prepared to add BulletDino, and made ForkLiftDemo compile (no functionality yet)

This commit is contained in:
ejcoumans
2006-10-29 06:34:58 +00:00
parent d6c6cbaee6
commit 82b310c9cd
6 changed files with 1006 additions and 146 deletions

View File

@@ -0,0 +1,882 @@
/* Copyright (c) Mark J. Kilgard, 1994, 1997. */
/* This program is freely distributable without licensing fees
and is provided without guarantee or warrantee expressed or
implied. This program is -not- in the public domain. */
/* Example for PC game developers to show how to *combine* texturing,
reflections, and projected shadows all in real-time with OpenGL.
Robust reflections use stenciling. Robust projected shadows
use both stenciling and polygon offset. PC game programmers
should realize that neither stenciling nor polygon offset are
supported by Direct3D, so these real-time rendering algorithms
are only really viable with OpenGL.
The program has modes for disabling the stenciling and polygon
offset uses. It is worth running this example with these features
toggled off so you can see the sort of artifacts that result.
Notice that the floor texturing, reflections, and shadowing
all co-exist properly. */
/* When you run this program: Left mouse button controls the
view. Middle mouse button controls light position (left &
right rotates light around dino; up & down moves light
position up and down). Right mouse button pops up menu. */
/* Check out the comments in the "redraw" routine to see how the
reflection blending and surface stenciling is done. You can
also see in "redraw" how the projected shadows are rendered,
including the use of stenciling and polygon offset. */
/* This program is derived from glutdino.c */
/* Compile: cc -o dinoshade dinoshade.c -lglut -lGLU -lGL -lXmu -lXext -lX11 -lm */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h> /* for cos(), sin(), and sqrt() */
#include <GL/glut.h> /* OpenGL Utility Toolkit header */
#include <GL/glext.h>
/* Some <math.h> files do not define M_PI... */
#ifndef M_PI
#define M_PI 3.14159265
#endif
#ifndef WIN32
#ifndef CALLBACK
#define CALLBACK
#endif
#endif
/* Variable controlling various rendering modes. */
static int stencilReflection = 1, stencilShadow = 1, offsetShadow = 1;
static int renderShadow = 1, renderDinosaur = 1, renderReflection = 1;
static int linearFiltering = 0, useMipmaps = 0, useTexture = 1;
static int reportSpeed = 0;
static int animation = 1;
static GLboolean lightSwitch = GL_TRUE;
static int directionalLight = 1;
static int forceExtension = 0;
/* Time varying or user-controled variables. */
static float jump = 0.0;
static float lightAngle = 0.0, lightHeight = 20;
GLfloat angle = -150; /* in degrees */
GLfloat angle2 = 30; /* in degrees */
int moving, startx, starty;
int lightMoving = 0, lightStartX, lightStartY;
enum {
MISSING, EXTENSION, ONE_DOT_ONE
};
int polygonOffsetVersion;
static GLdouble bodyWidth = 3.0;
/* *INDENT-OFF* */
static GLfloat body[][2] = { {0, 3}, {1, 1}, {5, 1}, {8, 4}, {10, 4}, {11, 5},
{11, 11.5}, {13, 12}, {13, 13}, {10, 13.5}, {13, 14}, {13, 15}, {11, 16},
{8, 16}, {7, 15}, {7, 13}, {8, 12}, {7, 11}, {6, 6}, {4, 3}, {3, 2},
{1, 2} };
static GLfloat arm[][2] = { {8, 10}, {9, 9}, {10, 9}, {13, 8}, {14, 9}, {16, 9},
{15, 9.5}, {16, 10}, {15, 10}, {15.5, 11}, {14.5, 10}, {14, 11}, {14, 10},
{13, 9}, {11, 11}, {9, 11} };
static GLfloat leg[][2] = { {8, 6}, {8, 4}, {9, 3}, {9, 2}, {8, 1}, {8, 0.5}, {9, 0},
{12, 0}, {10, 1}, {10, 2}, {12, 4}, {11, 6}, {10, 7}, {9, 7} };
static GLfloat eye[][2] = { {8.75, 15}, {9, 14.7}, {9.6, 14.7}, {10.1, 15},
{9.6, 15.25}, {9, 15.25} };
static GLfloat lightPosition[4];
static GLfloat lightColor[] = {0.8, 1.0, 0.8, 1.0}; /* green-tinted */
static GLfloat skinColor[] = {0.1, 1.0, 0.1, 1.0}, eyeColor[] = {1.0, 0.2, 0.2, 1.0};
/* *INDENT-ON* */
/* Nice floor texture tiling pattern. */
static char *circles[] = {
"....xxxx........",
"..xxxxxxxx......",
".xxxxxxxxxx.....",
".xxx....xxx.....",
"xxx......xxx....",
"xxx......xxx....",
"xxx......xxx....",
"xxx......xxx....",
".xxx....xxx.....",
".xxxxxxxxxx.....",
"..xxxxxxxx......",
"....xxxx........",
"................",
"................",
"................",
"................",
};
static void
makeFloorTexture(void)
{
GLubyte floorTexture[16][16][3];
GLubyte *loc;
int s, t;
/* Setup RGB image for the texture. */
loc = (GLubyte*) floorTexture;
for (t = 0; t < 16; t++) {
for (s = 0; s < 16; s++) {
if (circles[t][s] == 'x') {
/* Nice green. */
loc[0] = 0x1f;
loc[1] = 0x8f;
loc[2] = 0x1f;
} else {
/* Light gray. */
loc[0] = 0xaa;
loc[1] = 0xaa;
loc[2] = 0xaa;
}
loc += 3;
}
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if (useMipmaps) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);
gluBuild2DMipmaps(GL_TEXTURE_2D, 3, 16, 16,
GL_RGB, GL_UNSIGNED_BYTE, floorTexture);
} else {
if (linearFiltering) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
glTexImage2D(GL_TEXTURE_2D, 0, 3, 16, 16, 0,
GL_RGB, GL_UNSIGNED_BYTE, floorTexture);
}
}
enum {
X, Y, Z, W
};
enum {
A, B, C, D
};
/* Create a matrix that will project the desired shadow. */
void
shadowMatrix(GLfloat shadowMat[4][4],
GLfloat groundplane[4],
GLfloat lightpos[4])
{
GLfloat dot;
/* Find dot product between light position vector and ground plane normal. */
dot = groundplane[X] * lightpos[X] +
groundplane[Y] * lightpos[Y] +
groundplane[Z] * lightpos[Z] +
groundplane[W] * lightpos[W];
shadowMat[0][0] = dot - lightpos[X] * groundplane[X];
shadowMat[1][0] = 0.f - lightpos[X] * groundplane[Y];
shadowMat[2][0] = 0.f - lightpos[X] * groundplane[Z];
shadowMat[3][0] = 0.f - lightpos[X] * groundplane[W];
shadowMat[X][1] = 0.f - lightpos[Y] * groundplane[X];
shadowMat[1][1] = dot - lightpos[Y] * groundplane[Y];
shadowMat[2][1] = 0.f - lightpos[Y] * groundplane[Z];
shadowMat[3][1] = 0.f - lightpos[Y] * groundplane[W];
shadowMat[X][2] = 0.f - lightpos[Z] * groundplane[X];
shadowMat[1][2] = 0.f - lightpos[Z] * groundplane[Y];
shadowMat[2][2] = dot - lightpos[Z] * groundplane[Z];
shadowMat[3][2] = 0.f - lightpos[Z] * groundplane[W];
shadowMat[X][3] = 0.f - lightpos[W] * groundplane[X];
shadowMat[1][3] = 0.f - lightpos[W] * groundplane[Y];
shadowMat[2][3] = 0.f - lightpos[W] * groundplane[Z];
shadowMat[3][3] = dot - lightpos[W] * groundplane[W];
}
/* Find the plane equation given 3 points. */
void
findPlane(GLfloat plane[4],
GLfloat v0[3], GLfloat v1[3], GLfloat v2[3])
{
GLfloat vec0[3], vec1[3];
/* Need 2 vectors to find cross product. */
vec0[X] = v1[X] - v0[X];
vec0[Y] = v1[Y] - v0[Y];
vec0[Z] = v1[Z] - v0[Z];
vec1[X] = v2[X] - v0[X];
vec1[Y] = v2[Y] - v0[Y];
vec1[Z] = v2[Z] - v0[Z];
/* find cross product to get A, B, and C of plane equation */
plane[A] = vec0[Y] * vec1[Z] - vec0[Z] * vec1[Y];
plane[B] = -(vec0[X] * vec1[Z] - vec0[Z] * vec1[X]);
plane[C] = vec0[X] * vec1[Y] - vec0[Y] * vec1[X];
plane[D] = -(plane[A] * v0[X] + plane[B] * v0[Y] + plane[C] * v0[Z]);
}
void
extrudeSolidFromPolygon(GLfloat data[][2], unsigned int dataSize,
GLdouble thickness, GLuint side, GLuint edge, GLuint whole)
{
static GLUtriangulatorObj *tobj = NULL;
GLdouble vertex[3], dx, dy, len;
int i;
int count = dataSize / (2 * sizeof(GLfloat));
if (tobj == NULL) {
tobj = gluNewTess(); /* create and initialize a GLU
polygon * * tesselation object */
gluTessCallback(tobj, (GLenum)GLU_BEGIN, (void(CALLBACK*)())glBegin);
gluTessCallback(tobj, (GLenum)GLU_VERTEX, (void(CALLBACK*)())glVertex2fv); /* semi-tricky */
gluTessCallback(tobj, (GLenum)GLU_END, (void(CALLBACK*)())glEnd);
}
glNewList(side, GL_COMPILE);
glShadeModel(GL_SMOOTH); /* smooth minimizes seeing
tessellation */
gluBeginPolygon(tobj);
for (i = 0; i < count; i++) {
vertex[0] = data[i][0];
vertex[1] = data[i][1];
vertex[2] = 0;
gluTessVertex(tobj, vertex, data[i]);
}
gluEndPolygon(tobj);
glEndList();
glNewList(edge, GL_COMPILE);
glShadeModel(GL_FLAT); /* flat shade keeps angular hands
from being "smoothed" */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= count; i++) {
/* mod function handles closing the edge */
glVertex3f(data[i % count][0], data[i % count][1], 0.0);
glVertex3f(data[i % count][0], data[i % count][1], thickness);
/* Calculate a unit normal by dividing by Euclidean
distance. We * could be lazy and use
glEnable(GL_NORMALIZE) so we could pass in * arbitrary
normals for a very slight performance hit. */
dx = data[(i + 1) % count][1] - data[i % count][1];
dy = data[i % count][0] - data[(i + 1) % count][0];
len = sqrt(dx * dx + dy * dy);
glNormal3f(dx / len, dy / len, 0.0);
}
glEnd();
glEndList();
glNewList(whole, GL_COMPILE);
glFrontFace(GL_CW);
glCallList(edge);
glNormal3f(0.0, 0.0, -1.0); /* constant normal for side */
glCallList(side);
glPushMatrix();
glTranslatef(0.0, 0.0, thickness);
glFrontFace(GL_CCW);
glNormal3f(0.0, 0.0, 1.0); /* opposite normal for other side */
glCallList(side);
glPopMatrix();
glEndList();
}
/* Enumerants for refering to display lists. */
typedef enum {
RESERVED, BODY_SIDE, BODY_EDGE, BODY_WHOLE, ARM_SIDE, ARM_EDGE, ARM_WHOLE,
LEG_SIDE, LEG_EDGE, LEG_WHOLE, EYE_SIDE, EYE_EDGE, EYE_WHOLE
} displayLists;
static void
makeDinosaur(void)
{
extrudeSolidFromPolygon(body, sizeof(body), bodyWidth,
BODY_SIDE, BODY_EDGE, BODY_WHOLE);
extrudeSolidFromPolygon(arm, sizeof(arm), bodyWidth / 4,
ARM_SIDE, ARM_EDGE, ARM_WHOLE);
extrudeSolidFromPolygon(leg, sizeof(leg), bodyWidth / 2,
LEG_SIDE, LEG_EDGE, LEG_WHOLE);
extrudeSolidFromPolygon(eye, sizeof(eye), bodyWidth + 0.2,
EYE_SIDE, EYE_EDGE, EYE_WHOLE);
}
static void
drawDinosaur(void)
{
glPushMatrix();
/* Translate the dinosaur to be at (0,8,0). */
glTranslatef(-8, 0, -bodyWidth / 2);
glTranslatef(0.0, jump, 0.0);
glMaterialfv(GL_FRONT, GL_DIFFUSE, skinColor);
glCallList(BODY_WHOLE);
glTranslatef(0.0, 0.0, bodyWidth);
glCallList(ARM_WHOLE);
glCallList(LEG_WHOLE);
glTranslatef(0.0, 0.0, -bodyWidth - bodyWidth / 4);
glCallList(ARM_WHOLE);
glTranslatef(0.0, 0.0, -bodyWidth / 4);
glCallList(LEG_WHOLE);
glTranslatef(0.0, 0.0, bodyWidth / 2 - 0.1);
glMaterialfv(GL_FRONT, GL_DIFFUSE, eyeColor);
glCallList(EYE_WHOLE);
glPopMatrix();
}
static GLfloat floorVertices[4][3] = {
{ -20.0, 0.0, 20.0 },
{ 20.0, 0.0, 20.0 },
{ 20.0, 0.0, -20.0 },
{ -20.0, 0.0, -20.0 },
};
/* Draw a floor (possibly textured). */
static void
drawFloor(void)
{
glDisable(GL_LIGHTING);
if (useTexture) {
glEnable(GL_TEXTURE_2D);
}
glBegin(GL_QUADS);
glTexCoord2f(0.0, 0.0);
glVertex3fv(floorVertices[0]);
glTexCoord2f(0.0, 16.0);
glVertex3fv(floorVertices[1]);
glTexCoord2f(16.0, 16.0);
glVertex3fv(floorVertices[2]);
glTexCoord2f(16.0, 0.0);
glVertex3fv(floorVertices[3]);
glEnd();
if (useTexture) {
glDisable(GL_TEXTURE_2D);
}
glEnable(GL_LIGHTING);
}
static GLfloat floorPlane[4];
static GLfloat floorShadow[4][4];
static void
redraw(void)
{
int start, end;
if (reportSpeed) {
start = glutGet(GLUT_ELAPSED_TIME);
}
/* Clear; default stencil clears to zero. */
if ((stencilReflection && renderReflection) || (stencilShadow && renderShadow)) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
} else {
/* Avoid clearing stencil when not using it. */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
/* Reposition the light source. */
lightPosition[0] = 12*cos(lightAngle);
lightPosition[1] = lightHeight;
lightPosition[2] = 12*sin(lightAngle);
if (directionalLight) {
lightPosition[3] = 0.0;
} else {
lightPosition[3] = 1.0;
}
shadowMatrix(floorShadow, floorPlane, lightPosition);
glPushMatrix();
/* Perform scene rotations based on user mouse input. */
glRotatef(angle2, 1.0, 0.0, 0.0);
glRotatef(angle, 0.0, 1.0, 0.0);
/* Tell GL new light source position. */
glLightfv(GL_LIGHT0, GL_POSITION, lightPosition);
if (renderReflection) {
if (stencilReflection) {
/* We can eliminate the visual "artifact" of seeing the "flipped"
dinosaur underneath the floor by using stencil. The idea is
draw the floor without color or depth update but so that
a stencil value of one is where the floor will be. Later when
rendering the dinosaur reflection, we will only update pixels
with a stencil value of 1 to make sure the reflection only
lives on the floor, not below the floor. */
/* Don't update color or depth. */
glDisable(GL_DEPTH_TEST);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
/* Draw 1 into the stencil buffer. */
glEnable(GL_STENCIL_TEST);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
glStencilFunc(GL_ALWAYS, 1, 0xffffffff);
/* Now render floor; floor pixels just get their stencil set to 1. */
drawFloor();
/* Re-enable update of color and depth. */
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glEnable(GL_DEPTH_TEST);
/* Now, only render where stencil is set to 1. */
glStencilFunc(GL_EQUAL, 1, 0xffffffff); /* draw if ==1 */
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
}
glPushMatrix();
/* The critical reflection step: Reflect dinosaur through the floor
(the Y=0 plane) to make a relection. */
glScalef(1.0, -1.0, 1.0);
/* Reflect the light position. */
glLightfv(GL_LIGHT0, GL_POSITION, lightPosition);
/* To avoid our normals getting reversed and hence botched lighting
on the reflection, turn on normalize. */
glEnable(GL_NORMALIZE);
glCullFace(GL_FRONT);
/* Draw the reflected dinosaur. */
drawDinosaur();
/* Disable noramlize again and re-enable back face culling. */
glDisable(GL_NORMALIZE);
glCullFace(GL_BACK);
glPopMatrix();
/* Switch back to the unreflected light position. */
glLightfv(GL_LIGHT0, GL_POSITION, lightPosition);
if (stencilReflection) {
glDisable(GL_STENCIL_TEST);
}
}
/* Back face culling will get used to only draw either the top or the
bottom floor. This let's us get a floor with two distinct
appearances. The top floor surface is reflective and kind of red.
The bottom floor surface is not reflective and blue. */
/* Draw "bottom" of floor in blue. */
glFrontFace(GL_CW); /* Switch face orientation. */
glColor4f(0.1, 0.1, 0.7, 1.0);
drawFloor();
glFrontFace(GL_CCW);
if (renderShadow) {
if (stencilShadow) {
/* Draw the floor with stencil value 3. This helps us only
draw the shadow once per floor pixel (and only on the
floor pixels). */
glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 3, 0xffffffff);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
}
}
/* Draw "top" of floor. Use blending to blend in reflection. */
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glColor4f(0.7, 0.0, 0.0, 0.3);
glColor4f(1.0, 1.0, 1.0, 0.3);
drawFloor();
glDisable(GL_BLEND);
if (renderDinosaur) {
/* Draw "actual" dinosaur, not its reflection. */
drawDinosaur();
}
if (renderShadow) {
/* Render the projected shadow. */
if (stencilShadow) {
/* Now, only render where stencil is set above 2 (ie, 3 where
the top floor is). Update stencil with 2 where the shadow
gets drawn so we don't redraw (and accidently reblend) the
shadow). */
glStencilFunc(GL_LESS, 2, 0xffffffff); /* draw if ==1 */
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
}
/* To eliminate depth buffer artifacts, we use polygon offset
to raise the depth of the projected shadow slightly so
that it does not depth buffer alias with the floor. */
if (offsetShadow) {
switch (polygonOffsetVersion) {
case EXTENSION:
#ifdef GL_VERSION_1_1
case ONE_DOT_ONE:
glEnable(GL_POLYGON_OFFSET_FILL);
break;
#endif
case MISSING:
/* Oh well. */
break;
}
}
/* Render 50% black shadow color on top of whatever the
floor appareance is. */
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_LIGHTING); /* Force the 50% black. */
glColor4f(0.0, 0.0, 0.0, 0.5);
glPushMatrix();
/* Project the shadow. */
glMultMatrixf((GLfloat *) floorShadow);
drawDinosaur();
glPopMatrix();
glDisable(GL_BLEND);
glEnable(GL_LIGHTING);
if (offsetShadow) {
switch (polygonOffsetVersion) {
#ifdef GL_VERSION_1_1
case ONE_DOT_ONE:
glDisable(GL_POLYGON_OFFSET_FILL);
break;
#endif
case MISSING:
/* Oh well. */
break;
}
}
if (stencilShadow) {
glDisable(GL_STENCIL_TEST);
}
}
glPushMatrix();
glDisable(GL_LIGHTING);
glColor3f(1.0, 1.0, 0.0);
if (directionalLight) {
/* Draw an arrowhead. */
glDisable(GL_CULL_FACE);
glTranslatef(lightPosition[0], lightPosition[1], lightPosition[2]);
glRotatef(lightAngle * -180.0 / M_PI, 0, 1, 0);
glRotatef(atan(lightHeight/12) * 180.0 / M_PI, 0, 0, 1);
glBegin(GL_TRIANGLE_FAN);
glVertex3f(0, 0, 0);
glVertex3f(2, 1, 1);
glVertex3f(2, -1, 1);
glVertex3f(2, -1, -1);
glVertex3f(2, 1, -1);
glVertex3f(2, 1, 1);
glEnd();
/* Draw a white line from light direction. */
glColor3f(1.0, 1.0, 1.0);
glBegin(GL_LINES);
glVertex3f(0, 0, 0);
glVertex3f(5, 0, 0);
glEnd();
glEnable(GL_CULL_FACE);
} else {
/* Draw a yellow ball at the light source. */
glTranslatef(lightPosition[0], lightPosition[1], lightPosition[2]);
glutSolidSphere(1.0, 5, 5);
}
glEnable(GL_LIGHTING);
glPopMatrix();
glPopMatrix();
if (reportSpeed) {
glFinish();
end = glutGet(GLUT_ELAPSED_TIME);
printf("Speed %.3g frames/sec (%d ms)\n", 1000.0/(end-start), end-start);
}
glutSwapBuffers();
}
/* ARGSUSED2 */
static void
mouse(int button, int state, int x, int y)
{
if (button == GLUT_LEFT_BUTTON) {
if (state == GLUT_DOWN) {
moving = 1;
startx = x;
starty = y;
}
if (state == GLUT_UP) {
moving = 0;
}
}
if (button == GLUT_MIDDLE_BUTTON) {
if (state == GLUT_DOWN) {
lightMoving = 1;
lightStartX = x;
lightStartY = y;
}
if (state == GLUT_UP) {
lightMoving = 0;
}
}
}
/* ARGSUSED1 */
static void
motion(int x, int y)
{
if (moving) {
angle = angle + (x - startx);
angle2 = angle2 + (y - starty);
startx = x;
starty = y;
glutPostRedisplay();
}
if (lightMoving) {
lightAngle += (x - lightStartX)/40.0;
lightHeight += (lightStartY - y)/20.0;
lightStartX = x;
lightStartY = y;
glutPostRedisplay();
}
}
/* Advance time varying state when idle callback registered. */
static void
idle(void)
{
static float time = 0.0;
time = glutGet(GLUT_ELAPSED_TIME) / 500.0;
jump = 4.0 * fabs(sin(time)*0.5);
if (!lightMoving) {
lightAngle += 0.03;
}
glutPostRedisplay();
}
enum {
M_NONE, M_MOTION, M_LIGHT, M_TEXTURE, M_SHADOWS, M_REFLECTION, M_DINOSAUR,
M_STENCIL_REFLECTION, M_STENCIL_SHADOW, M_OFFSET_SHADOW,
M_POSITIONAL, M_DIRECTIONAL, M_PERFORMANCE
};
static void
controlLights(int value)
{
switch (value) {
case M_NONE:
return;
case M_MOTION:
animation = 1 - animation;
if (animation) {
glutIdleFunc(idle);
} else {
glutIdleFunc(NULL);
}
break;
case M_LIGHT:
lightSwitch = !lightSwitch;
if (lightSwitch) {
glEnable(GL_LIGHT0);
} else {
glDisable(GL_LIGHT0);
}
break;
case M_TEXTURE:
useTexture = !useTexture;
break;
case M_SHADOWS:
renderShadow = 1 - renderShadow;
break;
case M_REFLECTION:
renderReflection = 1 - renderReflection;
break;
case M_DINOSAUR:
renderDinosaur = 1 - renderDinosaur;
break;
case M_STENCIL_REFLECTION:
stencilReflection = 1 - stencilReflection;
break;
case M_STENCIL_SHADOW:
stencilShadow = 1 - stencilShadow;
break;
case M_OFFSET_SHADOW:
offsetShadow = 1 - offsetShadow;
break;
case M_POSITIONAL:
directionalLight = 0;
break;
case M_DIRECTIONAL:
directionalLight = 1;
break;
case M_PERFORMANCE:
reportSpeed = 1 - reportSpeed;
break;
}
glutPostRedisplay();
}
/* When not visible, stop animating. Restart when visible again. */
static void
visible(int vis)
{
if (vis == GLUT_VISIBLE) {
if (animation)
glutIdleFunc(idle);
} else {
if (!animation)
glutIdleFunc(NULL);
}
}
/* Press any key to redraw; good when motion stopped and
performance reporting on. */
/* ARGSUSED */
static void
key(unsigned char c, int x, int y)
{
if (c == 27) {
exit(0); /* IRIS GLism, Escape quits. */
}
glutPostRedisplay();
}
/* Press any key to redraw; good when motion stopped and
performance reporting on. */
/* ARGSUSED */
static void
special(int k, int x, int y)
{
glutPostRedisplay();
}
static int
supportsOneDotOne(void)
{
const char *version;
int major, minor;
version = (char *) glGetString(GL_VERSION);
if (sscanf(version, "%d.%d", &major, &minor) == 2)
return ((major > 1) || (major >= 1 && minor >= 1));
return 0; /* OpenGL version string malformed! */
}
int
main(int argc, char **argv)
{
int i;
glutInit(&argc, argv);
for (i=1; i<argc; i++) {
if (!strcmp("-linear", argv[i])) {
linearFiltering = 1;
} else if (!strcmp("-mipmap", argv[i])) {
useMipmaps = 1;
} else if (!strcmp("-ext", argv[i])) {
forceExtension = 1;
}
}
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH | GLUT_STENCIL | GLUT_MULTISAMPLE);
#if 0
/* In GLUT 4.0, you'll be able to do this an be sure to
get 2 bits of stencil if the machine has it for you. */
glutInitDisplayString("samples stencil>=2 rgb double depth");
#endif
glutCreateWindow("Shadowy Leapin' Lizards");
if (glutGet(GLUT_WINDOW_STENCIL_SIZE) <= 1) {
printf("dinoshade: Sorry, I need at least 2 bits of stencil.\n");
exit(1);
}
/* Register GLUT callbacks. */
glutDisplayFunc(redraw);
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutVisibilityFunc(visible);
glutKeyboardFunc(key);
glutSpecialFunc(special);
glutCreateMenu(controlLights);
glutAddMenuEntry("Toggle motion", M_MOTION);
glutAddMenuEntry("-----------------------", M_NONE);
glutAddMenuEntry("Toggle light", M_LIGHT);
glutAddMenuEntry("Toggle texture", M_TEXTURE);
glutAddMenuEntry("Toggle shadows", M_SHADOWS);
glutAddMenuEntry("Toggle reflection", M_REFLECTION);
glutAddMenuEntry("Toggle dinosaur", M_DINOSAUR);
glutAddMenuEntry("-----------------------", M_NONE);
glutAddMenuEntry("Toggle reflection stenciling", M_STENCIL_REFLECTION);
glutAddMenuEntry("Toggle shadow stenciling", M_STENCIL_SHADOW);
glutAddMenuEntry("Toggle shadow offset", M_OFFSET_SHADOW);
glutAddMenuEntry("----------------------", M_NONE);
glutAddMenuEntry("Positional light", M_POSITIONAL);
glutAddMenuEntry("Directional light", M_DIRECTIONAL);
glutAddMenuEntry("-----------------------", M_NONE);
glutAddMenuEntry("Toggle performance", M_PERFORMANCE);
glutAttachMenu(GLUT_RIGHT_BUTTON);
makeDinosaur();
#ifdef GL_VERSION_1_1
if (supportsOneDotOne() && !forceExtension) {
polygonOffsetVersion = ONE_DOT_ONE;
glPolygonOffset(-2.0, -1.0);
} else
#endif
{
{
polygonOffsetVersion = MISSING;
printf("\ndinoshine: Missing polygon offset.\n");
printf(" Expect shadow depth aliasing artifacts.\n\n");
}
}
glEnable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_2D);
glLineWidth(3.0);
glMatrixMode(GL_PROJECTION);
gluPerspective( /* field of view in degree */ 40.0,
/* aspect ratio */ 1.0,
/* Z near */ 20.0, /* Z far */ 100.0);
glMatrixMode(GL_MODELVIEW);
gluLookAt(0.0, 8.0, 60.0, /* eye is at (0,0,30) */
0.0, 8.0, 0.0, /* center is at (0,0,0) */
0.0, 1.0, 0.); /* up is in postivie Y direction */
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
glLightfv(GL_LIGHT0, GL_DIFFUSE, lightColor);
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 0.1);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 0.05);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
makeFloorTexture();
/* Setup floor plane for projected shadow calculations. */
findPlane(floorPlane, floorVertices[1], floorVertices[2], floorVertices[3]);
glutMainLoop();
return 0; /* ANSI C requires main to return int. */
}

View File

@@ -0,0 +1,61 @@
# This is basically the overall name of the project in Visual Studio this is the name of the Solution File
# For every executable you have with a main method you should have an add_executable line below.
# For every add executable line you should list every .cpp and .h file you have associated with that executable.
# This is the variable for Windows. I use this to define the root of my directory structure.
SET(GLUT_ROOT ${BULLET_PHYSICS_SOURCE_DIR}/Glut)
# You shouldn't have to modify anything below this line
########################################################
# This is the shortcut to finding GLU, GLUT and OpenGL if they are properly installed on your system
# This should be the case.
INCLUDE (${CMAKE_ROOT}/Modules/FindGLU.cmake)
INCLUDE (${CMAKE_ROOT}/Modules/FindGLUT.cmake)
INCLUDE (${CMAKE_ROOT}/Modules/FindOpenGL.cmake)
IF (WIN32)
# This is the Windows code for which Opengl, and Glut are not properly installed
# since I can't install them I must cheat and copy libraries around
INCLUDE_DIRECTORIES(${GLUT_ROOT})
# LINK_DIRECTORIES(${GLUT_ROOT}\\lib)
IF (${GLUT_glut_LIBRARY} MATCHES "GLUT_glut_LIBRARY-NOTFOUND")
SET(GLUT_glut_LIBRARY ${BULLET_PHYSICS_SOURCE_DIR}/Glut/glut32.lib)
# LINK_LIBRARIES(${GLUT_ROOT}\\lib\\glut32 ${OPENGL_gl_LIBRARY} ${OPENGL_glU_LIBRARY})
# TARGET_LINK_LIBRARIES(table ${GLUT_ROOT}\\lib\\glut32)
#
# ADD_CUSTOM_COMMAND(TARGET table POST_BUILD COMMAND copy ${GLUT_ROOT}\\lib\\glut32.dll ${GLUT_ROOT}\\bin\\vs2005\\Debug
# COMMAND copy ${GLUT_ROOT}\\lib\\glut32.dll ${GLUT_ROOT}\\bin\\vs2003\\Debug
# COMMAND copy ${GLUT_ROOT}\\lib\\glut32.dll ${GLUT_ROOT}\\bin\\vs6\\Debug)
ELSE (${GLUT_glut_LIBRARY} MATCHES "GLUT_glut_LIBRARY-NOTFOUND")
# LINK_LIBRARIES(${GLUT_glut_LIBRARY} ${OPENGL_gl_LIBRARY} ${OPENGL_glU_LIBRARY})
# TARGET_LINK_LIBRARIES(table ${GLUT_glut_LIBRARY})
ENDIF(${GLUT_glut_LIBRARY} MATCHES "GLUT_glut_LIBRARY-NOTFOUND")
# TARGET_LINK_LIBRARIES(table ${OPENGL_gl_LIBRARY})
# TARGET_LINK_LIBRARIES(table ${OPENGL_glu_LIBRARY})
ELSE (WIN32)
# This is the lines for linux. This should always work if everything is installed and working fine.
# SET(CMAKE_BUILD_TYPE Debug)
# SET(CMAKE_CXX_FLAGS_DEBUG "-g")
INCLUDE_DIRECTORIES(/usr/include /usr/local/include ${GLUT_INCLUDE_DIR})
# TARGET_LINK_LIBRARIES(table ${GLUT_glut_LIBRARY} ${OPENGL_gl_LIBRARY} ${OPENGL_glU_LIBRARY})
# TARGET_LINK_LIBRARIES(checker ${GLUT_glut_LIBRARY} ${OPENGL_gl_LIBRARY} ${OPENGL_glU_LIBRARY})
ENDIF (WIN32)
INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/src ${BULLET_PHYSICS_SOURCE_DIR}/Demos/OpenGL }
)
LINK_LIBRARIES(
LibOpenGLSupport LibBulletDynamics LibBulletCollision LibLinearMath ${GLUT_glut_LIBRARY} ${OPENGL_gl_LIBRARY} ${OPENGL_glU_LIBRARY}
)
ADD_EXECUTABLE(BulletDino
BulletDino.cpp
)

View File

@@ -0,0 +1,3 @@
SubDir TOP Demos BulletDino ;
ExtraDemo BulletDino : [ Wildcard *.h *.cpp ] ;

View File

@@ -13,32 +13,16 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
//Ignore this USE_PARALLEL_DISPATCHER define, it is for future optimizations
//#define USE_PARALLEL_DISPATCHER 1
/// September 2006: ForkLiftDemo is work in progress, this file is mostly just a placeholder
/// This ForkLiftDemo file is very early in development, please check it later
#include "CcdPhysicsEnvironment.h"
#include "ParallelPhysicsEnvironment.h"
#include "CcdPhysicsController.h"
#include "btBulletDynamicsCommon.h"
#include "PHY_IVehicle.h"
#include "ParallelIslandDispatcher.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btIDebugDraw.h"
#include "GLDebugDrawer.h"
#include "PHY_Pro.h"
#include "BMF_Api.h"
#include <stdio.h> //printf debugging
float deltaTime = 1.f/60.f;
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
@@ -48,14 +32,9 @@ const int maxProxies = 32766;
const int maxOverlap = 65535;
DefaultMotionState wheelMotionState[4];
///PHY_IVehicle is the interface behind the constraint that implements the raycast vehicle (WrapperVehicle which holds a btRaycastVehicle)
///notice that for higher-quality slow-moving vehicles, another approach might be better
///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts
PHY_IVehicle* gVehicleConstraint=0;
float gEngineForce = 0.f;
float maxEngineForce = 1000.f;
float maxEngineForce = 100.f;
float gVehicleSteering = 0.f;
float steeringIncrement = 0.1f;
float steeringClamp = 0.3f;
@@ -103,32 +82,15 @@ m_maxCameraDistance(10.f)
void ForkLiftDemo::setupPhysics()
{
btCollisionDispatcher* dispatcher = new btCollisionDispatcher();
//ParallelIslandDispatcher* dispatcher2 = new ParallelIslandDispatcher();
btVector3 worldAabbMin(-30000,-30000,-30000);
btVector3 worldAabbMax(30000,30000,30000);
btOverlappingPairCache* broadphase = new btAxisSweep3(worldAabbMin,worldAabbMax,maxProxies);
//OverlappingPairCache* broadphase = new btSimpleBroadphase(maxProxies,maxOverlap);
#ifdef USE_PARALLEL_DISPATCHER
m_physicsEnvironmentPtr = new ParallelPhysicsEnvironment(dispatcher2,broadphase);
#else
m_physicsEnvironmentPtr = new CcdPhysicsEnvironment(dispatcher,broadphase);
#endif
m_physicsEnvironmentPtr->setDeactivationTime(2.f);
m_physicsEnvironmentPtr->setDebugDrawer(&debugDrawer);
m_physicsEnvironmentPtr->setGravity(0,-10,0);//0,0);//-10,0);
int i;
btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
m_dynamicsWorld = new btDiscreteDynamicsWorld();
#define USE_TRIMESH_GROUND 1
#ifdef USE_TRIMESH_GROUND
int i;
const float TRIANGLE_SIZE=20.f;
@@ -151,7 +113,7 @@ const float TRIANGLE_SIZE=20.f;
{
for (int j=0;j<NUM_VERTS_Y;j++)
{
gVertices[i+j*NUM_VERTS_X].setValue((i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,2.f*sinf((float)i)*cosf((float)j)+10.f,(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
gVertices[i+j*NUM_VERTS_X].setValue((i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,2.f*sinf((float)i)*cosf((float)j),(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
}
}
@@ -182,86 +144,32 @@ const float TRIANGLE_SIZE=20.f;
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-20.f,0));
tr.setOrigin(btVector3(0,-4.5f,0));
//create ground object
localCreatePhysicsObject(false,0,tr,groundShape);
localCreateRigidBody(0,tr,groundShape);
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
tr.setOrigin(btVector3(0,0.f,0));
m_carChassis = localCreatePhysicsObject(true,800,tr,chassisShape);
m_carChassis = localCreateRigidBody(800,tr,chassisShape);
clientResetScene();
m_physicsEnvironmentPtr->SyncMotionStates(0.f);
/// create vehicle
{
int constraintId;
constraintId =m_physicsEnvironmentPtr->createConstraint(
m_carChassis,0,
PHY_VEHICLE_CONSTRAINT,
0,0,0,
0,0,0);
///never deactivate the vehicle
m_carChassis->getRigidBody()->SetActivationState(DISABLE_DEACTIVATION);
gVehicleConstraint = m_physicsEnvironmentPtr->getVehicleConstraint(constraintId);
///never deactivate the vehicle
m_carChassis->SetActivationState(DISABLE_DEACTIVATION);
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),0,2*CUBE_HALF_EXTENTS-wheelRadius);
btRaycastVehicle::btVehicleTuning tuning;
bool isFrontWheel=true;
int rightIndex = 0;
int upIndex = 1;
int forwardIndex = 2;
gVehicleConstraint->setCoordinateSystem(rightIndex,upIndex,forwardIndex);
gVehicleConstraint->addWheel(&wheelMotionState[0],
(PHY__Vector3&)connectionPointCS0,
(PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),0,2*CUBE_HALF_EXTENTS-wheelRadius);
gVehicleConstraint->addWheel(&wheelMotionState[1],
(PHY__Vector3&)connectionPointCS0,
(PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),0,-2*CUBE_HALF_EXTENTS+wheelRadius);
isFrontWheel = false;
gVehicleConstraint->addWheel(&wheelMotionState[2],
(PHY__Vector3&)connectionPointCS0,
(PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),0,-2*CUBE_HALF_EXTENTS+wheelRadius);
gVehicleConstraint->addWheel(&wheelMotionState[3],
(PHY__Vector3&)connectionPointCS0,
(PHY__Vector3&)wheelDirectionCS0,(PHY__Vector3&)wheelAxleCS,suspensionRestLength,wheelRadius,isFrontWheel);
gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,0);
gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,1);
gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,2);
gVehicleConstraint->SetSuspensionStiffness(suspensionStiffness,3);
gVehicleConstraint->SetSuspensionDamping(suspensionDamping,0);
gVehicleConstraint->SetSuspensionDamping(suspensionDamping,1);
gVehicleConstraint->SetSuspensionDamping(suspensionDamping,2);
gVehicleConstraint->SetSuspensionDamping(suspensionDamping,3);
gVehicleConstraint->SetSuspensionCompression(suspensionCompression,0);
gVehicleConstraint->SetSuspensionCompression(suspensionCompression,1);
gVehicleConstraint->SetSuspensionCompression(suspensionCompression,2);
gVehicleConstraint->SetSuspensionCompression(suspensionCompression,3);
gVehicleConstraint->SetWheelFriction(wheelFriction,0);
gVehicleConstraint->SetWheelFriction(wheelFriction,1);
gVehicleConstraint->SetWheelFriction(wheelFriction,2);
gVehicleConstraint->SetWheelFriction(wheelFriction,3);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
}
@@ -274,46 +182,49 @@ const float TRIANGLE_SIZE=20.f;
//to be implemented by the demo
void ForkLiftDemo::renderme()
{
updateCamera();
debugDrawer.setDebugMode(getDebugMode());
float m[16];
int i;
btCylinderShapeX wheelShape(btVector3(wheelWidth,wheelRadius,wheelRadius));
btVector3 wheelColor(1,0,0);
for (i=0;i<4;i++)
{
//draw wheels (cylinders)
wheelMotionState[i].m_worldTransform.getOpenGLMatrix(m);
GL_ShapeDrawer::drawOpenGL(m,&wheelShape,wheelColor,getDebugMode());
}
DemoApplication::renderme();
}
void ForkLiftDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float dt = m_clock.getTimeMilliseconds() * 0.001f;
m_clock.reset();
if (m_dynamicsWorld)
{
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = m_idle ? 1 : 1;
if (m_idle)
dt = 1.0/420.f;
{
int steerWheelIndex = 2;
gVehicleConstraint->applyEngineForce(gEngineForce,steerWheelIndex);
steerWheelIndex = 3;
gVehicleConstraint->applyEngineForce(gEngineForce,steerWheelIndex);
steerWheelIndex = 0;
gVehicleConstraint->setSteeringValue(gVehicleSteering,steerWheelIndex);
steerWheelIndex = 1;
gVehicleConstraint->setSteeringValue(gVehicleSteering,steerWheelIndex);
int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
if (!numSimSteps)
printf("Interpolated transforms\n");
else
{
if (numSimSteps > maxSimSubSteps)
{
//detect dropping frames
printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
} else
{
printf("Simulated (%i) steps\n",numSimSteps);
}
}
}
m_physicsEnvironmentPtr->proceedDeltaTime(0.f,deltaTime);
@@ -327,6 +238,8 @@ void ForkLiftDemo::clientMoveAndDisplay()
#ifdef USE_QUICKPROF
btProfiler::endBlock("render");
#endif
glFlush();
glutSwapBuffers();
@@ -340,9 +253,10 @@ void ForkLiftDemo::displayCallback(void)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
m_physicsEnvironmentPtr->UpdateAabbs(deltaTime);
m_dynamicsWorld->updateAabbs();
//draw contactpoints
m_physicsEnvironmentPtr->CallbackTriggers();
//m_physicsEnvironmentPtr->CallbackTriggers();
renderme();
@@ -354,18 +268,13 @@ void ForkLiftDemo::displayCallback(void)
void ForkLiftDemo::clientResetScene()
{
gEngineForce = 0.f;
gVehicleSteering = 0.f;
m_carChassis->setPosition(0,0,0);
m_carChassis->setOrientation(0,0,0,1);
}
void ForkLiftDemo::specialKeyboard(int key, int x, int y)
{
printf("key = %i x=%i y=%i\n",key,x,y);
switch (key)
@@ -403,6 +312,7 @@ void ForkLiftDemo::specialKeyboard(int key, int x, int y)
// glutPostRedisplay();
}
@@ -413,8 +323,11 @@ void ForkLiftDemo::updateCamera()
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
btTransform chassisWorldTrans;
//look at the vehicle
m_cameraTargetPosition = m_carChassis->getRigidBody()->m_worldTransform.getOrigin();
m_carChassis->getMotionState()->getWorldTransform(chassisWorldTrans);
m_cameraTargetPosition = chassisWorldTrans.getOrigin();
//interpolate the camera height
m_cameraPosition[1] = (15.0*m_cameraPosition[1] + m_cameraTargetPosition[1] + m_cameraHeight)/16.0;
@@ -442,5 +355,6 @@ void ForkLiftDemo::updateCamera()
m_cameraUp.getX(),m_cameraUp.getY(),m_cameraUp.getZ());
glMatrixMode(GL_MODELVIEW);
}

View File

@@ -15,14 +15,18 @@ subject to the following restrictions:
#ifndef FORKLIFT_DEMO_H
#define FORKLIFT_DEMO_H
class btVehicleTuning;
struct btVehicleRaycaster;
#include "BulletDynamics/Vehicle/btRaycastVehicle.h"
#include "DemoApplication.h"
///ForkLiftDemo shows how to use constraint for a cylinder-wheels vehicle
///ForkLiftDemo shows how to setup and use the built-in raycast vehicle
class ForkLiftDemo : public DemoApplication
{
public:
CcdPhysicsController* m_carChassis;
btRigidBody* m_carChassis;
float m_cameraHeight;
@@ -34,7 +38,6 @@ class ForkLiftDemo : public DemoApplication
virtual void clientMoveAndDisplay();
virtual void clientResetScene();
virtual void displayCallback();
@@ -50,3 +53,4 @@ class ForkLiftDemo : public DemoApplication
#endif //FORKLIFT_DEMO_H

View File

@@ -31,13 +31,9 @@ subject to the following restrictions:
const int maxProxies = 32766;
const int maxOverlap = 65535;
btDefaultMotionState wheelMotionState[4];
///PHY_IVehicle is the interface behind the constraint that implements the raycast vehicle (WrapperVehicle which holds a btRaycastVehicle)
///btRaycastVehicle is the interface for the constraint that implements the raycast vehicle
///notice that for higher-quality slow-moving vehicles, another approach might be better
///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts
//PHY_IVehicle* gVehicleConstraint=0;
float gEngineForce = 0.f;
float maxEngineForce = 100.f;
float gVehicleSteering = 0.f;