avoid out-of-bounds issue for some OpenCL kernel, hanging Mac OSX (should not happen, need to check why)

split kernel for debugging
This commit is contained in:
Erwin Coumans
2013-12-17 10:44:41 -08:00
parent 7b55ffd237
commit 7e86932edf
5 changed files with 1548 additions and 233 deletions

View File

@@ -14,7 +14,8 @@ subject to the following restrictions:
*/
bool findSeparatingAxisOnGpu = true;
bool splitSearchSepAxis = false;//true;
bool splitSearchSepAxisConcave = false;
bool splitSearchSepAxisConvex = true;
bool bvhTraversalKernelGPU = true;
bool findConcaveSeparatingAxisKernelGPU = true;
@@ -134,6 +135,17 @@ m_dmins(m_context,m_queue)
m_findConcaveSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,src, "findConcaveSeparatingAxisKernel",&errNum,satProg );
b3Assert(m_findConcaveSeparatingAxisKernel);
b3Assert(errNum==CL_SUCCESS);
m_findConcaveSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,src, "findConcaveSeparatingAxisVertexFaceKernel",&errNum,satProg );
b3Assert(m_findConcaveSeparatingAxisVertexFaceKernel);
b3Assert(errNum==CL_SUCCESS);
m_findConcaveSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,src, "findConcaveSeparatingAxisEdgeEdgeKernel",&errNum,satProg );
b3Assert(m_findConcaveSeparatingAxisEdgeEdgeKernel);
b3Assert(errNum==CL_SUCCESS);
m_findCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,src, "findCompoundPairsKernel",&errNum,satProg );
b3Assert(m_findCompoundPairsKernel);
@@ -234,6 +246,13 @@ GpuSatCollision::~GpuSatCollision()
if (m_findSeparatingAxisKernel)
clReleaseKernel(m_findSeparatingAxisKernel);
if (m_findConcaveSeparatingAxisVertexFaceKernel)
clReleaseKernel(m_findConcaveSeparatingAxisVertexFaceKernel);
if (m_findConcaveSeparatingAxisEdgeEdgeKernel)
clReleaseKernel(m_findConcaveSeparatingAxisEdgeEdgeKernel);
if (m_findConcaveSeparatingAxisKernel)
clReleaseKernel(m_findConcaveSeparatingAxisKernel);
@@ -3039,7 +3058,7 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>*
if (findSeparatingAxisOnGpu)
{
m_dmins.resize(nPairs);
if (splitSearchSepAxis)
if (splitSearchSepAxisConvex)
{
{
B3_PROFILE("findSeparatingAxisVertexFaceKernel");
@@ -3119,211 +3138,338 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>*
}
numCompoundPairs = m_numCompoundPairsOut.at(0);
bool useGpuFindCompoundPairs=true;
if (useGpuFindCompoundPairs)
{
B3_PROFILE("findCompoundPairsKernel");
b3BufferInfoCL bInfo[] =
{
b3BufferInfoCL( pairs->getBufferCL(), true ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( clAabbsLocalSpace.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL()),
b3BufferInfoCL( m_numCompoundPairsOut.getBufferCL()),
b3BufferInfoCL(subTreesGPU->getBufferCL()),
b3BufferInfoCL(treeNodesGPU->getBufferCL()),
b3BufferInfoCL(bvhInfo->getBufferCL())
};
}
else
{
b3AlignedObjectArray<b3Int4> hostPairs;
pairs->copyToHost(hostPairs);
b3AlignedObjectArray<b3RigidBodyCL> hostBodyBuf;
bodyBuf->copyToHost(hostBodyBuf);
b3LauncherCL launcher(m_queue, m_findCompoundPairsKernel,"m_findCompoundPairsKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( nPairs );
launcher.setConst( compoundPairCapacity);
b3AlignedObjectArray<b3Collidable> hostCollidables;
gpuCollidables.copyToHost(hostCollidables);
b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes;
gpuChildShapes.copyToHost(cpuChildShapes);
b3AlignedObjectArray<b3ConvexPolyhedronCL> hostConvexShapeData;
convexData.copyToHost(hostConvexShapeData);
b3AlignedObjectArray<b3Vector3> hostVertices;
gpuVertices.copyToHost(hostVertices);
b3AlignedObjectArray<int> hostHasSepAxis;
hostHasSepAxis.resize(nPairs);
b3AlignedObjectArray<b3Vector3> hostSepAxis;
hostSepAxis.resize(nPairs);
b3AlignedObjectArray<b3Vector3> hostUniqueEdges;
gpuUniqueEdges.copyToHost(hostUniqueEdges);
b3AlignedObjectArray<b3GpuFace> hostFaces;
gpuFaces.copyToHost(hostFaces);
b3AlignedObjectArray<int> hostIndices;
gpuIndices.copyToHost(hostIndices);
for (int i=0;i<nPairs;i++)
{
int bodyIndexA = hostPairs[i].x;
int bodyIndexB = hostPairs[i].y;
int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx;
int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx;
int shapeIndexA = hostCollidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = hostCollidables[collidableIndexB].m_shapeIndex;
hostHasSepAxis[i] = 0;
//once the broadphase avoids static-static pairs, we can remove this test
if ((hostBodyBuf[bodyIndexA].m_invMass==0) &&(hostBodyBuf[bodyIndexB].m_invMass==0))
{
continue;
}
if ((hostCollidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(hostCollidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))
{
continue;
}
float dmin = FLT_MAX;
b3ConvexPolyhedronData* convexShapeA = &hostConvexShapeData[shapeIndexA];
b3ConvexPolyhedronData* convexShapeB = &hostConvexShapeData[shapeIndexB];
b3Vector3 posA = hostBodyBuf[bodyIndexA].m_pos;
b3Vector3 posB = hostBodyBuf[bodyIndexB].m_pos;
b3Quaternion ornA =hostBodyBuf[bodyIndexA].m_quat;
b3Quaternion ornB =hostBodyBuf[bodyIndexB].m_quat;
b3Vector3 c0local = hostConvexShapeData[shapeIndexA].m_localCenter;
b3Vector3 c0 = b3TransformPoint(c0local, posA, ornA);
b3Vector3 c1local = hostConvexShapeData[shapeIndexB].m_localCenter;
b3Vector3 c1 = b3TransformPoint(c1local,posB,ornB);
b3Vector3 DeltaC2 = c0 - c1;
b3Vector3 sepAxis;
bool hasSepAxisA = b3FindSeparatingAxis(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2,
&hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0),
&hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0),
&sepAxis, &dmin);
if (hasSepAxisA)
{
bool hasSepAxisB = b3FindSeparatingAxis(convexShapeB, convexShapeA, posB, ornB, posA, ornA, DeltaC2,
&hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0),
&hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0),
&sepAxis, &dmin);
if (hasSepAxisB)
{
bool hasEdgeEdge = b3FindSeparatingAxisEdgeEdge(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2,
&hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0),
&hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0),
&sepAxis, &dmin);
if (hasEdgeEdge)
{
hostHasSepAxis[i] = 1;
hostSepAxis[i] = sepAxis;
}
}
}
}
m_hasSeparatingNormals.copyFromHost(hostHasSepAxis);
m_sepNormals.copyFromHost(hostSepAxis);
/*
//double-check results from GPU (comment-out the 'else' so both paths are executed
b3AlignedObjectArray<int> checkHasSepAxis;
m_hasSeparatingNormals.copyToHost(checkHasSepAxis);
static int frameCount = 0;
frameCount++;
for (int i=0;i<nPairs;i++)
{
if (hostHasSepAxis[i] != checkHasSepAxis[i])
{
printf("at frameCount %d hostHasSepAxis[%d] = %d but checkHasSepAxis[i] = %d\n",
frameCount,i,hostHasSepAxis[i],checkHasSepAxis[i]);
}
}
//m_hasSeparatingNormals.copyFromHost(hostHasSepAxis);
// m_sepNormals.copyFromHost(hostSepAxis);
*/
}
numCompoundPairs = m_numCompoundPairsOut.at(0);
bool useGpuFindCompoundPairs=true;
if (useGpuFindCompoundPairs)
{
B3_PROFILE("findCompoundPairsKernel");
b3BufferInfoCL bInfo[] =
{
b3BufferInfoCL( pairs->getBufferCL(), true ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( clAabbsLocalSpace.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL()),
b3BufferInfoCL( m_numCompoundPairsOut.getBufferCL()),
b3BufferInfoCL(subTreesGPU->getBufferCL()),
b3BufferInfoCL(treeNodesGPU->getBufferCL()),
b3BufferInfoCL(bvhInfo->getBufferCL())
};
int num = nPairs;
launcher.launch1D( num);
clFinish(m_queue);
b3LauncherCL launcher(m_queue, m_findCompoundPairsKernel,"m_findCompoundPairsKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( nPairs );
launcher.setConst( compoundPairCapacity);
numCompoundPairs = m_numCompoundPairsOut.at(0);
//printf("numCompoundPairs =%d\n",numCompoundPairs );
if (numCompoundPairs)
{
//printf("numCompoundPairs=%d\n",numCompoundPairs);
}
int num = nPairs;
launcher.launch1D( num);
clFinish(m_queue);
} else
{
numCompoundPairs = m_numCompoundPairsOut.at(0);
//printf("numCompoundPairs =%d\n",numCompoundPairs );
if (numCompoundPairs)
{
//printf("numCompoundPairs=%d\n",numCompoundPairs);
}
} else
{
b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU;
treeNodesGPU->copyToHost(treeNodesCPU);
b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU;
treeNodesGPU->copyToHost(treeNodesCPU);
b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU;
subTreesGPU->copyToHost(subTreesCPU);
b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU;
subTreesGPU->copyToHost(subTreesCPU);
b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU;
bvhInfo->copyToHost(bvhInfoCPU);
b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU;
bvhInfo->copyToHost(bvhInfoCPU);
b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace;
clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace);
b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace;
clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace);
b3AlignedObjectArray<b3Aabb> hostAabbsLocalSpace;
clAabbsLocalSpace.copyToHost(hostAabbsLocalSpace);
b3AlignedObjectArray<b3Aabb> hostAabbsLocalSpace;
clAabbsLocalSpace.copyToHost(hostAabbsLocalSpace);
b3AlignedObjectArray<b3Int4> hostPairs;
pairs->copyToHost(hostPairs);
b3AlignedObjectArray<b3Int4> hostPairs;
pairs->copyToHost(hostPairs);
b3AlignedObjectArray<b3RigidBodyCL> hostBodyBuf;
bodyBuf->copyToHost(hostBodyBuf);
b3AlignedObjectArray<b3RigidBodyCL> hostBodyBuf;
bodyBuf->copyToHost(hostBodyBuf);
int numCompoundPairsOut=0;
int numCompoundPairsOut=0;
b3AlignedObjectArray<b3Int4> cpuCompoundPairsOut;
cpuCompoundPairsOut.resize(compoundPairCapacity);
b3AlignedObjectArray<b3Int4> cpuCompoundPairsOut;
cpuCompoundPairsOut.resize(compoundPairCapacity);
b3AlignedObjectArray<b3Collidable> hostCollidables;
gpuCollidables.copyToHost(hostCollidables);
b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes;
gpuChildShapes.copyToHost(cpuChildShapes);
b3AlignedObjectArray<b3ConvexPolyhedronCL> hostConvexData;
convexData.copyToHost(hostConvexData);
b3AlignedObjectArray<b3Collidable> hostCollidables;
gpuCollidables.copyToHost(hostCollidables);
b3AlignedObjectArray<b3Vector3> hostVertices;
gpuVertices.copyToHost(hostVertices);
b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes;
gpuChildShapes.copyToHost(cpuChildShapes);
b3AlignedObjectArray<b3ConvexPolyhedronCL> hostConvexData;
convexData.copyToHost(hostConvexData);
b3AlignedObjectArray<b3Vector3> hostVertices;
gpuVertices.copyToHost(hostVertices);
for (int pairIndex=0;pairIndex<nPairs;pairIndex++)
{
int bodyIndexA = hostPairs[pairIndex].x;
int bodyIndexB = hostPairs[pairIndex].y;
int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx;
int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx;
findCompoundPairsKernel(
pairIndex,
bodyIndexA,
bodyIndexB,
collidableIndexA,
collidableIndexB,
&hostBodyBuf[0],
&hostCollidables[0],
&hostConvexData[0],
hostVertices,
hostAabbsWorldSpace,
hostAabbsLocalSpace,
&cpuChildShapes[0],
&cpuCompoundPairsOut[0],
&numCompoundPairsOut,
compoundPairCapacity,
treeNodesCPU,
subTreesCPU,
bvhInfoCPU
);
}
if (numCompoundPairsOut)
{
for (int pairIndex=0;pairIndex<nPairs;pairIndex++)
{
int bodyIndexA = hostPairs[pairIndex].x;
int bodyIndexB = hostPairs[pairIndex].y;
int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx;
int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx;
findCompoundPairsKernel(
pairIndex,
bodyIndexA,
bodyIndexB,
collidableIndexA,
collidableIndexB,
&hostBodyBuf[0],
&hostCollidables[0],
&hostConvexData[0],
hostVertices,
hostAabbsWorldSpace,
hostAabbsLocalSpace,
&cpuChildShapes[0],
&cpuCompoundPairsOut[0],
&numCompoundPairsOut,
compoundPairCapacity,
treeNodesCPU,
subTreesCPU,
bvhInfoCPU
);
}
if (numCompoundPairsOut)
{
// printf("numCompoundPairsOut=%d\n",numCompoundPairsOut);
}
}
if (numCompoundPairs > compoundPairCapacity)
{
b3Error("Exceeded compound pair capacity (%d/%d)\n", numCompoundPairs, compoundPairCapacity);
numCompoundPairs = compoundPairCapacity;
}
}
}
if (numCompoundPairs > compoundPairCapacity)
{
b3Error("Exceeded compound pair capacity (%d/%d)\n", numCompoundPairs, compoundPairCapacity);
numCompoundPairs = compoundPairCapacity;
}
m_gpuCompoundPairs.resize(numCompoundPairs);
m_gpuHasCompoundSepNormals.resize(numCompoundPairs);
m_gpuCompoundSepNormals.resize(numCompoundPairs);
m_gpuCompoundPairs.resize(numCompoundPairs);
m_gpuHasCompoundSepNormals.resize(numCompoundPairs);
m_gpuCompoundSepNormals.resize(numCompoundPairs);
if (numCompoundPairs)
{
B3_PROFILE("processCompoundPairsPrimitivesKernel");
b3BufferInfoCL bInfo[] =
{
b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( contactOut->getBufferCL()),
b3BufferInfoCL( m_totalContactsOut.getBufferCL())
};
if (numCompoundPairs)
{
B3_PROFILE("processCompoundPairsPrimitivesKernel");
b3BufferInfoCL bInfo[] =
{
b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( contactOut->getBufferCL()),
b3BufferInfoCL( m_totalContactsOut.getBufferCL())
};
b3LauncherCL launcher(m_queue, m_processCompoundPairsPrimitivesKernel,"m_processCompoundPairsPrimitivesKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( numCompoundPairs );
launcher.setConst(maxContactCapacity);
b3LauncherCL launcher(m_queue, m_processCompoundPairsPrimitivesKernel,"m_processCompoundPairsPrimitivesKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( numCompoundPairs );
launcher.setConst(maxContactCapacity);
int num = numCompoundPairs;
launcher.launch1D( num);
clFinish(m_queue);
nContacts = m_totalContactsOut.at(0);
//printf("nContacts (after processCompoundPairsPrimitivesKernel) = %d\n",nContacts);
if (nContacts>maxContactCapacity)
{
b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity);
nContacts = maxContactCapacity;
}
}
int num = numCompoundPairs;
launcher.launch1D( num);
clFinish(m_queue);
nContacts = m_totalContactsOut.at(0);
//printf("nContacts (after processCompoundPairsPrimitivesKernel) = %d\n",nContacts);
if (nContacts>maxContactCapacity)
{
b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity);
nContacts = maxContactCapacity;
}
}
if (numCompoundPairs)
{
B3_PROFILE("processCompoundPairsKernel");
b3BufferInfoCL bInfo[] =
{
b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( m_gpuCompoundSepNormals.getBufferCL()),
b3BufferInfoCL( m_gpuHasCompoundSepNormals.getBufferCL())
};
if (numCompoundPairs)
{
B3_PROFILE("processCompoundPairsKernel");
b3BufferInfoCL bInfo[] =
{
b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( m_gpuCompoundSepNormals.getBufferCL()),
b3BufferInfoCL( m_gpuHasCompoundSepNormals.getBufferCL())
};
b3LauncherCL launcher(m_queue, m_processCompoundPairsKernel,"m_processCompoundPairsKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( numCompoundPairs );
b3LauncherCL launcher(m_queue, m_processCompoundPairsKernel,"m_processCompoundPairsKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( numCompoundPairs );
int num = numCompoundPairs;
launcher.launch1D( num);
clFinish(m_queue);
}
int num = numCompoundPairs;
launcher.launch1D( num);
clFinish(m_queue);
}
//printf("numConcave = %d\n",numConcave);
}//if (findSeparatingAxisOnGpu)
//printf("numConcave = %d\n",numConcave);
// printf("hostNormals.size()=%d\n",hostNormals.size());
//int numPairs = pairCount.at(0);
@@ -3445,8 +3591,8 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>*
clippingFacesOutGPU.resize(numConcavePairs);
worldNormalsAGPU.resize(numConcavePairs);
worldVertsA1GPU.resize(vertexFaceCapacity*numConcavePairs);
worldVertsB1GPU.resize(vertexFaceCapacity*numConcavePairs);
worldVertsA1GPU.resize(vertexFaceCapacity*(numConcavePairs));
worldVertsB1GPU.resize(vertexFaceCapacity*(numConcavePairs));
if (findConcaveSeparatingAxisKernelGPU)
@@ -3461,34 +3607,118 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>*
*/
//now perform a SAT test for each triangle-convex element (stored in triangleConvexPairsOut)
B3_PROFILE("findConcaveSeparatingAxisKernel");
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( m_concaveSepNormals.getBufferCL()),
b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()),
b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()),
b3BufferInfoCL( worldVertsA1GPU.getBufferCL()),
b3BufferInfoCL(worldNormalsAGPU.getBufferCL()),
b3BufferInfoCL(worldVertsB1GPU.getBufferCL())
};
if (splitSearchSepAxisConcave)
{
//printf("numConcavePairs = %d\n",numConcavePairs);
m_dmins.resize(numConcavePairs);
{
B3_PROFILE("findConcaveSeparatingAxisVertexFaceKernel");
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( m_concaveSepNormals.getBufferCL()),
b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()),
b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()),
b3BufferInfoCL( worldVertsA1GPU.getBufferCL()),
b3BufferInfoCL(worldNormalsAGPU.getBufferCL()),
b3BufferInfoCL(worldVertsB1GPU.getBufferCL()),
b3BufferInfoCL(m_dmins.getBufferCL())
};
b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisVertexFaceKernel,"m_findConcaveSeparatingAxisVertexFaceKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst(vertexFaceCapacity);
launcher.setConst( numConcavePairs );
int num = numConcavePairs;
launcher.launch1D( num);
clFinish(m_queue);
b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisKernel,"m_findConcaveSeparatingAxisKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst(vertexFaceCapacity);
launcher.setConst( numConcavePairs );
}
// numConcavePairs = 0;
if (1)
{
B3_PROFILE("findConcaveSeparatingAxisEdgeEdgeKernel");
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( m_concaveSepNormals.getBufferCL()),
b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()),
b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()),
b3BufferInfoCL( worldVertsA1GPU.getBufferCL()),
b3BufferInfoCL(worldNormalsAGPU.getBufferCL()),
b3BufferInfoCL(worldVertsB1GPU.getBufferCL()),
b3BufferInfoCL(m_dmins.getBufferCL())
};
b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisEdgeEdgeKernel,"m_findConcaveSeparatingAxisEdgeEdgeKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst(vertexFaceCapacity);
launcher.setConst( numConcavePairs );
int num = numConcavePairs;
launcher.launch1D( num);
clFinish(m_queue);
}
// numConcavePairs = 0;
} else
{
B3_PROFILE("findConcaveSeparatingAxisKernel");
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ),
b3BufferInfoCL( bodyBuf->getBufferCL(),true),
b3BufferInfoCL( gpuCollidables.getBufferCL(),true),
b3BufferInfoCL( convexData.getBufferCL(),true),
b3BufferInfoCL( gpuVertices.getBufferCL(),true),
b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true),
b3BufferInfoCL( gpuFaces.getBufferCL(),true),
b3BufferInfoCL( gpuIndices.getBufferCL(),true),
b3BufferInfoCL( gpuChildShapes.getBufferCL(),true),
b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true),
b3BufferInfoCL( m_concaveSepNormals.getBufferCL()),
b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()),
b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()),
b3BufferInfoCL( worldVertsA1GPU.getBufferCL()),
b3BufferInfoCL(worldNormalsAGPU.getBufferCL()),
b3BufferInfoCL(worldVertsB1GPU.getBufferCL())
};
int num = numConcavePairs;
launcher.launch1D( num);
clFinish(m_queue);
b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisKernel,"m_findConcaveSeparatingAxisKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst(vertexFaceCapacity);
launcher.setConst( numConcavePairs );
int num = numConcavePairs;
launcher.launch1D( num);
clFinish(m_queue);
}
} else
{

View File

@@ -31,6 +31,12 @@ struct GpuSatCollision
cl_kernel m_findSeparatingAxisEdgeEdgeKernel;
cl_kernel m_findConcaveSeparatingAxisKernel;
cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel;
cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel;
cl_kernel m_findCompoundPairsKernel;
cl_kernel m_processCompoundPairsKernel;

View File

@@ -1381,27 +1381,21 @@ __kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs,
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
hasSeparatingAxis[i] = 0;
//once the broadphase avoids static-static pairs, we can remove this test
if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))
{
hasSeparatingAxis[i] = 0;
return;
}
if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))
{
hasSeparatingAxis[i] = 0;
return;
}
if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH))
{
hasSeparatingAxis[i] = 0;
return;
}
int numFacesA = convexShapes[shapeIndexA].m_numFaces;
@@ -1524,7 +1518,7 @@ __kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs,
int findClippingFaces(const float4 separatingNormal,
inline int findClippingFaces(const float4 separatingNormal,
const ConvexPolyhedronCL* hullA,
__global const ConvexPolyhedronCL* hullB,
const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,
@@ -1565,11 +1559,17 @@ int findClippingFaces(const float4 separatingNormal,
{
const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];
const int numVertices = polyB.m_numIndices;
int numVertices = polyB.m_numIndices;
if (numVertices>capacityWorldVerts)
numVertices = capacityWorldVerts;
for(int e0=0;e0<numVertices;e0++)
{
const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];
worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);
if (e0<capacityWorldVerts)
{
const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];
worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);
}
}
}
@@ -1596,10 +1596,16 @@ int findClippingFaces(const float4 separatingNormal,
}
int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;
if (numVerticesA>capacityWorldVerts)
numVerticesA = capacityWorldVerts;
for(int e0=0;e0<numVerticesA;e0++)
{
const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];
worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);
if (e0<capacityWorldVerts)
{
const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];
worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);
}
}
clippingFaces[pairIndex].x = closestFaceA;
@@ -1913,3 +1919,543 @@ __kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs,
concavePairs[pairIdx].w = -1;
}
}
// work-in-progress
__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs,
__global const BodyData* rigidBodies,
__global const btCollidableGpu* collidables,
__global const ConvexPolyhedronCL* convexShapes,
__global const float4* vertices,
__global const float4* uniqueEdges,
__global const btGpuFace* faces,
__global const int* indices,
__global const btGpuChildShape* gpuChildShapes,
__global btAabbCL* aabbs,
__global float4* concaveSeparatingNormalsOut,
__global int* concaveHasSeparatingNormals,
__global int4* clippingFacesOut,
__global float4* worldVertsA1GPU,
__global float4* worldNormalsAGPU,
__global float4* worldVertsB1GPU,
__global float* dmins,
int vertexFaceCapacity,
int numConcavePairs
)
{
int i = get_global_id(0);
if (i>=numConcavePairs)
return;
concaveHasSeparatingNormals[i] = 0;
int pairIdx = i;
int bodyIndexA = concavePairs[i].x;
int bodyIndexB = concavePairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&
collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)
{
concavePairs[pairIdx].w = -1;
return;
}
int numFacesA = convexShapes[shapeIndexA].m_numFaces;
int numActualConcaveConvexTests = 0;
int f = concavePairs[i].z;
bool overlap = false;
ConvexPolyhedronCL convexPolyhedronA;
//add 3 vertices of the triangle
convexPolyhedronA.m_numVertices = 3;
convexPolyhedronA.m_vertexOffset = 0;
float4 localCenter = make_float4(0.f,0.f,0.f,0.f);
btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];
float4 triMinAabb, triMaxAabb;
btAabbCL triAabb;
triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);
triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);
float4 verticesA[3];
for (int i=0;i<3;i++)
{
int index = indices[face.m_indexOffset+i];
float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];
verticesA[i] = vert;
localCenter += vert;
triAabb.m_min = min(triAabb.m_min,vert);
triAabb.m_max = max(triAabb.m_max,vert);
}
overlap = true;
overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;
overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;
overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;
if (overlap)
{
float dmin = FLT_MAX;
int hasSeparatingAxis=5;
float4 sepAxis=make_float4(1,2,3,4);
int localCC=0;
numActualConcaveConvexTests++;
//a triangle has 3 unique edges
convexPolyhedronA.m_numUniqueEdges = 3;
convexPolyhedronA.m_uniqueEdgesOffset = 0;
float4 uniqueEdgesA[3];
uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);
uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);
uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);
convexPolyhedronA.m_faceOffset = 0;
float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);
btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];
int indicesA[3+3+2+2+2];
int curUsedIndices=0;
int fidx=0;
//front size of triangle
{
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[0] = 0;
indicesA[1] = 1;
indicesA[2] = 2;
curUsedIndices+=3;
float c = face.m_plane.w;
facesA[fidx].m_plane.x = normal.x;
facesA[fidx].m_plane.y = normal.y;
facesA[fidx].m_plane.z = normal.z;
facesA[fidx].m_plane.w = c;
facesA[fidx].m_numIndices=3;
}
fidx++;
//back size of triangle
{
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[3]=2;
indicesA[4]=1;
indicesA[5]=0;
curUsedIndices+=3;
float c = dot(normal,verticesA[0]);
float c1 = -face.m_plane.w;
facesA[fidx].m_plane.x = -normal.x;
facesA[fidx].m_plane.y = -normal.y;
facesA[fidx].m_plane.z = -normal.z;
facesA[fidx].m_plane.w = c;
facesA[fidx].m_numIndices=3;
}
fidx++;
bool addEdgePlanes = true;
if (addEdgePlanes)
{
int numVertices=3;
int prevVertex = numVertices-1;
for (int i=0;i<numVertices;i++)
{
float4 v0 = verticesA[i];
float4 v1 = verticesA[prevVertex];
float4 edgeNormal = normalize(cross(normal,v1-v0));
float c = -dot(edgeNormal,v0);
facesA[fidx].m_numIndices = 2;
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[curUsedIndices++]=i;
indicesA[curUsedIndices++]=prevVertex;
facesA[fidx].m_plane.x = edgeNormal.x;
facesA[fidx].m_plane.y = edgeNormal.y;
facesA[fidx].m_plane.z = edgeNormal.z;
facesA[fidx].m_plane.w = c;
fidx++;
prevVertex = i;
}
}
convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;
convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);
float4 posA = rigidBodies[bodyIndexA].m_pos;
posA.w = 0.f;
float4 posB = rigidBodies[bodyIndexB].m_pos;
posB.w = 0.f;
float4 ornA = rigidBodies[bodyIndexA].m_quat;
float4 ornB =rigidBodies[bodyIndexB].m_quat;
///////////////////
///compound shape support
if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)
{
int compoundChild = concavePairs[pairIdx].w;
int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;
int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;
float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;
float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;
float4 newPosB = transform(&childPosB,&posB,&ornB);
float4 newOrnB = qtMul(ornB,childOrnB);
posB = newPosB;
ornB = newOrnB;
shapeIndexB = collidables[childColIndexB].m_shapeIndex;
}
//////////////////
float4 c0local = convexPolyhedronA.m_localCenter;
float4 c0 = transform(&c0local, &posA, &ornA);
float4 c1local = convexShapes[shapeIndexB].m_localCenter;
float4 c1 = transform(&c1local,&posB,&ornB);
const float4 DeltaC2 = c0 - c1;
bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],
posA,ornA,
posB,ornB,
DeltaC2,
verticesA,uniqueEdgesA,facesA,indicesA,
vertices,uniqueEdges,faces,indices,
&sepAxis,&dmin);
hasSeparatingAxis = 4;
if (!sepA)
{
hasSeparatingAxis = 0;
} else
{
bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,
posB,ornB,
posA,ornA,
DeltaC2,
vertices,uniqueEdges,faces,indices,
verticesA,uniqueEdgesA,facesA,indicesA,
&sepAxis,&dmin);
if (!sepB)
{
hasSeparatingAxis = 0;
} else
{
hasSeparatingAxis = 1;
}
}
if (hasSeparatingAxis)
{
dmins[i] = dmin;
concaveSeparatingNormalsOut[pairIdx]=sepAxis;
concaveHasSeparatingNormals[i]=1;
} else
{
//mark this pair as in-active
concavePairs[pairIdx].w = -1;
}
}
else
{
//mark this pair as in-active
concavePairs[pairIdx].w = -1;
}
}
// work-in-progress
__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs,
__global const BodyData* rigidBodies,
__global const btCollidableGpu* collidables,
__global const ConvexPolyhedronCL* convexShapes,
__global const float4* vertices,
__global const float4* uniqueEdges,
__global const btGpuFace* faces,
__global const int* indices,
__global const btGpuChildShape* gpuChildShapes,
__global btAabbCL* aabbs,
__global float4* concaveSeparatingNormalsOut,
__global int* concaveHasSeparatingNormals,
__global int4* clippingFacesOut,
__global float4* worldVertsA1GPU,
__global float4* worldNormalsAGPU,
__global float4* worldVertsB1GPU,
__global float* dmins,
int vertexFaceCapacity,
int numConcavePairs
)
{
int i = get_global_id(0);
if (i>=numConcavePairs)
return;
if (!concaveHasSeparatingNormals[i])
return;
int pairIdx = i;
int bodyIndexA = concavePairs[i].x;
int bodyIndexB = concavePairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
int numFacesA = convexShapes[shapeIndexA].m_numFaces;
int numActualConcaveConvexTests = 0;
int f = concavePairs[i].z;
bool overlap = false;
ConvexPolyhedronCL convexPolyhedronA;
//add 3 vertices of the triangle
convexPolyhedronA.m_numVertices = 3;
convexPolyhedronA.m_vertexOffset = 0;
float4 localCenter = make_float4(0.f,0.f,0.f,0.f);
btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];
float4 triMinAabb, triMaxAabb;
btAabbCL triAabb;
triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);
triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);
float4 verticesA[3];
for (int i=0;i<3;i++)
{
int index = indices[face.m_indexOffset+i];
float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];
verticesA[i] = vert;
localCenter += vert;
triAabb.m_min = min(triAabb.m_min,vert);
triAabb.m_max = max(triAabb.m_max,vert);
}
overlap = true;
overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;
overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;
overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;
if (overlap)
{
float dmin = dmins[i];
int hasSeparatingAxis=5;
float4 sepAxis=make_float4(1,2,3,4);
sepAxis = concaveSeparatingNormalsOut[pairIdx];
int localCC=0;
numActualConcaveConvexTests++;
//a triangle has 3 unique edges
convexPolyhedronA.m_numUniqueEdges = 3;
convexPolyhedronA.m_uniqueEdgesOffset = 0;
float4 uniqueEdgesA[3];
uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);
uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);
uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);
convexPolyhedronA.m_faceOffset = 0;
float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);
btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];
int indicesA[3+3+2+2+2];
int curUsedIndices=0;
int fidx=0;
//front size of triangle
{
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[0] = 0;
indicesA[1] = 1;
indicesA[2] = 2;
curUsedIndices+=3;
float c = face.m_plane.w;
facesA[fidx].m_plane.x = normal.x;
facesA[fidx].m_plane.y = normal.y;
facesA[fidx].m_plane.z = normal.z;
facesA[fidx].m_plane.w = c;
facesA[fidx].m_numIndices=3;
}
fidx++;
//back size of triangle
{
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[3]=2;
indicesA[4]=1;
indicesA[5]=0;
curUsedIndices+=3;
float c = dot(normal,verticesA[0]);
float c1 = -face.m_plane.w;
facesA[fidx].m_plane.x = -normal.x;
facesA[fidx].m_plane.y = -normal.y;
facesA[fidx].m_plane.z = -normal.z;
facesA[fidx].m_plane.w = c;
facesA[fidx].m_numIndices=3;
}
fidx++;
bool addEdgePlanes = true;
if (addEdgePlanes)
{
int numVertices=3;
int prevVertex = numVertices-1;
for (int i=0;i<numVertices;i++)
{
float4 v0 = verticesA[i];
float4 v1 = verticesA[prevVertex];
float4 edgeNormal = normalize(cross(normal,v1-v0));
float c = -dot(edgeNormal,v0);
facesA[fidx].m_numIndices = 2;
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[curUsedIndices++]=i;
indicesA[curUsedIndices++]=prevVertex;
facesA[fidx].m_plane.x = edgeNormal.x;
facesA[fidx].m_plane.y = edgeNormal.y;
facesA[fidx].m_plane.z = edgeNormal.z;
facesA[fidx].m_plane.w = c;
fidx++;
prevVertex = i;
}
}
convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;
convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);
float4 posA = rigidBodies[bodyIndexA].m_pos;
posA.w = 0.f;
float4 posB = rigidBodies[bodyIndexB].m_pos;
posB.w = 0.f;
float4 ornA = rigidBodies[bodyIndexA].m_quat;
float4 ornB =rigidBodies[bodyIndexB].m_quat;
///////////////////
///compound shape support
if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)
{
int compoundChild = concavePairs[pairIdx].w;
int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;
int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;
float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;
float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;
float4 newPosB = transform(&childPosB,&posB,&ornB);
float4 newOrnB = qtMul(ornB,childOrnB);
posB = newPosB;
ornB = newOrnB;
shapeIndexB = collidables[childColIndexB].m_shapeIndex;
}
//////////////////
float4 c0local = convexPolyhedronA.m_localCenter;
float4 c0 = transform(&c0local, &posA, &ornA);
float4 c1local = convexShapes[shapeIndexB].m_localCenter;
float4 c1 = transform(&c1local,&posB,&ornB);
const float4 DeltaC2 = c0 - c1;
{
bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],
posA,ornA,
posB,ornB,
DeltaC2,
verticesA,uniqueEdgesA,facesA,indicesA,
vertices,uniqueEdges,faces,indices,
&sepAxis,&dmin);
if (!sepEE)
{
hasSeparatingAxis = 0;
} else
{
hasSeparatingAxis = 1;
}
}
if (hasSeparatingAxis)
{
sepAxis.w = dmin;
dmins[i] = dmin;
concaveSeparatingNormalsOut[pairIdx]=sepAxis;
concaveHasSeparatingNormals[i]=1;
float minDist = -1e30f;
float maxDist = 0.02f;
findClippingFaces(sepAxis,
&convexPolyhedronA,
&convexShapes[shapeIndexB],
posA,ornA,
posB,ornB,
worldVertsA1GPU,
worldNormalsAGPU,
worldVertsB1GPU,
vertexFaceCapacity,
minDist, maxDist,
verticesA,
facesA,
indicesA,
vertices,
faces,
indices,
clippingFacesOut, pairIdx);
} else
{
//mark this pair as in-active
concavePairs[pairIdx].w = -1;
}
}
else
{
//mark this pair as in-active
concavePairs[pairIdx].w = -1;
}
}

View File

@@ -1499,26 +1499,20 @@ static const char* satKernelsCL= \
" \n"
" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
" \n"
" \n"
" hasSeparatingAxis[i] = 0; \n"
" \n"
" //once the broadphase avoids static-static pairs, we can remove this test\n"
" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n"
" {\n"
" hasSeparatingAxis[i] = 0;\n"
" return;\n"
" }\n"
" \n"
" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n"
" {\n"
" hasSeparatingAxis[i] = 0;\n"
" return;\n"
" }\n"
" \n"
" if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH))\n"
" {\n"
" hasSeparatingAxis[i] = 0;\n"
" return;\n"
" }\n"
" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
" float dmin = FLT_MAX;\n"
" dmins[i] = dmin;\n"
@@ -1627,7 +1621,7 @@ static const char* satKernelsCL= \
" } //if (hasSeparatingAxis[i])\n"
" }//(i<numPairs)\n"
"}\n"
"int findClippingFaces(const float4 separatingNormal,\n"
"inline int findClippingFaces(const float4 separatingNormal,\n"
" const ConvexPolyhedronCL* hullA, \n"
" __global const ConvexPolyhedronCL* hullB,\n"
" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n"
@@ -1668,11 +1662,17 @@ static const char* satKernelsCL= \
" \n"
" {\n"
" const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n"
" const int numVertices = polyB.m_numIndices;\n"
" int numVertices = polyB.m_numIndices;\n"
" if (numVertices>capacityWorldVerts)\n"
" numVertices = capacityWorldVerts;\n"
" \n"
" for(int e0=0;e0<numVertices;e0++)\n"
" {\n"
" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n"
" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n"
" if (e0<capacityWorldVerts)\n"
" {\n"
" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n"
" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n"
" }\n"
" }\n"
" }\n"
" \n"
@@ -1699,10 +1699,16 @@ static const char* satKernelsCL= \
" }\n"
" \n"
" int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n"
" if (numVerticesA>capacityWorldVerts)\n"
" numVerticesA = capacityWorldVerts;\n"
" \n"
" for(int e0=0;e0<numVerticesA;e0++)\n"
" {\n"
" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n"
" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n"
" if (e0<capacityWorldVerts)\n"
" {\n"
" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n"
" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n"
" }\n"
" }\n"
" \n"
" clippingFaces[pairIndex].x = closestFaceA;\n"
@@ -1974,4 +1980,531 @@ static const char* satKernelsCL= \
" concavePairs[pairIdx].w = -1;\n"
" }\n"
"}\n"
"// work-in-progress\n"
"__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs,\n"
" __global const BodyData* rigidBodies,\n"
" __global const btCollidableGpu* collidables,\n"
" __global const ConvexPolyhedronCL* convexShapes,\n"
" __global const float4* vertices,\n"
" __global const float4* uniqueEdges,\n"
" __global const btGpuFace* faces,\n"
" __global const int* indices,\n"
" __global const btGpuChildShape* gpuChildShapes,\n"
" __global btAabbCL* aabbs,\n"
" __global float4* concaveSeparatingNormalsOut,\n"
" __global int* concaveHasSeparatingNormals,\n"
" __global int4* clippingFacesOut,\n"
" __global float4* worldVertsA1GPU,\n"
" __global float4* worldNormalsAGPU,\n"
" __global float4* worldVertsB1GPU,\n"
" __global float* dmins,\n"
" int vertexFaceCapacity,\n"
" int numConcavePairs\n"
" )\n"
"{\n"
" \n"
" int i = get_global_id(0);\n"
" if (i>=numConcavePairs)\n"
" return;\n"
" \n"
" concaveHasSeparatingNormals[i] = 0;\n"
" \n"
" int pairIdx = i;\n"
" \n"
" int bodyIndexA = concavePairs[i].x;\n"
" int bodyIndexB = concavePairs[i].y;\n"
" \n"
" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
" \n"
" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
" \n"
" if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n"
" collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
" {\n"
" concavePairs[pairIdx].w = -1;\n"
" return;\n"
" }\n"
" \n"
" \n"
" \n"
" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
" int numActualConcaveConvexTests = 0;\n"
" \n"
" int f = concavePairs[i].z;\n"
" \n"
" bool overlap = false;\n"
" \n"
" ConvexPolyhedronCL convexPolyhedronA;\n"
" \n"
" //add 3 vertices of the triangle\n"
" convexPolyhedronA.m_numVertices = 3;\n"
" convexPolyhedronA.m_vertexOffset = 0;\n"
" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n"
" \n"
" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n"
" float4 triMinAabb, triMaxAabb;\n"
" btAabbCL triAabb;\n"
" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n"
" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n"
" \n"
" float4 verticesA[3];\n"
" for (int i=0;i<3;i++)\n"
" {\n"
" int index = indices[face.m_indexOffset+i];\n"
" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n"
" verticesA[i] = vert;\n"
" localCenter += vert;\n"
" \n"
" triAabb.m_min = min(triAabb.m_min,vert);\n"
" triAabb.m_max = max(triAabb.m_max,vert);\n"
" \n"
" }\n"
" \n"
" overlap = true;\n"
" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n"
" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n"
" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n"
" \n"
" if (overlap)\n"
" {\n"
" float dmin = FLT_MAX;\n"
" int hasSeparatingAxis=5;\n"
" float4 sepAxis=make_float4(1,2,3,4);\n"
" \n"
" int localCC=0;\n"
" numActualConcaveConvexTests++;\n"
" \n"
" //a triangle has 3 unique edges\n"
" convexPolyhedronA.m_numUniqueEdges = 3;\n"
" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n"
" float4 uniqueEdgesA[3];\n"
" \n"
" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n"
" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n"
" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n"
" \n"
" \n"
" convexPolyhedronA.m_faceOffset = 0;\n"
" \n"
" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n"
" \n"
" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n"
" int indicesA[3+3+2+2+2];\n"
" int curUsedIndices=0;\n"
" int fidx=0;\n"
" \n"
" //front size of triangle\n"
" {\n"
" facesA[fidx].m_indexOffset=curUsedIndices;\n"
" indicesA[0] = 0;\n"
" indicesA[1] = 1;\n"
" indicesA[2] = 2;\n"
" curUsedIndices+=3;\n"
" float c = face.m_plane.w;\n"
" facesA[fidx].m_plane.x = normal.x;\n"
" facesA[fidx].m_plane.y = normal.y;\n"
" facesA[fidx].m_plane.z = normal.z;\n"
" facesA[fidx].m_plane.w = c;\n"
" facesA[fidx].m_numIndices=3;\n"
" }\n"
" fidx++;\n"
" //back size of triangle\n"
" {\n"
" facesA[fidx].m_indexOffset=curUsedIndices;\n"
" indicesA[3]=2;\n"
" indicesA[4]=1;\n"
" indicesA[5]=0;\n"
" curUsedIndices+=3;\n"
" float c = dot(normal,verticesA[0]);\n"
" float c1 = -face.m_plane.w;\n"
" facesA[fidx].m_plane.x = -normal.x;\n"
" facesA[fidx].m_plane.y = -normal.y;\n"
" facesA[fidx].m_plane.z = -normal.z;\n"
" facesA[fidx].m_plane.w = c;\n"
" facesA[fidx].m_numIndices=3;\n"
" }\n"
" fidx++;\n"
" \n"
" bool addEdgePlanes = true;\n"
" if (addEdgePlanes)\n"
" {\n"
" int numVertices=3;\n"
" int prevVertex = numVertices-1;\n"
" for (int i=0;i<numVertices;i++)\n"
" {\n"
" float4 v0 = verticesA[i];\n"
" float4 v1 = verticesA[prevVertex];\n"
" \n"
" float4 edgeNormal = normalize(cross(normal,v1-v0));\n"
" float c = -dot(edgeNormal,v0);\n"
" \n"
" facesA[fidx].m_numIndices = 2;\n"
" facesA[fidx].m_indexOffset=curUsedIndices;\n"
" indicesA[curUsedIndices++]=i;\n"
" indicesA[curUsedIndices++]=prevVertex;\n"
" \n"
" facesA[fidx].m_plane.x = edgeNormal.x;\n"
" facesA[fidx].m_plane.y = edgeNormal.y;\n"
" facesA[fidx].m_plane.z = edgeNormal.z;\n"
" facesA[fidx].m_plane.w = c;\n"
" fidx++;\n"
" prevVertex = i;\n"
" }\n"
" }\n"
" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n"
" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n"
" \n"
" \n"
" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
" posA.w = 0.f;\n"
" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
" posB.w = 0.f;\n"
" \n"
" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n"
" \n"
" \n"
" \n"
" \n"
" ///////////////////\n"
" ///compound shape support\n"
" \n"
" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
" {\n"
" int compoundChild = concavePairs[pairIdx].w;\n"
" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n"
" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n"
" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n"
" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n"
" float4 newPosB = transform(&childPosB,&posB,&ornB);\n"
" float4 newOrnB = qtMul(ornB,childOrnB);\n"
" posB = newPosB;\n"
" ornB = newOrnB;\n"
" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n"
" }\n"
" //////////////////\n"
" \n"
" float4 c0local = convexPolyhedronA.m_localCenter;\n"
" float4 c0 = transform(&c0local, &posA, &ornA);\n"
" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
" float4 c1 = transform(&c1local,&posB,&ornB);\n"
" const float4 DeltaC2 = c0 - c1;\n"
" \n"
" \n"
" bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n"
" posA,ornA,\n"
" posB,ornB,\n"
" DeltaC2,\n"
" verticesA,uniqueEdgesA,facesA,indicesA,\n"
" vertices,uniqueEdges,faces,indices,\n"
" &sepAxis,&dmin);\n"
" hasSeparatingAxis = 4;\n"
" if (!sepA)\n"
" {\n"
" hasSeparatingAxis = 0;\n"
" } else\n"
" {\n"
" bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n"
" posB,ornB,\n"
" posA,ornA,\n"
" DeltaC2,\n"
" vertices,uniqueEdges,faces,indices,\n"
" verticesA,uniqueEdgesA,facesA,indicesA,\n"
" &sepAxis,&dmin);\n"
" \n"
" if (!sepB)\n"
" {\n"
" hasSeparatingAxis = 0;\n"
" } else\n"
" {\n"
" hasSeparatingAxis = 1;\n"
" }\n"
" } \n"
" \n"
" if (hasSeparatingAxis)\n"
" {\n"
" dmins[i] = dmin;\n"
" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n"
" concaveHasSeparatingNormals[i]=1;\n"
" \n"
" } else\n"
" { \n"
" //mark this pair as in-active\n"
" concavePairs[pairIdx].w = -1;\n"
" }\n"
" }\n"
" else\n"
" { \n"
" //mark this pair as in-active\n"
" concavePairs[pairIdx].w = -1;\n"
" }\n"
"}\n"
"// work-in-progress\n"
"__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs,\n"
" __global const BodyData* rigidBodies,\n"
" __global const btCollidableGpu* collidables,\n"
" __global const ConvexPolyhedronCL* convexShapes,\n"
" __global const float4* vertices,\n"
" __global const float4* uniqueEdges,\n"
" __global const btGpuFace* faces,\n"
" __global const int* indices,\n"
" __global const btGpuChildShape* gpuChildShapes,\n"
" __global btAabbCL* aabbs,\n"
" __global float4* concaveSeparatingNormalsOut,\n"
" __global int* concaveHasSeparatingNormals,\n"
" __global int4* clippingFacesOut,\n"
" __global float4* worldVertsA1GPU,\n"
" __global float4* worldNormalsAGPU,\n"
" __global float4* worldVertsB1GPU,\n"
" __global float* dmins,\n"
" int vertexFaceCapacity,\n"
" int numConcavePairs\n"
" )\n"
"{\n"
" \n"
" int i = get_global_id(0);\n"
" if (i>=numConcavePairs)\n"
" return;\n"
" \n"
" if (!concaveHasSeparatingNormals[i])\n"
" return;\n"
" \n"
" int pairIdx = i;\n"
" \n"
" int bodyIndexA = concavePairs[i].x;\n"
" int bodyIndexB = concavePairs[i].y;\n"
" \n"
" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n"
" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n"
" \n"
" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n"
" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n"
" \n"
" \n"
" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n"
" int numActualConcaveConvexTests = 0;\n"
" \n"
" int f = concavePairs[i].z;\n"
" \n"
" bool overlap = false;\n"
" \n"
" ConvexPolyhedronCL convexPolyhedronA;\n"
" \n"
" //add 3 vertices of the triangle\n"
" convexPolyhedronA.m_numVertices = 3;\n"
" convexPolyhedronA.m_vertexOffset = 0;\n"
" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n"
" \n"
" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n"
" float4 triMinAabb, triMaxAabb;\n"
" btAabbCL triAabb;\n"
" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n"
" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n"
" \n"
" float4 verticesA[3];\n"
" for (int i=0;i<3;i++)\n"
" {\n"
" int index = indices[face.m_indexOffset+i];\n"
" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n"
" verticesA[i] = vert;\n"
" localCenter += vert;\n"
" \n"
" triAabb.m_min = min(triAabb.m_min,vert);\n"
" triAabb.m_max = max(triAabb.m_max,vert);\n"
" \n"
" }\n"
" \n"
" overlap = true;\n"
" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n"
" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n"
" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n"
" \n"
" if (overlap)\n"
" {\n"
" float dmin = dmins[i];\n"
" int hasSeparatingAxis=5;\n"
" float4 sepAxis=make_float4(1,2,3,4);\n"
" sepAxis = concaveSeparatingNormalsOut[pairIdx];\n"
" \n"
" int localCC=0;\n"
" numActualConcaveConvexTests++;\n"
" \n"
" //a triangle has 3 unique edges\n"
" convexPolyhedronA.m_numUniqueEdges = 3;\n"
" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n"
" float4 uniqueEdgesA[3];\n"
" \n"
" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n"
" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n"
" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n"
" \n"
" \n"
" convexPolyhedronA.m_faceOffset = 0;\n"
" \n"
" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n"
" \n"
" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n"
" int indicesA[3+3+2+2+2];\n"
" int curUsedIndices=0;\n"
" int fidx=0;\n"
" \n"
" //front size of triangle\n"
" {\n"
" facesA[fidx].m_indexOffset=curUsedIndices;\n"
" indicesA[0] = 0;\n"
" indicesA[1] = 1;\n"
" indicesA[2] = 2;\n"
" curUsedIndices+=3;\n"
" float c = face.m_plane.w;\n"
" facesA[fidx].m_plane.x = normal.x;\n"
" facesA[fidx].m_plane.y = normal.y;\n"
" facesA[fidx].m_plane.z = normal.z;\n"
" facesA[fidx].m_plane.w = c;\n"
" facesA[fidx].m_numIndices=3;\n"
" }\n"
" fidx++;\n"
" //back size of triangle\n"
" {\n"
" facesA[fidx].m_indexOffset=curUsedIndices;\n"
" indicesA[3]=2;\n"
" indicesA[4]=1;\n"
" indicesA[5]=0;\n"
" curUsedIndices+=3;\n"
" float c = dot(normal,verticesA[0]);\n"
" float c1 = -face.m_plane.w;\n"
" facesA[fidx].m_plane.x = -normal.x;\n"
" facesA[fidx].m_plane.y = -normal.y;\n"
" facesA[fidx].m_plane.z = -normal.z;\n"
" facesA[fidx].m_plane.w = c;\n"
" facesA[fidx].m_numIndices=3;\n"
" }\n"
" fidx++;\n"
" \n"
" bool addEdgePlanes = true;\n"
" if (addEdgePlanes)\n"
" {\n"
" int numVertices=3;\n"
" int prevVertex = numVertices-1;\n"
" for (int i=0;i<numVertices;i++)\n"
" {\n"
" float4 v0 = verticesA[i];\n"
" float4 v1 = verticesA[prevVertex];\n"
" \n"
" float4 edgeNormal = normalize(cross(normal,v1-v0));\n"
" float c = -dot(edgeNormal,v0);\n"
" \n"
" facesA[fidx].m_numIndices = 2;\n"
" facesA[fidx].m_indexOffset=curUsedIndices;\n"
" indicesA[curUsedIndices++]=i;\n"
" indicesA[curUsedIndices++]=prevVertex;\n"
" \n"
" facesA[fidx].m_plane.x = edgeNormal.x;\n"
" facesA[fidx].m_plane.y = edgeNormal.y;\n"
" facesA[fidx].m_plane.z = edgeNormal.z;\n"
" facesA[fidx].m_plane.w = c;\n"
" fidx++;\n"
" prevVertex = i;\n"
" }\n"
" }\n"
" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n"
" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n"
" \n"
" \n"
" float4 posA = rigidBodies[bodyIndexA].m_pos;\n"
" posA.w = 0.f;\n"
" float4 posB = rigidBodies[bodyIndexB].m_pos;\n"
" posB.w = 0.f;\n"
" \n"
" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n"
" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n"
" \n"
" \n"
" \n"
" \n"
" ///////////////////\n"
" ///compound shape support\n"
" \n"
" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n"
" {\n"
" int compoundChild = concavePairs[pairIdx].w;\n"
" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n"
" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n"
" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n"
" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n"
" float4 newPosB = transform(&childPosB,&posB,&ornB);\n"
" float4 newOrnB = qtMul(ornB,childOrnB);\n"
" posB = newPosB;\n"
" ornB = newOrnB;\n"
" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n"
" }\n"
" //////////////////\n"
" \n"
" float4 c0local = convexPolyhedronA.m_localCenter;\n"
" float4 c0 = transform(&c0local, &posA, &ornA);\n"
" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n"
" float4 c1 = transform(&c1local,&posB,&ornB);\n"
" const float4 DeltaC2 = c0 - c1;\n"
" \n"
" \n"
" {\n"
" bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n"
" posA,ornA,\n"
" posB,ornB,\n"
" DeltaC2,\n"
" verticesA,uniqueEdgesA,facesA,indicesA,\n"
" vertices,uniqueEdges,faces,indices,\n"
" &sepAxis,&dmin);\n"
" \n"
" if (!sepEE)\n"
" {\n"
" hasSeparatingAxis = 0;\n"
" } else\n"
" {\n"
" hasSeparatingAxis = 1;\n"
" }\n"
" }\n"
" \n"
" \n"
" if (hasSeparatingAxis)\n"
" {\n"
" sepAxis.w = dmin;\n"
" dmins[i] = dmin;\n"
" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n"
" concaveHasSeparatingNormals[i]=1;\n"
" \n"
" float minDist = -1e30f;\n"
" float maxDist = 0.02f;\n"
" findClippingFaces(sepAxis,\n"
" &convexPolyhedronA,\n"
" &convexShapes[shapeIndexB],\n"
" posA,ornA,\n"
" posB,ornB,\n"
" worldVertsA1GPU,\n"
" worldNormalsAGPU,\n"
" worldVertsB1GPU,\n"
" vertexFaceCapacity,\n"
" minDist, maxDist,\n"
" verticesA,\n"
" facesA,\n"
" indicesA,\n"
" vertices,\n"
" faces,\n"
" indices,\n"
" clippingFacesOut, pairIdx);\n"
" \n"
" \n"
" } else\n"
" { \n"
" //mark this pair as in-active\n"
" concavePairs[pairIdx].w = -1;\n"
" }\n"
" }\n"
" else\n"
" { \n"
" //mark this pair as in-active\n"
" concavePairs[pairIdx].w = -1;\n"
" }\n"
"}\n"
;