const
|
||||
{
|
||||
int i;
|
||||
for (i=0;i<numVertices();i++)
|
||||
{
|
||||
yBuf[i] = m_simplexVectorW[i];
|
||||
pBuf[i] = m_simplexPointsP[i];
|
||||
qBuf[i] = m_simplexPointsQ[i];
|
||||
}
|
||||
return numVertices();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::inSimplex(const btVector3& w)
|
||||
{
|
||||
bool found = false;
|
||||
int i, numverts = numVertices();
|
||||
//btScalar maxV = btScalar(0.);
|
||||
|
||||
//w is in the current (reduced) simplex
|
||||
for (i=0;i<numverts;i++)
|
||||
{
|
||||
if (m_simplexVectorW[i] == w)
|
||||
found = true;
|
||||
}
|
||||
|
||||
//check in case lastW is already removed
|
||||
if (w == m_lastW)
|
||||
return true;
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
void SpuVoronoiSimplexSolver::backup_closest(btVector3& v)
|
||||
{
|
||||
v = m_cachedV;
|
||||
}
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::emptySimplex() const
|
||||
{
|
||||
return (numVertices() == 0);
|
||||
|
||||
}
|
||||
|
||||
void SpuVoronoiSimplexSolver::compute_points(btPoint3& p1, btPoint3& p2)
|
||||
{
|
||||
updateClosestVectorAndPoints();
|
||||
p1 = m_cachedP1;
|
||||
p2 = m_cachedP2;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::closestPtPointTriangle(const btPoint3& p, const btPoint3& a, const btPoint3& b, const btPoint3& c,SpuSubSimplexClosestResult& result)
|
||||
{
|
||||
result.m_usedVertices.reset();
|
||||
|
||||
// Check if P in vertex region outside A
|
||||
btVector3 ab = b - a;
|
||||
btVector3 ac = c - a;
|
||||
btVector3 ap = p - a;
|
||||
btScalar d1 = ab.dot(ap);
|
||||
btScalar d2 = ac.dot(ap);
|
||||
if (d1 <= btScalar(0.0) && d2 <= btScalar(0.0))
|
||||
{
|
||||
result.m_closestPointOnSimplex = a;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.setBarycentricCoordinates(1,0,0);
|
||||
return true;// a; // barycentric coordinates (1,0,0)
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside B
|
||||
btVector3 bp = p - b;
|
||||
btScalar d3 = ab.dot(bp);
|
||||
btScalar d4 = ac.dot(bp);
|
||||
if (d3 >= btScalar(0.0) && d4 <= d3)
|
||||
{
|
||||
result.m_closestPointOnSimplex = b;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.setBarycentricCoordinates(0,1,0);
|
||||
|
||||
return true; // b; // barycentric coordinates (0,1,0)
|
||||
}
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
btScalar vc = d1*d4 - d3*d2;
|
||||
if (vc <= btScalar(0.0) && d1 >= btScalar(0.0) && d3 <= btScalar(0.0)) {
|
||||
btScalar v = d1 / (d1 - d3);
|
||||
result.m_closestPointOnSimplex = a + v * ab;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.setBarycentricCoordinates(1-v,v,0);
|
||||
return true;
|
||||
//return a + v * ab; // barycentric coordinates (1-v,v,0)
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside C
|
||||
btVector3 cp = p - c;
|
||||
btScalar d5 = ab.dot(cp);
|
||||
btScalar d6 = ac.dot(cp);
|
||||
if (d6 >= btScalar(0.0) && d5 <= d6)
|
||||
{
|
||||
result.m_closestPointOnSimplex = c;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(0,0,1);
|
||||
return true;//c; // barycentric coordinates (0,0,1)
|
||||
}
|
||||
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
btScalar vb = d5*d2 - d1*d6;
|
||||
if (vb <= btScalar(0.0) && d2 >= btScalar(0.0) && d6 <= btScalar(0.0)) {
|
||||
btScalar w = d2 / (d2 - d6);
|
||||
result.m_closestPointOnSimplex = a + w * ac;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(1-w,0,w);
|
||||
return true;
|
||||
//return a + w * ac; // barycentric coordinates (1-w,0,w)
|
||||
}
|
||||
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
btScalar va = d3*d6 - d5*d4;
|
||||
if (va <= btScalar(0.0) && (d4 - d3) >= btScalar(0.0) && (d5 - d6) >= btScalar(0.0)) {
|
||||
btScalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||
|
||||
result.m_closestPointOnSimplex = b + w * (c - b);
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(0,1-w,w);
|
||||
return true;
|
||||
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
|
||||
}
|
||||
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
btScalar denom = btScalar(1.0) / (va + vb + vc);
|
||||
btScalar v = vb * denom;
|
||||
btScalar w = vc * denom;
|
||||
|
||||
result.m_closestPointOnSimplex = a + ab * v + ac * w;
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(1-v-w,v,w);
|
||||
|
||||
return true;
|
||||
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = btScalar(1.0) - v - w
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/// Test if point p and d lie on opposite sides of plane through abc
|
||||
int SpuVoronoiSimplexSolver::pointOutsideOfPlane(const btPoint3& p, const btPoint3& a, const btPoint3& b, const btPoint3& c, const btPoint3& d)
|
||||
{
|
||||
btVector3 normal = (b-a).cross(c-a);
|
||||
|
||||
btScalar signp = (p - a).dot(normal); // [AP AB AC]
|
||||
btScalar signd = (d - a).dot( normal); // [AD AB AC]
|
||||
|
||||
#ifdef CATCH_DEGENERATE_TETRAHEDRON
|
||||
#ifdef BT_USE_DOUBLE_PRECISION
|
||||
if (signd * signd < (btScalar(1e-8) * btScalar(1e-8)))
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
if (signd * signd < (btScalar(1e-4) * btScalar(1e-4)))
|
||||
{
|
||||
// printf("affine dependent/degenerate\n");//
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
// Points on opposite sides if expression signs are opposite
|
||||
return signp * signd < btScalar(0.);
|
||||
}
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::closestPtPointTetrahedron(const btPoint3& p, const btPoint3& a, const btPoint3& b, const btPoint3& c, const btPoint3& d, SpuSubSimplexClosestResult& finalResult)
|
||||
{
|
||||
SpuSubSimplexClosestResult tempResult;
|
||||
|
||||
// Start out assuming point inside all halfspaces, so closest to itself
|
||||
finalResult.m_closestPointOnSimplex = p;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = true;
|
||||
finalResult.m_usedVertices.usedVertexB = true;
|
||||
finalResult.m_usedVertices.usedVertexC = true;
|
||||
finalResult.m_usedVertices.usedVertexD = true;
|
||||
|
||||
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
|
||||
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
|
||||
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
|
||||
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
|
||||
|
||||
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
|
||||
{
|
||||
finalResult.m_degenerate = true;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
btScalar bestSqDist = FLT_MAX;
|
||||
// If point outside face abc then compute closest point on abc
|
||||
if (pointOutsideABC)
|
||||
{
|
||||
closestPtPointTriangle(p, a, b, c,tempResult);
|
||||
btPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
|
||||
btScalar sqDist = (q - p).dot( q - p);
|
||||
// Update best closest point if (squared) distance is less than current best
|
||||
if (sqDist < bestSqDist) {
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
//convert result bitmask!
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.setBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTB],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
0
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Repeat test for face acd
|
||||
if (pointOutsideACD)
|
||||
{
|
||||
closestPtPointTriangle(p, a, c, d,tempResult);
|
||||
btPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
//convert result bitmask!
|
||||
|
||||
btScalar sqDist = (q - p).dot( q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.setBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTB],
|
||||
tempResult.m_barycentricCoords[VERTC]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
// Repeat test for face adb
|
||||
|
||||
|
||||
if (pointOutsideADB)
|
||||
{
|
||||
closestPtPointTriangle(p, a, d, b,tempResult);
|
||||
btPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
//convert result bitmask!
|
||||
|
||||
btScalar sqDist = (q - p).dot( q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.setBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTB]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
// Repeat test for face bdc
|
||||
|
||||
|
||||
if (pointOutsideBDC)
|
||||
{
|
||||
closestPtPointTriangle(p, b, d, c,tempResult);
|
||||
btPoint3 q = tempResult.m_closestPointOnSimplex;
|
||||
//convert result bitmask!
|
||||
btScalar sqDist = (q - p).dot( q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = q;
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
||||
|
||||
finalResult.setBarycentricCoordinates(
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
tempResult.m_barycentricCoords[VERTB]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//help! we ended up full !
|
||||
|
||||
if (finalResult.m_usedVertices.usedVertexA &&
|
||||
finalResult.m_usedVertices.usedVertexB &&
|
||||
finalResult.m_usedVertices.usedVertexC &&
|
||||
finalResult.m_usedVertices.usedVertexD)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -0,0 +1,161 @@
|
||||
/* [SCE CONFIDENTIAL DOCUMENT]
|
||||
* PLAYSTATION(R)3 SPU Optimized Bullet Physics Library (http://bulletphysics.com)
|
||||
* Copyright (C) 2007 Sony Computer Entertainment Inc.
|
||||
* All Rights Reserved.
|
||||
*/
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
|
||||
|
||||
#ifndef SPUVoronoiSimplexSolver_H
|
||||
#define SPUVoronoiSimplexSolver_H
|
||||
|
||||
#include <LinearMath/btTransform.h>
|
||||
#include <LinearMath/btPoint3.h>
|
||||
|
||||
#define VORONOI_SIMPLEX_MAX_VERTS 5
|
||||
|
||||
struct SpuUsageBitfield{
|
||||
SpuUsageBitfield()
|
||||
{
|
||||
reset();
|
||||
}
|
||||
|
||||
void reset()
|
||||
{
|
||||
usedVertexA = false;
|
||||
usedVertexB = false;
|
||||
usedVertexC = false;
|
||||
usedVertexD = false;
|
||||
}
|
||||
unsigned short usedVertexA : 1;
|
||||
unsigned short usedVertexB : 1;
|
||||
unsigned short usedVertexC : 1;
|
||||
unsigned short usedVertexD : 1;
|
||||
unsigned short unused1 : 1;
|
||||
unsigned short unused2 : 1;
|
||||
unsigned short unused3 : 1;
|
||||
unsigned short unused4 : 1;
|
||||
};
|
||||
|
||||
|
||||
struct SpuSubSimplexClosestResult
|
||||
{
|
||||
btVector3 m_closestPointOnSimplex;
|
||||
//MASK for m_usedVertices
|
||||
//stores the simplex vertex-usage, using the MASK,
|
||||
// if m_usedVertices & MASK then the related vertex is used
|
||||
SpuUsageBitfield m_usedVertices;
|
||||
float m_barycentricCoords[4];
|
||||
bool m_degenerate;
|
||||
|
||||
void reset()
|
||||
{
|
||||
m_degenerate = false;
|
||||
setBarycentricCoordinates();
|
||||
m_usedVertices.reset();
|
||||
}
|
||||
bool isValid()
|
||||
{
|
||||
bool valid = (m_barycentricCoords[0] >= float(0.)) &&
|
||||
(m_barycentricCoords[1] >= float(0.)) &&
|
||||
(m_barycentricCoords[2] >= float(0.)) &&
|
||||
(m_barycentricCoords[3] >= float(0.));
|
||||
|
||||
|
||||
return valid;
|
||||
}
|
||||
void setBarycentricCoordinates(float a=float(0.),float b=float(0.),float c=float(0.),float d=float(0.))
|
||||
{
|
||||
m_barycentricCoords[0] = a;
|
||||
m_barycentricCoords[1] = b;
|
||||
m_barycentricCoords[2] = c;
|
||||
m_barycentricCoords[3] = d;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/// SpuVoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin.
|
||||
/// Can be used with GJK, as an alternative to Johnson distance algorithm.
|
||||
class SpuVoronoiSimplexSolver
|
||||
{
|
||||
public:
|
||||
|
||||
int m_numVertices;
|
||||
|
||||
btVector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS];
|
||||
btVector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS];
|
||||
btVector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS];
|
||||
|
||||
int m_VertexIndexA[VORONOI_SIMPLEX_MAX_VERTS];
|
||||
int m_VertexIndexB[VORONOI_SIMPLEX_MAX_VERTS];
|
||||
|
||||
btVector3 m_cachedP1;
|
||||
btVector3 m_cachedP2;
|
||||
btVector3 m_cachedV;
|
||||
btVector3 m_lastW;
|
||||
bool m_cachedValidClosest;
|
||||
|
||||
SpuSubSimplexClosestResult m_cachedBC;
|
||||
|
||||
bool m_needsUpdate;
|
||||
|
||||
void removeVertex(int index);
|
||||
void reduceVertices (const SpuUsageBitfield& usedVerts);
|
||||
bool updateClosestVectorAndPoints();
|
||||
|
||||
bool closestPtPointTetrahedron(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d, SpuSubSimplexClosestResult& finalResult);
|
||||
int pointOutsideOfPlane(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c, const btVector3& d);
|
||||
bool closestPtPointTriangle(const btVector3& p, const btVector3& a, const btVector3& b, const btVector3& c,SpuSubSimplexClosestResult& result);
|
||||
|
||||
int RemoveDegenerateIndices (const int *inArray, int numIndices, int *outArray) const;
|
||||
|
||||
public:
|
||||
|
||||
void reset();
|
||||
|
||||
void addVertex(const btVector3& w, const btPoint3& p, const btPoint3& q);
|
||||
|
||||
|
||||
bool closest(btVector3& v);
|
||||
|
||||
float maxVertex();
|
||||
|
||||
bool fullSimplex() const
|
||||
{
|
||||
return (m_numVertices == 4);
|
||||
}
|
||||
|
||||
int getSimplex(btVector3 *pBuf, btVector3 *qBuf, btVector3 *yBuf) const;
|
||||
|
||||
bool inSimplex(const btVector3& w);
|
||||
|
||||
void backup_closest(btVector3& v) ;
|
||||
|
||||
bool emptySimplex() const ;
|
||||
|
||||
void compute_points(btVector3& p1, btVector3& p2) ;
|
||||
|
||||
int numVertices() const
|
||||
{
|
||||
return m_numVertices;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
#endif //SpuVoronoiSimplexSolver
|
||||
@@ -0,0 +1,649 @@
|
||||
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
Elsevier CDROM license agreements grants nonexclusive license to use the software
|
||||
for any purpose, commercial or non-commercial as long as the following credit is included
|
||||
identifying the original source of the software:
|
||||
|
||||
Parts of the source are "from the book Real-Time Collision Detection by
|
||||
Christer Ericson, published by Morgan Kaufmann Publishers,
|
||||
(c) 2005 Elsevier Inc."
|
||||
|
||||
*/
|
||||
|
||||
|
||||
// Needed to be able to DMA.
|
||||
#ifdef WIN32
|
||||
#include "SpuFakeDma.h"
|
||||
#else
|
||||
#include "SPU_Common/SpuDefines.h"
|
||||
#include <cell/spurs/common.h>
|
||||
#include <cell/dma.h>
|
||||
#endif //WIN32
|
||||
|
||||
|
||||
|
||||
#include "SpuVoronoiSimplexSolver.h"
|
||||
#include "LinearMath/btScalar.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
|
||||
#define VERTA 0
|
||||
#define VERTB 1
|
||||
#define VERTC 2
|
||||
#define VERTD 3
|
||||
|
||||
#define CATCH_DEGENERATE_TETRAHEDRON 1
|
||||
void SpuVoronoiSimplexSolver::removeVertex(int index)
|
||||
{
|
||||
assert(m_numVertices>0);
|
||||
m_numVertices--;
|
||||
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
|
||||
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
|
||||
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
|
||||
// m_VertexIndexA[index] = m_VertexIndexA[m_numVertices];
|
||||
// m_VertexIndexB[index] = m_VertexIndexB[m_numVertices];
|
||||
}
|
||||
|
||||
void SpuVoronoiSimplexSolver::reduceVertices (const SpuUsageBitfield& usedVerts)
|
||||
{
|
||||
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
|
||||
removeVertex(3);
|
||||
|
||||
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
|
||||
removeVertex(2);
|
||||
|
||||
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
|
||||
removeVertex(1);
|
||||
|
||||
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
|
||||
removeVertex(0);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//clear the simplex, remove all the vertices
|
||||
void SpuVoronoiSimplexSolver::reset()
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
m_numVertices = 0;
|
||||
m_needsUpdate = true;
|
||||
m_lastW = Vectormath::Aos::Vector3(float(1e30),float(1e30),float(1e30));
|
||||
m_cachedBC.reset();
|
||||
}
|
||||
|
||||
|
||||
|
||||
//add a vertex
|
||||
void SpuVoronoiSimplexSolver::addVertex(const Vectormath::Aos::Vector3& w, const Vectormath::Aos::Point3& p, const Vectormath::Aos::Point3& q)//, int vertexIndexA, int vertexIndexB)
|
||||
{
|
||||
m_lastW = w;
|
||||
m_needsUpdate = true;
|
||||
|
||||
m_simplexVectorW[m_numVertices] = w;
|
||||
m_simplexPointsP[m_numVertices] = Vectormath::Aos::Vector3(p);
|
||||
m_simplexPointsQ[m_numVertices] = Vectormath::Aos::Vector3(q);
|
||||
|
||||
//m_VertexIndexA[m_numVertices] = vertexIndexA;
|
||||
//m_VertexIndexB[m_numVertices] = vertexIndexB;
|
||||
|
||||
m_numVertices++;
|
||||
}
|
||||
|
||||
bool SpuVoronoiSimplexSolver::updateClosestVectorAndPoints()
|
||||
{
|
||||
|
||||
if (m_needsUpdate)
|
||||
{
|
||||
m_cachedBC.reset();
|
||||
|
||||
m_needsUpdate = false;
|
||||
|
||||
switch (numVertices())
|
||||
{
|
||||
case 0:
|
||||
m_cachedValidClosest = false;
|
||||
break;
|
||||
case 1:
|
||||
{
|
||||
m_cachedP1 = m_simplexPointsP[0];
|
||||
m_cachedP2 = m_simplexPointsQ[0];
|
||||
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
|
||||
m_cachedBC.reset();
|
||||
m_cachedBC.setBarycentricCoordinates(float(1.),float(0.),float(0.),float(0.));
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
break;
|
||||
};
|
||||
case 2:
|
||||
{
|
||||
//closest point origin from line segment
|
||||
const Vectormath::Aos::Vector3& from = m_simplexVectorW[0];
|
||||
const Vectormath::Aos::Vector3& to = m_simplexVectorW[1];
|
||||
Vectormath::Aos::Vector3 nearest;
|
||||
|
||||
Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.));
|
||||
Vectormath::Aos::Vector3 diff = p - from;
|
||||
Vectormath::Aos::Vector3 v = to - from;
|
||||
float t = dot(v, diff);
|
||||
|
||||
if (t > 0) {
|
||||
float dotVV = dot(v, v);
|
||||
if (t < dotVV) {
|
||||
t /= dotVV;
|
||||
diff -= t*v;
|
||||
m_cachedBC.m_usedVertices.usedVertexA = true;
|
||||
m_cachedBC.m_usedVertices.usedVertexB = true;
|
||||
} else {
|
||||
t = 1;
|
||||
diff -= v;
|
||||
//reduce to 1 point
|
||||
m_cachedBC.m_usedVertices.usedVertexB = true;
|
||||
}
|
||||
} else
|
||||
{
|
||||
t = 0;
|
||||
//reduce to 1 point
|
||||
m_cachedBC.m_usedVertices.usedVertexA = true;
|
||||
}
|
||||
m_cachedBC.setBarycentricCoordinates(1-t,t);
|
||||
nearest = from + t*v;
|
||||
|
||||
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
|
||||
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
|
||||
m_cachedV = m_cachedP1 - m_cachedP2;
|
||||
|
||||
reduceVertices(m_cachedBC.m_usedVertices);
|
||||
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
//closest point origin from triangle
|
||||
Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.));
|
||||
|
||||
const Vectormath::Aos::Vector3& a = m_simplexVectorW[0];
|
||||
const Vectormath::Aos::Vector3& b = m_simplexVectorW[1];
|
||||
const Vectormath::Aos::Vector3& c = m_simplexVectorW[2];
|
||||
|
||||
closestPtPointTriangle(p,a,b,c,m_cachedBC);
|
||||
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
|
||||
|
||||
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
|
||||
|
||||
m_cachedV = m_cachedP1-m_cachedP2;
|
||||
|
||||
reduceVertices (m_cachedBC.m_usedVertices);
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
|
||||
|
||||
Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.));
|
||||
|
||||
const Vectormath::Aos::Vector3& a = m_simplexVectorW[0];
|
||||
const Vectormath::Aos::Vector3& b = m_simplexVectorW[1];
|
||||
const Vectormath::Aos::Vector3& c = m_simplexVectorW[2];
|
||||
const Vectormath::Aos::Vector3& d = m_simplexVectorW[3];
|
||||
|
||||
bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
|
||||
|
||||
if (hasSeperation)
|
||||
{
|
||||
|
||||
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
||||
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
||||
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
|
||||
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
|
||||
|
||||
m_cachedV = m_cachedP1-m_cachedP2;
|
||||
reduceVertices (m_cachedBC.m_usedVertices);
|
||||
} else
|
||||
{
|
||||
// printf("sub distance got penetration\n");
|
||||
|
||||
if (m_cachedBC.m_degenerate)
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
} else
|
||||
{
|
||||
m_cachedValidClosest = true;
|
||||
//degenerate case == false, penetration = true + zero
|
||||
m_cachedV = Vectormath::Aos::Vector3(float(0.),float(0.),float(0.));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
m_cachedValidClosest = m_cachedBC.isValid();
|
||||
|
||||
//closest point origin from tetrahedron
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
m_cachedValidClosest = false;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
return m_cachedValidClosest;
|
||||
|
||||
}
|
||||
|
||||
//return/calculate the closest vertex
|
||||
bool SpuVoronoiSimplexSolver::closest(Vectormath::Aos::Vector3& v)
|
||||
{
|
||||
bool succes = updateClosestVectorAndPoints();
|
||||
v = m_cachedV;
|
||||
return succes;
|
||||
}
|
||||
|
||||
|
||||
|
||||
float SpuVoronoiSimplexSolver::maxVertex()
|
||||
{
|
||||
int i, numverts = numVertices();
|
||||
float maxV = float(0.);
|
||||
for (i=0;i<numverts;i++)
|
||||
{
|
||||
float curLen2 = lengthSqr(m_simplexVectorW[i]);
|
||||
if (maxV < curLen2)
|
||||
maxV = curLen2;
|
||||
}
|
||||
return maxV;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//return the current simplex
|
||||
int SpuVoronoiSimplexSolver::getSimplex(Vectormath::Aos::Vector3 *pBuf, Vectormath::Aos::Vector3 *qBuf, Vectormath::Aos::Vector3 *yBuf) const
|
||||
{
|
||||
int i;
|
||||
for (i=0;i<numVertices();i++)
|
||||
{
|
||||
yBuf[i] = m_simplexVectorW[i];
|
||||
pBuf[i] = m_simplexPointsP[i];
|
||||
qBuf[i] = m_simplexPointsQ[i];
|
||||
}
|
||||
return numVertices();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::inSimplex(const Vectormath::Aos::Vector3& w)
|
||||
{
|
||||
bool found = false;
|
||||
int i, numverts = numVertices();
|
||||
//float maxV = float(0.);
|
||||
|
||||
//w is in the current (reduced) simplex
|
||||
for (i=0;i<numverts;i++)
|
||||
{
|
||||
// TODO: find a better way to determine equality
|
||||
if (m_simplexVectorW[i].getX() == w.getX() &&
|
||||
m_simplexVectorW[i].getY() == w.getY() &&
|
||||
m_simplexVectorW[i].getZ() == w.getZ())
|
||||
found = true;
|
||||
}
|
||||
|
||||
//check in case lastW is already removed
|
||||
// TODO: find a better way to determine equality
|
||||
if (w.getX() == m_lastW.getX() &&
|
||||
w.getY() == m_lastW.getY() &&
|
||||
w.getZ() == m_lastW.getZ())
|
||||
return true;
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
void SpuVoronoiSimplexSolver::backup_closest(Vectormath::Aos::Vector3& v)
|
||||
{
|
||||
v = m_cachedV;
|
||||
}
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::emptySimplex() const
|
||||
{
|
||||
return (numVertices() == 0);
|
||||
|
||||
}
|
||||
|
||||
void SpuVoronoiSimplexSolver::compute_points(Vectormath::Aos::Point3& p1, Vectormath::Aos::Point3& p2)
|
||||
{
|
||||
updateClosestVectorAndPoints();
|
||||
p1 = Vectormath::Aos::Point3(m_cachedP1);
|
||||
p2 = Vectormath::Aos::Point3(m_cachedP2);
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::closestPtPointTriangle(const Vectormath::Aos::Vector3& p, const Vectormath::Aos::Vector3& a, const Vectormath::Aos::Vector3& b, const Vectormath::Aos::Vector3& c,SpuSubSimplexClosestResult& result)
|
||||
{
|
||||
result.m_usedVertices.reset();
|
||||
|
||||
// Check if P in vertex region outside A
|
||||
Vectormath::Aos::Vector3 ab = b - a;
|
||||
Vectormath::Aos::Vector3 ac = c - a;
|
||||
Vectormath::Aos::Vector3 ap = p - a;
|
||||
float d1 = dot(ab,ap);
|
||||
float d2 = dot(ac,ap);
|
||||
if (d1 <= float(0.0) && d2 <= float(0.0))
|
||||
{
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a);
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.setBarycentricCoordinates(1,0,0);
|
||||
return true;// a; // barycentric coordinates (1,0,0)
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside B
|
||||
Vectormath::Aos::Vector3 bp = p - b;
|
||||
float d3 = dot(ab,bp);
|
||||
float d4 = dot(ac,bp);
|
||||
if (d3 >= float(0.0) && d4 <= d3)
|
||||
{
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(b);
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.setBarycentricCoordinates(0,1,0);
|
||||
|
||||
return true; // b; // barycentric coordinates (0,1,0)
|
||||
}
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
float vc = d1*d4 - d3*d2;
|
||||
if (vc <= float(0.0) && d1 >= float(0.0) && d3 <= float(0.0)) {
|
||||
float v = d1 / (d1 - d3);
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + v * ab);
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.setBarycentricCoordinates(1-v,v,0);
|
||||
return true;
|
||||
//return a + v * ab; // barycentric coordinates (1-v,v,0)
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside C
|
||||
Vectormath::Aos::Vector3 cp = p - c;
|
||||
float d5 = dot(ab,cp);
|
||||
float d6 = dot(ac,cp);
|
||||
if (d6 >= float(0.0) && d5 <= d6)
|
||||
{
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(c);
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(0,0,1);
|
||||
return true;//c; // barycentric coordinates (0,0,1)
|
||||
}
|
||||
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
float vb = d5*d2 - d1*d6;
|
||||
if (vb <= float(0.0) && d2 >= float(0.0) && d6 <= float(0.0)) {
|
||||
float w = d2 / (d2 - d6);
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + w * ac);
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(1-w,0,w);
|
||||
return true;
|
||||
//return a + w * ac; // barycentric coordinates (1-w,0,w)
|
||||
}
|
||||
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
float va = d3*d6 - d5*d4;
|
||||
if (va <= float(0.0) && (d4 - d3) >= float(0.0) && (d5 - d6) >= float(0.0)) {
|
||||
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(b + w * (c - b));
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(0,1-w,w);
|
||||
return true;
|
||||
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
|
||||
}
|
||||
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
float denom = float(1.0) / (va + vb + vc);
|
||||
float v = vb * denom;
|
||||
float w = vc * denom;
|
||||
|
||||
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + ab * v + ac * w);
|
||||
result.m_usedVertices.usedVertexA = true;
|
||||
result.m_usedVertices.usedVertexB = true;
|
||||
result.m_usedVertices.usedVertexC = true;
|
||||
result.setBarycentricCoordinates(1-v-w,v,w);
|
||||
|
||||
return true;
|
||||
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = float(1.0) - v - w
|
||||
}
|
||||
|
||||
|
||||
// This is specifically just removing duplicate indices.
|
||||
int SpuVoronoiSimplexSolver::RemoveDegenerateIndices (const int* inArray, int numIndices, int* outArray) const
|
||||
{
|
||||
int outIndex = 0;
|
||||
for (int firstIndex=0; firstIndex<numIndices; firstIndex++)
|
||||
{
|
||||
bool duplicate = false;
|
||||
for (int secondIndex=0; secondIndex<firstIndex; secondIndex++)
|
||||
{
|
||||
if (inArray[secondIndex]==inArray[firstIndex])
|
||||
{
|
||||
duplicate = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!duplicate)
|
||||
{
|
||||
outArray[outIndex++] = inArray[firstIndex];
|
||||
}
|
||||
}
|
||||
|
||||
return outIndex;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// Test if point p and d lie on opposite sides of plane through abc
|
||||
int SpuVoronoiSimplexSolver::pointOutsideOfPlane(const Vectormath::Aos::Vector3& p, const Vectormath::Aos::Vector3& a, const Vectormath::Aos::Vector3& b, const Vectormath::Aos::Vector3& c, const Vectormath::Aos::Vector3& d)
|
||||
{
|
||||
Vectormath::Aos::Vector3 normal = cross(b-a,c-a);
|
||||
|
||||
float signp = dot(p - a, normal); // [AP AB AC]
|
||||
float signd = dot(d - a, normal); // [AD AB AC]
|
||||
|
||||
#ifdef CATCH_DEGENERATE_TETRAHEDRON
|
||||
if (signd * signd < (float(1e-4) * float(1e-4)))
|
||||
{
|
||||
// printf("affine dependent/degenerate\n");//
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
// Points on opposite sides if expression signs are opposite
|
||||
return signp * signd < float(0.);
|
||||
}
|
||||
|
||||
|
||||
bool SpuVoronoiSimplexSolver::closestPtPointTetrahedron(const Vectormath::Aos::Vector3& p, const Vectormath::Aos::Vector3& a, const Vectormath::Aos::Vector3& b, const Vectormath::Aos::Vector3& c, const Vectormath::Aos::Vector3& d, SpuSubSimplexClosestResult& finalResult)
|
||||
{
|
||||
SpuSubSimplexClosestResult tempResult;
|
||||
|
||||
// Start out assuming point inside all halfspaces, so closest to itself
|
||||
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(p);
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = true;
|
||||
finalResult.m_usedVertices.usedVertexB = true;
|
||||
finalResult.m_usedVertices.usedVertexC = true;
|
||||
finalResult.m_usedVertices.usedVertexD = true;
|
||||
|
||||
// Check only the tetrahedron faces that are closest to p. We do that by checking each face (which itself is a triangle) to see if the excluded
|
||||
// vertex (the one vertex that isn't part of that face) is on the other side of that face from the point p.
|
||||
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
|
||||
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
|
||||
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
|
||||
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
|
||||
|
||||
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
|
||||
{
|
||||
finalResult.m_degenerate = true;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
float bestSqDist = 1e30f;//FLT_MAX;
|
||||
// If point outside face abc then compute closest point on abc
|
||||
if (pointOutsideABC)
|
||||
{
|
||||
closestPtPointTriangle(p, a, b, c,tempResult);
|
||||
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
||||
|
||||
float sqDist = dot(q - p, q - p);
|
||||
// Update best closest point if (squared) distance is less than current best
|
||||
//if (sqDist < bestSqDist)
|
||||
btAssert(sqDist < bestSqDist); // This has to be true; we haven't actually tested any other combinations.
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
||||
//convert result bitmask!
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.setBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTB],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
0
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Repeat test for face acd
|
||||
if (pointOutsideACD)
|
||||
{
|
||||
closestPtPointTriangle(p, a, c, d,tempResult);
|
||||
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
||||
//convert result bitmask!
|
||||
|
||||
float sqDist = dot(q - p, q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.setBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTB],
|
||||
tempResult.m_barycentricCoords[VERTC]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
// Repeat test for face adb
|
||||
|
||||
|
||||
if (pointOutsideADB)
|
||||
{
|
||||
closestPtPointTriangle(p, a, d, b,tempResult);
|
||||
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
||||
//convert result bitmask!
|
||||
|
||||
float sqDist = dot(q - p, q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
|
||||
finalResult.setBarycentricCoordinates(
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTB]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
// Repeat test for face bdc
|
||||
|
||||
|
||||
if (pointOutsideBDC)
|
||||
{
|
||||
closestPtPointTriangle(p, b, d, c,tempResult);
|
||||
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
||||
//convert result bitmask!
|
||||
float sqDist = dot(q - p, q - p);
|
||||
if (sqDist < bestSqDist)
|
||||
{
|
||||
bestSqDist = sqDist;
|
||||
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
||||
finalResult.m_usedVertices.reset();
|
||||
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
|
||||
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
||||
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
||||
|
||||
finalResult.setBarycentricCoordinates(
|
||||
0,
|
||||
tempResult.m_barycentricCoords[VERTA],
|
||||
tempResult.m_barycentricCoords[VERTC],
|
||||
tempResult.m_barycentricCoords[VERTB]
|
||||
);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//help! we ended up full !
|
||||
|
||||
if (finalResult.m_usedVertices.usedVertexA &&
|
||||
finalResult.m_usedVertices.usedVertexB &&
|
||||
finalResult.m_usedVertices.usedVertexC &&
|
||||
finalResult.m_usedVertices.usedVertexD)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
Empty placeholder for future Libspe2 SPU task
|
||||
Reference in New Issue
Block a user