SerializeDemo: create a testFile.bullet if it is missing

Serialization: remove obsolete autogenerated headers
Minor changes in btSequentialImpulseConstraintSolver: split methods to make it easier to derive from the class and add functionality.
This commit is contained in:
erwin.coumans
2010-02-19 23:24:04 +00:00
parent 07ea2a71e2
commit 85724b5500
13 changed files with 436 additions and 865 deletions

View File

@@ -329,21 +329,17 @@ void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirec
}
btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
{
btRigidBody* body0=btRigidBody::upcast(colObj0);
btRigidBody* body1=btRigidBody::upcast(colObj1);
btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
//memset(&solverConstraint,0xff,sizeof(btSolverConstraint));
solverConstraint.m_contactNormal = normalAxis;
solverConstraint.m_solverBodyA = body0 ? body0 : &getFixedBody();
solverConstraint.m_solverBodyB = body1 ? body1 : &getFixedBody();
solverConstraint.m_frictionIndex = frictionIndex;
solverConstraint.m_friction = cp.m_combinedFriction;
solverConstraint.m_originalContactPoint = 0;
@@ -413,7 +409,16 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
solverConstraint.m_lowerLimit = 0;
solverConstraint.m_upperLimit = 1e10f;
}
}
btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
{
btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
solverConstraint.m_frictionIndex = frictionIndex;
setupFrictionConstraint(solverConstraint, normalAxis, solverBodyA, solverBodyB, cp, rel_pos1, rel_pos2,
colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
return solverConstraint;
}
@@ -447,62 +452,30 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
#include <stdio.h>
void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint,
btCollisionObject* colObj0, btCollisionObject* colObj1,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
btVector3& vel, btScalar& rel_vel, btScalar& relaxation,
btVector3& rel_pos1, btVector3& rel_pos2)
{
btCollisionObject* colObj0=0,*colObj1=0;
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
btRigidBody* solverBodyA = btRigidBody::upcast(colObj0);
btRigidBody* solverBodyB = btRigidBody::upcast(colObj1);
///avoid collision response between two static objects
if (!solverBodyA && !solverBodyB)
return;
btVector3 rel_pos1;
btVector3 rel_pos2;
btScalar relaxation;
for (int j=0;j<manifold->getNumContacts();j++)
{
btManifoldPoint& cp = manifold->getContactPoint(j);
if (cp.getDistance() <= manifold->getContactProcessingThreshold())
{
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
const btVector3& pos1 = cp.getPositionWorldOnA();
const btVector3& pos2 = cp.getPositionWorldOnB();
// btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
// btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
relaxation = 1.f;
btScalar rel_vel;
btVector3 vel;
int frictionIndex = m_tmpSolverContactConstraintPool.size();
btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
{
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
solverConstraint.m_solverBodyA = rb0? rb0 : &getFixedBody();
solverConstraint.m_solverBodyB = rb1? rb1 : &getFixedBody();
solverConstraint.m_originalContactPoint = &cp;
btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
{
#ifdef COMPUTE_IMPULSE_DENOM
btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
@@ -532,12 +505,12 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB);
btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
vel = vel1 - vel2;
rel_vel = cp.m_normalWorldOnB.dot(vel);
btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
vel = vel1 - vel2;
rel_vel = cp.m_normalWorldOnB.dot(vel);
btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
@@ -605,58 +578,16 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
}
/////setup the friction constraints
}
if (1)
{
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
{
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
{
cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel);
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
cp.m_lateralFrictionDir2.normalize();//??
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
cp.m_lateralFrictionInitialized = true;
} else
{
//re-calculate friction direction every frame, todo: check if this is really needed
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
cp.m_lateralFrictionInitialized = true;
}
} else
{
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
}
void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint,
btRigidBody* rb0, btRigidBody* rb1,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal)
{
if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING)
{
{
@@ -699,10 +630,105 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
}
}
}
void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
{
btCollisionObject* colObj0=0,*colObj1=0;
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
btRigidBody* solverBodyA = btRigidBody::upcast(colObj0);
btRigidBody* solverBodyB = btRigidBody::upcast(colObj1);
//??????????????????
// TODO : check InverseMass instead
///avoid collision response between two static objects
if (!solverBodyA && !solverBodyB)
return;
for (int j=0;j<manifold->getNumContacts();j++)
{
btManifoldPoint& cp = manifold->getContactPoint(j);
if (cp.getDistance() <= manifold->getContactProcessingThreshold())
{
btVector3 rel_pos1;
btVector3 rel_pos2;
btScalar relaxation;
btScalar rel_vel;
btVector3 vel;
int frictionIndex = m_tmpSolverContactConstraintPool.size();
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
solverConstraint.m_solverBodyA = rb0? rb0 : &getFixedBody();
solverConstraint.m_solverBodyB = rb1? rb1 : &getFixedBody();
solverConstraint.m_originalContactPoint = &cp;
setupContactConstraint(solverConstraint, colObj0, colObj1, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2);
const btVector3& pos1 = cp.getPositionWorldOnA();
const btVector3& pos2 = cp.getPositionWorldOnB();
/////setup the friction constraints
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
{
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
{
cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel);
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
cp.m_lateralFrictionDir2.normalize();//??
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
cp.m_lateralFrictionInitialized = true;
} else
{
//re-calculate friction direction every frame, todo: check if this is really needed
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1);
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
cp.m_lateralFrictionInitialized = true;
}
} else
{
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2);
}
setFrictionConstraintImpulse( solverConstraint, rb0, rb1, cp, infoGlobal);
}
}
}
@@ -901,177 +927,173 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/)
btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/)
{
BT_PROFILE("solveGroupCacheFriendlyIterations");
int numConstraintPool = m_tmpSolverContactConstraintPool.size();
int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size();
//should traverse the contacts random order...
int iteration;
int j;
if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
int j;
if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
{
if ((iteration & 7) == 0) {
for (j=0; j<numConstraintPool; ++j) {
int tmp = m_orderTmpConstraintPool[j];
int swapi = btRandInt2(j+1);
m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
m_orderTmpConstraintPool[swapi] = tmp;
}
for (j=0; j<numFrictionPool; ++j) {
int tmp = m_orderFrictionConstraintPool[j];
int swapi = btRandInt2(j+1);
m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
m_orderFrictionConstraintPool[swapi] = tmp;
}
}
if ((iteration & 7) == 0) {
for (j=0; j<numConstraintPool; ++j) {
int tmp = m_orderTmpConstraintPool[j];
int swapi = btRandInt2(j+1);
m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
m_orderTmpConstraintPool[swapi] = tmp;
}
if (infoGlobal.m_solverMode & SOLVER_SIMD)
{
///solve all joint constraints, using SIMD, if available
for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
resolveSingleConstraintRowGenericSIMD(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
}
for (j=0;j<numConstraints;j++)
{
constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
}
///solve all contact constraints using SIMD, if available
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimitSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
///solve all friction constraints, using SIMD, if available
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
for (j=0;j<numFrictionPoolConstraints;j++)
{
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
if (totalImpulse>btScalar(0))
{
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(*solveManifold.m_solverBodyA, *solveManifold.m_solverBodyB,solveManifold);
}
}
} else
{
///solve all joint constraints
for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
resolveSingleConstraintRowGeneric(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
}
for (j=0;j<numConstraints;j++)
{
constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
}
///solve all contact constraints
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimit(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
///solve all friction constraints
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
for (j=0;j<numFrictionPoolConstraints;j++)
{
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
if (totalImpulse>btScalar(0))
{
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGeneric(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
for (j=0; j<numFrictionPool; ++j) {
int tmp = m_orderFrictionConstraintPool[j];
int swapi = btRandInt2(j+1);
m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
m_orderFrictionConstraintPool[swapi] = tmp;
}
}
}
if (infoGlobal.m_splitImpulse)
if (infoGlobal.m_solverMode & SOLVER_SIMD)
{
///solve all joint constraints, using SIMD, if available
for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
{
if (infoGlobal.m_solverMode & SOLVER_SIMD)
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
resolveSingleConstraintRowGenericSIMD(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
}
resolveSplitPenetrationSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
}
else
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
for (j=0;j<numConstraints;j++)
{
constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
}
resolveSplitPenetrationImpulseCacheFriendly(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
///solve all contact constraints using SIMD, if available
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimitSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
///solve all friction constraints, using SIMD, if available
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
for (j=0;j<numFrictionPoolConstraints;j++)
{
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
if (totalImpulse>btScalar(0))
{
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGenericSIMD(*solveManifold.m_solverBodyA, *solveManifold.m_solverBodyB,solveManifold);
}
}
} else
{
///solve all joint constraints
for (j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
{
btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[j];
resolveSingleConstraintRowGeneric(*constraint.m_solverBodyA,*constraint.m_solverBodyB,constraint);
}
for (j=0;j<numConstraints;j++)
{
constraints[j]->solveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
}
///solve all contact constraints
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSingleConstraintRowLowerLimit(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
///solve all friction constraints
int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
for (j=0;j<numFrictionPoolConstraints;j++)
{
btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
if (totalImpulse>btScalar(0))
{
solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
resolveSingleConstraintRowGeneric(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
return 0.f;
}
/// btSequentialImpulseConstraintSolver Sequentially applies impulses
btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* /*dispatcher*/)
void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
{
int iteration;
if (infoGlobal.m_splitImpulse)
{
if (infoGlobal.m_solverMode & SOLVER_SIMD)
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationSIMD(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
}
else
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
for (j=0;j<numPoolConstraints;j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
resolveSplitPenetrationImpulseCacheFriendly(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold);
}
}
}
}
}
}
btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
{
BT_PROFILE("solveGroupCacheFriendlyIterations");
//should traverse the contacts random order...
int iteration;
{
for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
{
solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
}
solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer,stackAlloc);
}
return 0.f;
}
BT_PROFILE("solveGroup");
//we only implement SOLVER_CACHE_FRIENDLY now
//you need to provide at least some bodies
btAssert(bodies);
btAssert(numBodies);
int i;
solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies ,int numBodies,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** /*constraints*/,int /* numConstraints*/,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/,btStackAlloc* /*stackAlloc*/)
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
int i,j;
for (j=0;j<numPoolConstraints;j++)
{
@@ -1128,11 +1150,23 @@ btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bod
/// btSequentialImpulseConstraintSolver Sequentially applies impulses
btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* /*dispatcher*/)
{
BT_PROFILE("solveGroup");
//you need to provide at least some bodies
btAssert(bodies);
btAssert(numBodies);
solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
solveGroupCacheFriendlyFinish(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc);
return 0.f;
}
void btSequentialImpulseConstraintSolver::reset()
{