added missing GPU cloth simulation files and DX11/OpenCL kernels

Thanks to Cameron Hart for the report, see Issue 486
This commit is contained in:
erwin.coumans
2011-02-28 05:29:54 +00:00
parent a522cb98d9
commit 8cb14e178e
19 changed files with 3496 additions and 0 deletions

View File

@@ -0,0 +1,83 @@
MSTRINGIFY(
cbuffer ComputeBoundsCB : register( b0 )
{
int numNodes;
int numSoftBodies;
int padding1;
int padding2;
};
// Node indices for each link
StructuredBuffer<int> g_vertexClothIdentifier : register( t0 );
StructuredBuffer<float4> g_vertexPositions : register( t1 );
RWStructuredBuffer<uint4> g_clothMinBounds : register( u0 );
RWStructuredBuffer<uint4> g_clothMaxBounds : register( u1 );
groupshared uint4 clothMinBounds[256];
groupshared uint4 clothMaxBounds[256];
[numthreads(128, 1, 1)]
void
ComputeBoundsKernel( uint3 Gid : SV_GroupID, uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID, uint GI : SV_GroupIndex )
{
const unsigned int UINT_MAX = 0xffffffff;
// Init min and max bounds arrays
if( GTid.x < numSoftBodies )
{
clothMinBounds[GTid.x] = uint4(UINT_MAX, UINT_MAX, UINT_MAX, UINT_MAX);
clothMaxBounds[GTid.x] = uint4(0,0,0,0);
}
AllMemoryBarrierWithGroupSync();
int nodeID = DTid.x;
if( nodeID < numNodes )
{
int clothIdentifier = g_vertexClothIdentifier[nodeID];
if( clothIdentifier >= 0 )
{
float3 position = g_vertexPositions[nodeID].xyz;
// Reinterpret position as uint
uint3 positionUInt = uint3(asuint(position.x), asuint(position.y), asuint(position.z));
// Invert sign bit of positives and whole of negatives to allow comparison as unsigned ints
//positionUInt.x ^= uint((-int(positionUInt.x >> 31) | 0x80000000));
//positionUInt.y ^= uint((-int(positionUInt.y >> 31) | 0x80000000));
//positionUInt.z ^= uint((-int(positionUInt.z >> 31) | 0x80000000));
positionUInt.x ^= (1+~(positionUInt.x >> 31) | 0x80000000);
positionUInt.y ^= (1+~(positionUInt.y >> 31) | 0x80000000);
positionUInt.z ^= (1+~(positionUInt.z >> 31) | 0x80000000);
// Min/max with the LDS values
InterlockedMin(clothMinBounds[clothIdentifier].x, positionUInt.x);
InterlockedMin(clothMinBounds[clothIdentifier].y, positionUInt.y);
InterlockedMin(clothMinBounds[clothIdentifier].z, positionUInt.z);
InterlockedMax(clothMaxBounds[clothIdentifier].x, positionUInt.x);
InterlockedMax(clothMaxBounds[clothIdentifier].y, positionUInt.y);
InterlockedMax(clothMaxBounds[clothIdentifier].z, positionUInt.z);
}
}
AllMemoryBarrierWithGroupSync();
// Use global atomics to update the global versions of the data
if( GTid.x < numSoftBodies )
{
InterlockedMin(g_clothMinBounds[GTid.x].x, clothMinBounds[GTid.x].x);
InterlockedMin(g_clothMinBounds[GTid.x].y, clothMinBounds[GTid.x].y);
InterlockedMin(g_clothMinBounds[GTid.x].z, clothMinBounds[GTid.x].z);
InterlockedMax(g_clothMaxBounds[GTid.x].x, clothMaxBounds[GTid.x].x);
InterlockedMax(g_clothMaxBounds[GTid.x].y, clothMaxBounds[GTid.x].y);
InterlockedMax(g_clothMaxBounds[GTid.x].z, clothMaxBounds[GTid.x].z);
}
}
);

View File

@@ -0,0 +1,170 @@
MSTRINGIFY(
cbuffer SolvePositionsFromLinksKernelCB : register( b0 )
{
unsigned int numNodes;
float isolverdt;
int padding0;
int padding1;
};
struct CollisionObjectIndices
{
int firstObject;
int endObject;
};
struct CollisionShapeDescription
{
float4x4 shapeTransform;
float4 linearVelocity;
float4 angularVelocity;
int softBodyIdentifier;
int collisionShapeType;
// Shape information
// Compressed from the union
float radius;
float halfHeight;
float margin;
float friction;
int padding0;
int padding1;
};
// From btBroadphaseProxy.h
static const int CAPSULE_SHAPE_PROXYTYPE = 10;
// Node indices for each link
StructuredBuffer<int> g_vertexClothIdentifier : register( t0 );
StructuredBuffer<float4> g_vertexPreviousPositions : register( t1 );
StructuredBuffer<float> g_perClothFriction : register( t2 );
StructuredBuffer<float> g_clothDampingFactor : register( t3 );
StructuredBuffer<CollisionObjectIndices> g_perClothCollisionObjectIndices : register( t4 );
StructuredBuffer<CollisionShapeDescription> g_collisionObjectDetails : register( t5 );
RWStructuredBuffer<float4> g_vertexForces : register( u0 );
RWStructuredBuffer<float4> g_vertexVelocities : register( u1 );
RWStructuredBuffer<float4> g_vertexPositions : register( u2 );
[numthreads(128, 1, 1)]
void
SolveCollisionsAndUpdateVelocitiesKernel( uint3 Gid : SV_GroupID, uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID, uint GI : SV_GroupIndex )
{
int nodeID = DTid.x;
float3 forceOnVertex = float3(0.f, 0.f, 0.f);
if( DTid.x < numNodes )
{
int clothIdentifier = g_vertexClothIdentifier[nodeID];
float4 position = float4(g_vertexPositions[nodeID].xyz, 1.f);
float4 previousPosition = float4(g_vertexPreviousPositions[nodeID].xyz, 1.f);
float3 velocity;
float clothFriction = g_perClothFriction[clothIdentifier];
float dampingFactor = g_clothDampingFactor[clothIdentifier];
float velocityCoefficient = (1.f - dampingFactor);
CollisionObjectIndices collisionObjectIndices = g_perClothCollisionObjectIndices[clothIdentifier];
if( collisionObjectIndices.firstObject != collisionObjectIndices.endObject )
{
velocity = float3(15, 0, 0);
// We have some possible collisions to deal with
for( int collision = collisionObjectIndices.firstObject; collision < collisionObjectIndices.endObject; ++collision )
{
CollisionShapeDescription shapeDescription = g_collisionObjectDetails[collision];
float colliderFriction = shapeDescription.friction;
if( shapeDescription.collisionShapeType == CAPSULE_SHAPE_PROXYTYPE )
{
// Colliding with a capsule
float capsuleHalfHeight = shapeDescription.halfHeight;
float capsuleRadius = shapeDescription.radius;
float capsuleMargin = shapeDescription.margin;
float4x4 worldTransform = shapeDescription.shapeTransform;
float4 c1 = float4(0.f, -capsuleHalfHeight, 0.f, 1.f);
float4 c2 = float4(0.f, +capsuleHalfHeight, 0.f, 1.f);
float4 worldC1 = mul(worldTransform, c1);
float4 worldC2 = mul(worldTransform, c2);
float3 segment = (worldC2 - worldC1).xyz;
// compute distance of tangent to vertex along line segment in capsule
float distanceAlongSegment = -( dot( (worldC1 - position).xyz, segment ) / dot(segment, segment) );
float4 closestPoint = (worldC1 + float4(segment * distanceAlongSegment, 0.f));
float distanceFromLine = length(position - closestPoint);
float distanceFromC1 = length(worldC1 - position);
float distanceFromC2 = length(worldC2 - position);
// Final distance from collision, point to push from, direction to push in
// for impulse force
float dist;
float3 normalVector;
if( distanceAlongSegment < 0 )
{
dist = distanceFromC1;
normalVector = normalize(position - worldC1).xyz;
} else if( distanceAlongSegment > 1.f ) {
dist = distanceFromC2;
normalVector = normalize(position - worldC2).xyz;
} else {
dist = distanceFromLine;
normalVector = normalize(position - closestPoint).xyz;
}
float3 colliderLinearVelocity = shapeDescription.linearVelocity.xyz;
float3 colliderAngularVelocity = shapeDescription.angularVelocity.xyz;
float3 velocityOfSurfacePoint = colliderLinearVelocity + cross(colliderAngularVelocity, position.xyz - worldTransform._m03_m13_m23);
float minDistance = capsuleRadius + capsuleMargin;
// In case of no collision, this is the value of velocity
velocity = (position - previousPosition).xyz * velocityCoefficient * isolverdt;
// Check for a collision
if( dist < minDistance )
{
// Project back to surface along normal
position = position + float4((minDistance - dist)*normalVector*0.9, 0.f);
velocity = (position - previousPosition).xyz * velocityCoefficient * isolverdt;
float3 relativeVelocity = velocity - velocityOfSurfacePoint;
float3 p1 = normalize(cross(normalVector, segment));
float3 p2 = normalize(cross(p1, normalVector));
// Full friction is sum of velocities in each direction of plane
float3 frictionVector = p1*dot(relativeVelocity, p1) + p2*dot(relativeVelocity, p2);
// Real friction is peak friction corrected by friction coefficients
frictionVector = frictionVector * (colliderFriction*clothFriction);
float approachSpeed = dot(relativeVelocity, normalVector);
if( approachSpeed <= 0.0 )
forceOnVertex -= frictionVector;
}
}
}
} else {
// Update velocity
float3 difference = position.xyz - previousPosition.xyz;
velocity = difference*velocityCoefficient*isolverdt;
}
g_vertexVelocities[nodeID] = float4(velocity, 0.f);
// Update external force
g_vertexForces[nodeID] = float4(forceOnVertex, 0.f);
g_vertexPositions[nodeID] = float4(position.xyz, 0.f);
}
}
);

View File

@@ -0,0 +1,191 @@
MSTRINGIFY(
cbuffer SolvePositionsFromLinksKernelCB : register( b0 )
{
unsigned int numNodes;
float isolverdt;
int padding0;
int padding1;
};
struct CollisionObjectIndices
{
int firstObject;
int endObject;
};
struct CollisionShapeDescription
{
float4x4 shapeTransform;
float4 linearVelocity;
float4 angularVelocity;
int softBodyIdentifier;
int collisionShapeType;
// Shape information
// Compressed from the union
float radius;
float halfHeight;
float margin;
float friction;
int padding0;
int padding1;
};
// From btBroadphaseProxy.h
static const int CAPSULE_SHAPE_PROXYTYPE = 10;
// Node indices for each link
StructuredBuffer<int> g_vertexClothIdentifier : register( t0 );
StructuredBuffer<float4> g_vertexPreviousPositions : register( t1 );
StructuredBuffer<float> g_perClothFriction : register( t2 );
StructuredBuffer<float> g_clothDampingFactor : register( t3 );
StructuredBuffer<CollisionObjectIndices> g_perClothCollisionObjectIndices : register( t4 );
StructuredBuffer<CollisionShapeDescription> g_collisionObjectDetails : register( t5 );
RWStructuredBuffer<float4> g_vertexForces : register( u0 );
RWStructuredBuffer<float4> g_vertexVelocities : register( u1 );
RWStructuredBuffer<float4> g_vertexPositions : register( u2 );
// A buffer of local collision shapes
// TODO: Iterate to support more than 16
groupshared CollisionShapeDescription localCollisionShapes[16];
[numthreads(128, 1, 1)]
void
SolveCollisionsAndUpdateVelocitiesKernel( uint3 Gid : SV_GroupID, uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID, uint GI : SV_GroupIndex )
{
int nodeID = DTid.x;
float3 forceOnVertex = float3(0.f, 0.f, 0.f);
int clothIdentifier = g_vertexClothIdentifier[nodeID];
float4 position = float4(g_vertexPositions[nodeID].xyz, 1.f);
float4 previousPosition = float4(g_vertexPreviousPositions[nodeID].xyz, 1.f);
float3 velocity;
float clothFriction = g_perClothFriction[clothIdentifier];
float dampingFactor = g_clothDampingFactor[clothIdentifier];
float velocityCoefficient = (1.f - dampingFactor);
CollisionObjectIndices collisionObjectIndices = g_perClothCollisionObjectIndices[clothIdentifier];
int numObjects = collisionObjectIndices.endObject - collisionObjectIndices.firstObject;
if( numObjects > 0 )
{
// We have some possible collisions to deal with
// First load all of the collision objects into LDS
int numObjects = collisionObjectIndices.endObject - collisionObjectIndices.firstObject;
if( GTid.x < numObjects )
{
localCollisionShapes[GTid.x] = g_collisionObjectDetails[ collisionObjectIndices.firstObject + GTid.x ];
}
}
// Safe as the vertices are padded so that not more than one soft body is in a group
AllMemoryBarrierWithGroupSync();
// Annoyingly, even though I know the flow control is not varying, the compiler will not let me skip this
if( numObjects > 0 )
{
velocity = float3(0, 0, 0);
// We have some possible collisions to deal with
for( int collision = 0; collision < numObjects; ++collision )
{
CollisionShapeDescription shapeDescription = localCollisionShapes[collision];
float colliderFriction = shapeDescription.friction;
if( shapeDescription.collisionShapeType == CAPSULE_SHAPE_PROXYTYPE )
{
// Colliding with a capsule
float capsuleHalfHeight = localCollisionShapes[collision].halfHeight;
float capsuleRadius = localCollisionShapes[collision].radius;
float capsuleMargin = localCollisionShapes[collision].margin;
float4x4 worldTransform = localCollisionShapes[collision].shapeTransform;
float4 c1 = float4(0.f, -capsuleHalfHeight, 0.f, 1.f);
float4 c2 = float4(0.f, +capsuleHalfHeight, 0.f, 1.f);
float4 worldC1 = mul(worldTransform, c1);
float4 worldC2 = mul(worldTransform, c2);
float3 segment = (worldC2 - worldC1).xyz;
// compute distance of tangent to vertex along line segment in capsule
float distanceAlongSegment = -( dot( (worldC1 - position).xyz, segment ) / dot(segment, segment) );
float4 closestPoint = (worldC1 + float4(segment * distanceAlongSegment, 0.f));
float distanceFromLine = length(position - closestPoint);
float distanceFromC1 = length(worldC1 - position);
float distanceFromC2 = length(worldC2 - position);
// Final distance from collision, point to push from, direction to push in
// for impulse force
float dist;
float3 normalVector;
if( distanceAlongSegment < 0 )
{
dist = distanceFromC1;
normalVector = normalize(position - worldC1).xyz;
} else if( distanceAlongSegment > 1.f ) {
dist = distanceFromC2;
normalVector = normalize(position - worldC2).xyz;
} else {
dist = distanceFromLine;
normalVector = normalize(position - closestPoint).xyz;
}
float3 colliderLinearVelocity = localCollisionShapes[collision].linearVelocity.xyz;
float3 colliderAngularVelocity = localCollisionShapes[collision].angularVelocity.xyz;
float3 velocityOfSurfacePoint = colliderLinearVelocity + cross(colliderAngularVelocity, position.xyz - worldTransform._m03_m13_m23);
float minDistance = capsuleRadius + capsuleMargin;
// In case of no collision, this is the value of velocity
velocity = (position - previousPosition).xyz * velocityCoefficient * isolverdt;
// Check for a collision
if( dist < minDistance )
{
// Project back to surface along normal
position = position + float4((minDistance - dist)*normalVector*0.9, 0.f);
velocity = (position - previousPosition).xyz * velocityCoefficient * isolverdt;
float3 relativeVelocity = velocity - velocityOfSurfacePoint;
float3 p1 = normalize(cross(normalVector, segment));
float3 p2 = normalize(cross(p1, normalVector));
// Full friction is sum of velocities in each direction of plane
float3 frictionVector = p1*dot(relativeVelocity, p1) + p2*dot(relativeVelocity, p2);
// Real friction is peak friction corrected by friction coefficients
frictionVector = frictionVector * (colliderFriction*clothFriction);
float approachSpeed = dot(relativeVelocity, normalVector);
if( approachSpeed <= 0.0 )
forceOnVertex -= frictionVector;
}
}
}
} else {
// Update velocity
float3 difference = position.xyz - previousPosition.xyz;
velocity = difference*velocityCoefficient*isolverdt;
}
g_vertexVelocities[nodeID] = float4(velocity, 0.f);
// Update external force
g_vertexForces[nodeID] = float4(forceOnVertex, 0.f);
g_vertexPositions[nodeID] = float4(position.xyz, 0.f);
}
);