650 lines
20 KiB
C++
650 lines
20 KiB
C++
|
|
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
|
|
Elsevier CDROM license agreements grants nonexclusive license to use the software
|
|
for any purpose, commercial or non-commercial as long as the following credit is included
|
|
identifying the original source of the software:
|
|
|
|
Parts of the source are "from the book Real-Time Collision Detection by
|
|
Christer Ericson, published by Morgan Kaufmann Publishers,
|
|
(c) 2005 Elsevier Inc."
|
|
|
|
*/
|
|
|
|
|
|
// Needed to be able to DMA.
|
|
#ifdef WIN32
|
|
#include "SpuFakeDma.h"
|
|
#else
|
|
#include "SPU_Common/SpuDefines.h"
|
|
#include <cell/spurs/common.h>
|
|
#include <cell/dma.h>
|
|
#endif //WIN32
|
|
|
|
|
|
|
|
#include "SpuVoronoiSimplexSolver.h"
|
|
#include "LinearMath/btScalar.h"
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
|
|
#define VERTA 0
|
|
#define VERTB 1
|
|
#define VERTC 2
|
|
#define VERTD 3
|
|
|
|
#define CATCH_DEGENERATE_TETRAHEDRON 1
|
|
void SpuVoronoiSimplexSolver::removeVertex(int index)
|
|
{
|
|
assert(m_numVertices>0);
|
|
m_numVertices--;
|
|
m_simplexVectorW[index] = m_simplexVectorW[m_numVertices];
|
|
m_simplexPointsP[index] = m_simplexPointsP[m_numVertices];
|
|
m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices];
|
|
// m_VertexIndexA[index] = m_VertexIndexA[m_numVertices];
|
|
// m_VertexIndexB[index] = m_VertexIndexB[m_numVertices];
|
|
}
|
|
|
|
void SpuVoronoiSimplexSolver::reduceVertices (const SpuUsageBitfield& usedVerts)
|
|
{
|
|
if ((numVertices() >= 4) && (!usedVerts.usedVertexD))
|
|
removeVertex(3);
|
|
|
|
if ((numVertices() >= 3) && (!usedVerts.usedVertexC))
|
|
removeVertex(2);
|
|
|
|
if ((numVertices() >= 2) && (!usedVerts.usedVertexB))
|
|
removeVertex(1);
|
|
|
|
if ((numVertices() >= 1) && (!usedVerts.usedVertexA))
|
|
removeVertex(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//clear the simplex, remove all the vertices
|
|
void SpuVoronoiSimplexSolver::reset()
|
|
{
|
|
m_cachedValidClosest = false;
|
|
m_numVertices = 0;
|
|
m_needsUpdate = true;
|
|
m_lastW = Vectormath::Aos::Vector3(float(1e30),float(1e30),float(1e30));
|
|
m_cachedBC.reset();
|
|
}
|
|
|
|
|
|
|
|
//add a vertex
|
|
void SpuVoronoiSimplexSolver::addVertex(const Vectormath::Aos::Vector3& w, const Vectormath::Aos::Point3& p, const Vectormath::Aos::Point3& q)//, int vertexIndexA, int vertexIndexB)
|
|
{
|
|
m_lastW = w;
|
|
m_needsUpdate = true;
|
|
|
|
m_simplexVectorW[m_numVertices] = w;
|
|
m_simplexPointsP[m_numVertices] = Vectormath::Aos::Vector3(p);
|
|
m_simplexPointsQ[m_numVertices] = Vectormath::Aos::Vector3(q);
|
|
|
|
//m_VertexIndexA[m_numVertices] = vertexIndexA;
|
|
//m_VertexIndexB[m_numVertices] = vertexIndexB;
|
|
|
|
m_numVertices++;
|
|
}
|
|
|
|
bool SpuVoronoiSimplexSolver::updateClosestVectorAndPoints()
|
|
{
|
|
|
|
if (m_needsUpdate)
|
|
{
|
|
m_cachedBC.reset();
|
|
|
|
m_needsUpdate = false;
|
|
|
|
switch (numVertices())
|
|
{
|
|
case 0:
|
|
m_cachedValidClosest = false;
|
|
break;
|
|
case 1:
|
|
{
|
|
m_cachedP1 = m_simplexPointsP[0];
|
|
m_cachedP2 = m_simplexPointsQ[0];
|
|
m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0]
|
|
m_cachedBC.reset();
|
|
m_cachedBC.setBarycentricCoordinates(float(1.),float(0.),float(0.),float(0.));
|
|
m_cachedValidClosest = m_cachedBC.isValid();
|
|
break;
|
|
};
|
|
case 2:
|
|
{
|
|
//closest point origin from line segment
|
|
const Vectormath::Aos::Vector3& from = m_simplexVectorW[0];
|
|
const Vectormath::Aos::Vector3& to = m_simplexVectorW[1];
|
|
Vectormath::Aos::Vector3 nearest;
|
|
|
|
Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.));
|
|
Vectormath::Aos::Vector3 diff = p - from;
|
|
Vectormath::Aos::Vector3 v = to - from;
|
|
float t = dot(v, diff);
|
|
|
|
if (t > 0) {
|
|
float dotVV = dot(v, v);
|
|
if (t < dotVV) {
|
|
t /= dotVV;
|
|
diff -= t*v;
|
|
m_cachedBC.m_usedVertices.usedVertexA = true;
|
|
m_cachedBC.m_usedVertices.usedVertexB = true;
|
|
} else {
|
|
t = 1;
|
|
diff -= v;
|
|
//reduce to 1 point
|
|
m_cachedBC.m_usedVertices.usedVertexB = true;
|
|
}
|
|
} else
|
|
{
|
|
t = 0;
|
|
//reduce to 1 point
|
|
m_cachedBC.m_usedVertices.usedVertexA = true;
|
|
}
|
|
m_cachedBC.setBarycentricCoordinates(1-t,t);
|
|
nearest = from + t*v;
|
|
|
|
m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]);
|
|
m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]);
|
|
m_cachedV = m_cachedP1 - m_cachedP2;
|
|
|
|
reduceVertices(m_cachedBC.m_usedVertices);
|
|
|
|
m_cachedValidClosest = m_cachedBC.isValid();
|
|
break;
|
|
}
|
|
case 3:
|
|
{
|
|
//closest point origin from triangle
|
|
Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.));
|
|
|
|
const Vectormath::Aos::Vector3& a = m_simplexVectorW[0];
|
|
const Vectormath::Aos::Vector3& b = m_simplexVectorW[1];
|
|
const Vectormath::Aos::Vector3& c = m_simplexVectorW[2];
|
|
|
|
closestPtPointTriangle(p,a,b,c,m_cachedBC);
|
|
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
|
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
|
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2];
|
|
|
|
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
|
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
|
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2];
|
|
|
|
m_cachedV = m_cachedP1-m_cachedP2;
|
|
|
|
reduceVertices (m_cachedBC.m_usedVertices);
|
|
m_cachedValidClosest = m_cachedBC.isValid();
|
|
|
|
break;
|
|
}
|
|
case 4:
|
|
{
|
|
|
|
|
|
Vectormath::Aos::Vector3 p (float(0.),float(0.),float(0.));
|
|
|
|
const Vectormath::Aos::Vector3& a = m_simplexVectorW[0];
|
|
const Vectormath::Aos::Vector3& b = m_simplexVectorW[1];
|
|
const Vectormath::Aos::Vector3& c = m_simplexVectorW[2];
|
|
const Vectormath::Aos::Vector3& d = m_simplexVectorW[3];
|
|
|
|
bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC);
|
|
|
|
if (hasSeperation)
|
|
{
|
|
|
|
m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] +
|
|
m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] +
|
|
m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] +
|
|
m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3];
|
|
|
|
m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] +
|
|
m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] +
|
|
m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] +
|
|
m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3];
|
|
|
|
m_cachedV = m_cachedP1-m_cachedP2;
|
|
reduceVertices (m_cachedBC.m_usedVertices);
|
|
} else
|
|
{
|
|
// printf("sub distance got penetration\n");
|
|
|
|
if (m_cachedBC.m_degenerate)
|
|
{
|
|
m_cachedValidClosest = false;
|
|
} else
|
|
{
|
|
m_cachedValidClosest = true;
|
|
//degenerate case == false, penetration = true + zero
|
|
m_cachedV = Vectormath::Aos::Vector3(float(0.),float(0.),float(0.));
|
|
}
|
|
break;
|
|
}
|
|
|
|
m_cachedValidClosest = m_cachedBC.isValid();
|
|
|
|
//closest point origin from tetrahedron
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
m_cachedValidClosest = false;
|
|
}
|
|
};
|
|
}
|
|
|
|
return m_cachedValidClosest;
|
|
|
|
}
|
|
|
|
//return/calculate the closest vertex
|
|
bool SpuVoronoiSimplexSolver::closest(Vectormath::Aos::Vector3& v)
|
|
{
|
|
bool succes = updateClosestVectorAndPoints();
|
|
v = m_cachedV;
|
|
return succes;
|
|
}
|
|
|
|
|
|
|
|
float SpuVoronoiSimplexSolver::maxVertex()
|
|
{
|
|
int i, numverts = numVertices();
|
|
float maxV = float(0.);
|
|
for (i=0;i<numverts;i++)
|
|
{
|
|
float curLen2 = lengthSqr(m_simplexVectorW[i]);
|
|
if (maxV < curLen2)
|
|
maxV = curLen2;
|
|
}
|
|
return maxV;
|
|
}
|
|
|
|
|
|
|
|
//return the current simplex
|
|
int SpuVoronoiSimplexSolver::getSimplex(Vectormath::Aos::Vector3 *pBuf, Vectormath::Aos::Vector3 *qBuf, Vectormath::Aos::Vector3 *yBuf) const
|
|
{
|
|
int i;
|
|
for (i=0;i<numVertices();i++)
|
|
{
|
|
yBuf[i] = m_simplexVectorW[i];
|
|
pBuf[i] = m_simplexPointsP[i];
|
|
qBuf[i] = m_simplexPointsQ[i];
|
|
}
|
|
return numVertices();
|
|
}
|
|
|
|
|
|
|
|
|
|
bool SpuVoronoiSimplexSolver::inSimplex(const Vectormath::Aos::Vector3& w)
|
|
{
|
|
bool found = false;
|
|
int i, numverts = numVertices();
|
|
//float maxV = float(0.);
|
|
|
|
//w is in the current (reduced) simplex
|
|
for (i=0;i<numverts;i++)
|
|
{
|
|
// TODO: find a better way to determine equality
|
|
if (m_simplexVectorW[i].getX() == w.getX() &&
|
|
m_simplexVectorW[i].getY() == w.getY() &&
|
|
m_simplexVectorW[i].getZ() == w.getZ())
|
|
found = true;
|
|
}
|
|
|
|
//check in case lastW is already removed
|
|
// TODO: find a better way to determine equality
|
|
if (w.getX() == m_lastW.getX() &&
|
|
w.getY() == m_lastW.getY() &&
|
|
w.getZ() == m_lastW.getZ())
|
|
return true;
|
|
|
|
return found;
|
|
}
|
|
|
|
void SpuVoronoiSimplexSolver::backup_closest(Vectormath::Aos::Vector3& v)
|
|
{
|
|
v = m_cachedV;
|
|
}
|
|
|
|
|
|
bool SpuVoronoiSimplexSolver::emptySimplex() const
|
|
{
|
|
return (numVertices() == 0);
|
|
|
|
}
|
|
|
|
void SpuVoronoiSimplexSolver::compute_points(Vectormath::Aos::Point3& p1, Vectormath::Aos::Point3& p2)
|
|
{
|
|
updateClosestVectorAndPoints();
|
|
p1 = Vectormath::Aos::Point3(m_cachedP1);
|
|
p2 = Vectormath::Aos::Point3(m_cachedP2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool SpuVoronoiSimplexSolver::closestPtPointTriangle(const Vectormath::Aos::Vector3& p, const Vectormath::Aos::Vector3& a, const Vectormath::Aos::Vector3& b, const Vectormath::Aos::Vector3& c,SpuSubSimplexClosestResult& result)
|
|
{
|
|
result.m_usedVertices.reset();
|
|
|
|
// Check if P in vertex region outside A
|
|
Vectormath::Aos::Vector3 ab = b - a;
|
|
Vectormath::Aos::Vector3 ac = c - a;
|
|
Vectormath::Aos::Vector3 ap = p - a;
|
|
float d1 = dot(ab,ap);
|
|
float d2 = dot(ac,ap);
|
|
if (d1 <= float(0.0) && d2 <= float(0.0))
|
|
{
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a);
|
|
result.m_usedVertices.usedVertexA = true;
|
|
result.setBarycentricCoordinates(1,0,0);
|
|
return true;// a; // barycentric coordinates (1,0,0)
|
|
}
|
|
|
|
// Check if P in vertex region outside B
|
|
Vectormath::Aos::Vector3 bp = p - b;
|
|
float d3 = dot(ab,bp);
|
|
float d4 = dot(ac,bp);
|
|
if (d3 >= float(0.0) && d4 <= d3)
|
|
{
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(b);
|
|
result.m_usedVertices.usedVertexB = true;
|
|
result.setBarycentricCoordinates(0,1,0);
|
|
|
|
return true; // b; // barycentric coordinates (0,1,0)
|
|
}
|
|
// Check if P in edge region of AB, if so return projection of P onto AB
|
|
float vc = d1*d4 - d3*d2;
|
|
if (vc <= float(0.0) && d1 >= float(0.0) && d3 <= float(0.0)) {
|
|
float v = d1 / (d1 - d3);
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + v * ab);
|
|
result.m_usedVertices.usedVertexA = true;
|
|
result.m_usedVertices.usedVertexB = true;
|
|
result.setBarycentricCoordinates(1-v,v,0);
|
|
return true;
|
|
//return a + v * ab; // barycentric coordinates (1-v,v,0)
|
|
}
|
|
|
|
// Check if P in vertex region outside C
|
|
Vectormath::Aos::Vector3 cp = p - c;
|
|
float d5 = dot(ab,cp);
|
|
float d6 = dot(ac,cp);
|
|
if (d6 >= float(0.0) && d5 <= d6)
|
|
{
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(c);
|
|
result.m_usedVertices.usedVertexC = true;
|
|
result.setBarycentricCoordinates(0,0,1);
|
|
return true;//c; // barycentric coordinates (0,0,1)
|
|
}
|
|
|
|
// Check if P in edge region of AC, if so return projection of P onto AC
|
|
float vb = d5*d2 - d1*d6;
|
|
if (vb <= float(0.0) && d2 >= float(0.0) && d6 <= float(0.0)) {
|
|
float w = d2 / (d2 - d6);
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + w * ac);
|
|
result.m_usedVertices.usedVertexA = true;
|
|
result.m_usedVertices.usedVertexC = true;
|
|
result.setBarycentricCoordinates(1-w,0,w);
|
|
return true;
|
|
//return a + w * ac; // barycentric coordinates (1-w,0,w)
|
|
}
|
|
|
|
// Check if P in edge region of BC, if so return projection of P onto BC
|
|
float va = d3*d6 - d5*d4;
|
|
if (va <= float(0.0) && (d4 - d3) >= float(0.0) && (d5 - d6) >= float(0.0)) {
|
|
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
|
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(b + w * (c - b));
|
|
result.m_usedVertices.usedVertexB = true;
|
|
result.m_usedVertices.usedVertexC = true;
|
|
result.setBarycentricCoordinates(0,1-w,w);
|
|
return true;
|
|
// return b + w * (c - b); // barycentric coordinates (0,1-w,w)
|
|
}
|
|
|
|
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
|
float denom = float(1.0) / (va + vb + vc);
|
|
float v = vb * denom;
|
|
float w = vc * denom;
|
|
|
|
result.m_closestPointOnSimplex = Vectormath::Aos::Point3(a + ab * v + ac * w);
|
|
result.m_usedVertices.usedVertexA = true;
|
|
result.m_usedVertices.usedVertexB = true;
|
|
result.m_usedVertices.usedVertexC = true;
|
|
result.setBarycentricCoordinates(1-v-w,v,w);
|
|
|
|
return true;
|
|
// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = float(1.0) - v - w
|
|
}
|
|
|
|
|
|
// This is specifically just removing duplicate indices.
|
|
int SpuVoronoiSimplexSolver::RemoveDegenerateIndices (const int* inArray, int numIndices, int* outArray) const
|
|
{
|
|
int outIndex = 0;
|
|
for (int firstIndex=0; firstIndex<numIndices; firstIndex++)
|
|
{
|
|
bool duplicate = false;
|
|
for (int secondIndex=0; secondIndex<firstIndex; secondIndex++)
|
|
{
|
|
if (inArray[secondIndex]==inArray[firstIndex])
|
|
{
|
|
duplicate = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!duplicate)
|
|
{
|
|
outArray[outIndex++] = inArray[firstIndex];
|
|
}
|
|
}
|
|
|
|
return outIndex;
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Test if point p and d lie on opposite sides of plane through abc
|
|
int SpuVoronoiSimplexSolver::pointOutsideOfPlane(const Vectormath::Aos::Vector3& p, const Vectormath::Aos::Vector3& a, const Vectormath::Aos::Vector3& b, const Vectormath::Aos::Vector3& c, const Vectormath::Aos::Vector3& d)
|
|
{
|
|
Vectormath::Aos::Vector3 normal = cross(b-a,c-a);
|
|
|
|
float signp = dot(p - a, normal); // [AP AB AC]
|
|
float signd = dot(d - a, normal); // [AD AB AC]
|
|
|
|
#ifdef CATCH_DEGENERATE_TETRAHEDRON
|
|
if (signd * signd < (float(1e-4) * float(1e-4)))
|
|
{
|
|
// printf("affine dependent/degenerate\n");//
|
|
return -1;
|
|
}
|
|
#endif
|
|
// Points on opposite sides if expression signs are opposite
|
|
return signp * signd < float(0.);
|
|
}
|
|
|
|
|
|
bool SpuVoronoiSimplexSolver::closestPtPointTetrahedron(const Vectormath::Aos::Vector3& p, const Vectormath::Aos::Vector3& a, const Vectormath::Aos::Vector3& b, const Vectormath::Aos::Vector3& c, const Vectormath::Aos::Vector3& d, SpuSubSimplexClosestResult& finalResult)
|
|
{
|
|
SpuSubSimplexClosestResult tempResult;
|
|
|
|
// Start out assuming point inside all halfspaces, so closest to itself
|
|
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(p);
|
|
finalResult.m_usedVertices.reset();
|
|
finalResult.m_usedVertices.usedVertexA = true;
|
|
finalResult.m_usedVertices.usedVertexB = true;
|
|
finalResult.m_usedVertices.usedVertexC = true;
|
|
finalResult.m_usedVertices.usedVertexD = true;
|
|
|
|
// Check only the tetrahedron faces that are closest to p. We do that by checking each face (which itself is a triangle) to see if the excluded
|
|
// vertex (the one vertex that isn't part of that face) is on the other side of that face from the point p.
|
|
int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d);
|
|
int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b);
|
|
int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c);
|
|
int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a);
|
|
|
|
if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0)
|
|
{
|
|
finalResult.m_degenerate = true;
|
|
return false;
|
|
}
|
|
|
|
if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
|
|
float bestSqDist = 1e30f;//FLT_MAX;
|
|
// If point outside face abc then compute closest point on abc
|
|
if (pointOutsideABC)
|
|
{
|
|
closestPtPointTriangle(p, a, b, c,tempResult);
|
|
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
|
|
|
float sqDist = dot(q - p, q - p);
|
|
// Update best closest point if (squared) distance is less than current best
|
|
//if (sqDist < bestSqDist)
|
|
btAssert(sqDist < bestSqDist); // This has to be true; we haven't actually tested any other combinations.
|
|
{
|
|
bestSqDist = sqDist;
|
|
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
|
//convert result bitmask!
|
|
finalResult.m_usedVertices.reset();
|
|
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
|
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB;
|
|
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
|
finalResult.setBarycentricCoordinates(
|
|
tempResult.m_barycentricCoords[VERTA],
|
|
tempResult.m_barycentricCoords[VERTB],
|
|
tempResult.m_barycentricCoords[VERTC],
|
|
0
|
|
);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
// Repeat test for face acd
|
|
if (pointOutsideACD)
|
|
{
|
|
closestPtPointTriangle(p, a, c, d,tempResult);
|
|
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
|
//convert result bitmask!
|
|
|
|
float sqDist = dot(q - p, q - p);
|
|
if (sqDist < bestSqDist)
|
|
{
|
|
bestSqDist = sqDist;
|
|
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
|
finalResult.m_usedVertices.reset();
|
|
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
|
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB;
|
|
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC;
|
|
finalResult.setBarycentricCoordinates(
|
|
tempResult.m_barycentricCoords[VERTA],
|
|
0,
|
|
tempResult.m_barycentricCoords[VERTB],
|
|
tempResult.m_barycentricCoords[VERTC]
|
|
);
|
|
|
|
}
|
|
}
|
|
// Repeat test for face adb
|
|
|
|
|
|
if (pointOutsideADB)
|
|
{
|
|
closestPtPointTriangle(p, a, d, b,tempResult);
|
|
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
|
//convert result bitmask!
|
|
|
|
float sqDist = dot(q - p, q - p);
|
|
if (sqDist < bestSqDist)
|
|
{
|
|
bestSqDist = sqDist;
|
|
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
|
finalResult.m_usedVertices.reset();
|
|
finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA;
|
|
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
|
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC;
|
|
finalResult.setBarycentricCoordinates(
|
|
tempResult.m_barycentricCoords[VERTA],
|
|
tempResult.m_barycentricCoords[VERTC],
|
|
0,
|
|
tempResult.m_barycentricCoords[VERTB]
|
|
);
|
|
|
|
}
|
|
}
|
|
// Repeat test for face bdc
|
|
|
|
|
|
if (pointOutsideBDC)
|
|
{
|
|
closestPtPointTriangle(p, b, d, c,tempResult);
|
|
Vectormath::Aos::Vector3 q = Vectormath::Aos::Vector3(tempResult.m_closestPointOnSimplex);
|
|
//convert result bitmask!
|
|
float sqDist = dot(q - p, q - p);
|
|
if (sqDist < bestSqDist)
|
|
{
|
|
bestSqDist = sqDist;
|
|
finalResult.m_closestPointOnSimplex = Vectormath::Aos::Point3(q);
|
|
finalResult.m_usedVertices.reset();
|
|
finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA;
|
|
finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB;
|
|
finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC;
|
|
|
|
finalResult.setBarycentricCoordinates(
|
|
0,
|
|
tempResult.m_barycentricCoords[VERTA],
|
|
tempResult.m_barycentricCoords[VERTC],
|
|
tempResult.m_barycentricCoords[VERTB]
|
|
);
|
|
|
|
}
|
|
}
|
|
|
|
//help! we ended up full !
|
|
|
|
if (finalResult.m_usedVertices.usedVertexA &&
|
|
finalResult.m_usedVertices.usedVertexB &&
|
|
finalResult.m_usedVertices.usedVertexC &&
|
|
finalResult.m_usedVertices.usedVertexD)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|