Added GIMPACT integration for moving concave meshes (interaction with all other Bullet collision shapes)
Thanks a lot to Francisco León Nájera for the contribution!
This commit is contained in:
329
Extras/GIMPACT/src/gim_tri_tri_overlap.cpp
Normal file
329
Extras/GIMPACT/src/gim_tri_tri_overlap.cpp
Normal file
@@ -0,0 +1,329 @@
|
||||
|
||||
/*
|
||||
-----------------------------------------------------------------------------
|
||||
This source file is part of GIMPACT Library.
|
||||
|
||||
For the latest info, see http://gimpact.sourceforge.net/
|
||||
|
||||
Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
|
||||
email: projectileman@yahoo.com
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of EITHER:
|
||||
(1) The GNU Lesser General Public License as published by the Free
|
||||
Software Foundation; either version 2.1 of the License, or (at
|
||||
your option) any later version. The text of the GNU Lesser
|
||||
General Public License is included with this library in the
|
||||
file GIMPACT-LICENSE-LGPL.TXT.
|
||||
(2) The BSD-style license that is included with this library in
|
||||
the file GIMPACT-LICENSE-BSD.TXT.
|
||||
(3) The zlib/libpng license that is included with this library in
|
||||
the file GIMPACT-LICENSE-ZLIB.TXT.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
|
||||
GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
|
||||
|
||||
-----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "GIMPACT/gim_trimesh.h"
|
||||
|
||||
|
||||
#define FABS(x) (float(fabs(x))) /* implement as is fastest on your machine */
|
||||
|
||||
/* some macros */
|
||||
|
||||
#define CLASSIFY_TRIPOINTS_BY_FACE(v1,v2,v3,faceplane,out_of_face)\
|
||||
{ \
|
||||
_distances[0] = DISTANCE_PLANE_POINT(faceplane,v1);\
|
||||
_distances[1] = _distances[0] * DISTANCE_PLANE_POINT(faceplane,v2);\
|
||||
_distances[2] = _distances[0] * DISTANCE_PLANE_POINT(faceplane,v3); \
|
||||
if(_distances[1]>0.0f && _distances[2]>0.0f)\
|
||||
{\
|
||||
out_of_face = 1;\
|
||||
}\
|
||||
else\
|
||||
{\
|
||||
out_of_face = 0;\
|
||||
}\
|
||||
}\
|
||||
|
||||
#define CLASSIFY_TRIPOINTS_BY_PLANE(v1,v2,v3,faceplane,out_of_face)\
|
||||
{ \
|
||||
_distances[0] = DISTANCE_PLANE_POINT(faceplane,v1);\
|
||||
_distances[1] = DISTANCE_PLANE_POINT(faceplane,v2);\
|
||||
_distances[2] = DISTANCE_PLANE_POINT(faceplane,v3); \
|
||||
if(_distances[0]<=0.0f || _distances[1]<=0.0f || _distances[2]<=0.0f)\
|
||||
{\
|
||||
out_of_face = 0;\
|
||||
}\
|
||||
else\
|
||||
{\
|
||||
out_of_face = 1;\
|
||||
}\
|
||||
}\
|
||||
|
||||
|
||||
/* sort so that a<=b */
|
||||
#define SORT(a,b) \
|
||||
if(a>b) \
|
||||
{ \
|
||||
float c; \
|
||||
c=a; \
|
||||
a=b; \
|
||||
b=c; \
|
||||
}
|
||||
|
||||
|
||||
/* this edge to edge test is based on Franlin Antonio's gem:
|
||||
"Faster Line Segment Intersection", in Graphics Gems III,
|
||||
pp. 199-202 */
|
||||
#define EDGE_EDGE_TEST(V0,U0,U1) \
|
||||
Bx=U0[i0]-U1[i0]; \
|
||||
By=U0[i1]-U1[i1]; \
|
||||
Cx=V0[i0]-U0[i0]; \
|
||||
Cy=V0[i1]-U0[i1]; \
|
||||
f=Ay*Bx-Ax*By; \
|
||||
d=By*Cx-Bx*Cy; \
|
||||
if((f>0 && d>=0 && d<=f) || (f<0 && d<=0 && d>=f)) \
|
||||
{ \
|
||||
e=Ax*Cy-Ay*Cx; \
|
||||
if(f>0) \
|
||||
{ \
|
||||
if(e>=0 && e<=f) return 1; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
if(e<=0 && e>=f) return 1; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define EDGE_AGAINST_TRI_EDGES(V0,V1,U0,U1,U2) \
|
||||
{ \
|
||||
float Ax,Ay,Bx,By,Cx,Cy,e,d,f; \
|
||||
Ax=V1[i0]-V0[i0]; \
|
||||
Ay=V1[i1]-V0[i1]; \
|
||||
/* test edge U0,U1 against V0,V1 */ \
|
||||
EDGE_EDGE_TEST(V0,U0,U1); \
|
||||
/* test edge U1,U2 against V0,V1 */ \
|
||||
EDGE_EDGE_TEST(V0,U1,U2); \
|
||||
/* test edge U2,U1 against V0,V1 */ \
|
||||
EDGE_EDGE_TEST(V0,U2,U0); \
|
||||
}
|
||||
|
||||
#define POINT_IN_TRI(V0,U0,U1,U2) \
|
||||
{ \
|
||||
float a,b,c,d0,d1,d2; \
|
||||
/* is T1 completly inside T2? */ \
|
||||
/* check if V0 is inside tri(U0,U1,U2) */ \
|
||||
a=U1[i1]-U0[i1]; \
|
||||
b=-(U1[i0]-U0[i0]); \
|
||||
c=-a*U0[i0]-b*U0[i1]; \
|
||||
d0=a*V0[i0]+b*V0[i1]+c; \
|
||||
\
|
||||
a=U2[i1]-U1[i1]; \
|
||||
b=-(U2[i0]-U1[i0]); \
|
||||
c=-a*U1[i0]-b*U1[i1]; \
|
||||
d1=a*V0[i0]+b*V0[i1]+c; \
|
||||
\
|
||||
a=U0[i1]-U2[i1]; \
|
||||
b=-(U0[i0]-U2[i0]); \
|
||||
c=-a*U2[i0]-b*U2[i1]; \
|
||||
d2=a*V0[i0]+b*V0[i1]+c; \
|
||||
if(d0*d1>0.0) \
|
||||
{ \
|
||||
if(d0*d2>0.0) return 1; \
|
||||
} \
|
||||
}
|
||||
|
||||
int coplanar_tri_tri(GIM_TRIANGLE_DATA *tri1,
|
||||
GIM_TRIANGLE_DATA *tri2)
|
||||
{
|
||||
short i0,i1;
|
||||
/* first project onto an axis-aligned plane, that maximizes the area */
|
||||
/* of the triangles, compute indices: i0,i1. */
|
||||
PLANE_MINOR_AXES(tri1->m_planes.m_planes[0], i0, i1);
|
||||
|
||||
/* test all edges of triangle 1 against the edges of triangle 2 */
|
||||
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[0],tri1->m_vertices[1],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
||||
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
||||
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[2],tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
||||
|
||||
/* finally, test if tri1 is totally contained in tri2 or vice versa */
|
||||
/*POINT_IN_HULL(tri1->m_vertices[0],(&tri2->m_planes.m_planes[1]),3,i0);
|
||||
if(i0==0) return 1;
|
||||
|
||||
POINT_IN_HULL(tri2->m_vertices[0],(&tri1->m_planes.m_planes[1]),3,i0);
|
||||
if(i0==0) return 1;*/
|
||||
|
||||
POINT_IN_TRI(tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2])
|
||||
POINT_IN_TRI(tri2->m_vertices[0],tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2])
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
#define NEWCOMPUTE_INTERVALS(VV0,VV1,VV2,D0,D1,D2,D0D1,D0D2,A,B,C,X0,X1) \
|
||||
{ \
|
||||
if(D0D1>0.0f) \
|
||||
{ \
|
||||
/* here we know that D0D2<=0.0 */ \
|
||||
/* that is D0, D1 are on the same side, D2 on the other or on the plane */ \
|
||||
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
|
||||
} \
|
||||
else if(D0D2>0.0f)\
|
||||
{ \
|
||||
/* here we know that d0d1<=0.0 */ \
|
||||
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
|
||||
} \
|
||||
else if(D1*D2>0.0f || D0!=0.0f) \
|
||||
{ \
|
||||
/* here we know that d0d1<=0.0 or that D0!=0.0 */ \
|
||||
A=VV0; B=(VV1-VV0)*D0; C=(VV2-VV0)*D0; X0=D0-D1; X1=D0-D2; \
|
||||
} \
|
||||
else if(D1!=0.0f) \
|
||||
{ \
|
||||
A=VV1; B=(VV0-VV1)*D1; C=(VV2-VV1)*D1; X0=D1-D0; X1=D1-D2; \
|
||||
} \
|
||||
else if(D2!=0.0f) \
|
||||
{ \
|
||||
A=VV2; B=(VV0-VV2)*D2; C=(VV1-VV2)*D2; X0=D2-D0; X1=D2-D1; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
/* triangles are coplanar */ \
|
||||
return coplanar_tri_tri(tri1,tri2); \
|
||||
} \
|
||||
}\
|
||||
|
||||
|
||||
int gim_triangle_triangle_overlap_fast(
|
||||
GIM_TRIANGLE_DATA *tri1,
|
||||
GIM_TRIANGLE_DATA *tri2)
|
||||
{
|
||||
vec3f _distances;
|
||||
char out_of_face;
|
||||
CLASSIFY_TRIPOINTS_BY_FACE(tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_planes.m_planes[0],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
CLASSIFY_TRIPOINTS_BY_PLANE(tri2->m_vertices[0],tri2->m_vertices[1],
|
||||
tri2->m_vertices[2],tri1->m_planes.m_planes[0],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
|
||||
/*vec3f _points[3];
|
||||
VEC_COPY(_points[0],tri2->m_vertices[0]);
|
||||
VEC_COPY(_points[1],tri2->m_vertices[1]);
|
||||
VEC_COPY(_points[2],tri2->m_vertices[2]);
|
||||
|
||||
CLASSIFY_TRIPOINTS_BY_FACE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[0],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
CLASSIFY_TRIPOINTS_BY_PLANE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[1],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
CLASSIFY_TRIPOINTS_BY_PLANE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[2],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
CLASSIFY_TRIPOINTS_BY_PLANE(_points[0],_points[1],_points[2],tri1->m_planes.m_planes[3],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
return 1;*/
|
||||
|
||||
|
||||
short i0,i1;
|
||||
/* first project onto an axis-aligned plane, that maximizes the area */
|
||||
/* of the triangles, compute indices: i0,i1. */
|
||||
PLANE_MINOR_AXES(tri2->m_planes.m_planes[0], i0, i1);
|
||||
/* test all edges of triangle 1 against the edges of triangle 2 */
|
||||
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[0],tri1->m_vertices[1],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
||||
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
||||
EDGE_AGAINST_TRI_EDGES(tri1->m_vertices[2],tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2]);
|
||||
|
||||
/* finally, test if tri1 is totally contained in tri2 or vice versa */
|
||||
/*POINT_IN_HULL(tri1->m_vertices[0],(&tri2->m_planes.m_planes[1]),3,i0);
|
||||
if(i0==0) return 1;
|
||||
|
||||
POINT_IN_HULL(tri2->m_vertices[0],(&tri1->m_planes.m_planes[1]),3,i0);
|
||||
if(i0==0) return 1;*/
|
||||
|
||||
POINT_IN_TRI(tri1->m_vertices[0],tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2])
|
||||
POINT_IN_TRI(tri2->m_vertices[0],tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2])
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int gim_triangle_triangle_overlap(
|
||||
GIM_TRIANGLE_DATA *tri1,
|
||||
GIM_TRIANGLE_DATA *tri2)
|
||||
{
|
||||
vec3f _distances;
|
||||
char out_of_face;
|
||||
CLASSIFY_TRIPOINTS_BY_FACE(tri1->m_vertices[0],tri1->m_vertices[1],tri1->m_vertices[2],tri2->m_planes.m_planes[0],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
CLASSIFY_TRIPOINTS_BY_FACE(tri2->m_vertices[0],tri2->m_vertices[1],tri2->m_vertices[2],tri1->m_planes.m_planes[0],out_of_face);
|
||||
if(out_of_face==1) return 0;
|
||||
|
||||
|
||||
float du0=0,du1=0,du2=0,dv0=0,dv1=0,dv2=0;
|
||||
float D[3];
|
||||
float isect1[2], isect2[2];
|
||||
float du0du1=0,du0du2=0,dv0dv1=0,dv0dv2=0;
|
||||
short index;
|
||||
float vp0,vp1,vp2;
|
||||
float up0,up1,up2;
|
||||
float bb,cc,max;
|
||||
|
||||
/* compute direction of intersection line */
|
||||
VEC_CROSS(D,tri1->m_planes.m_planes[0],tri2->m_planes.m_planes[0]);
|
||||
|
||||
/* compute and index to the largest component of D */
|
||||
max=(float)FABS(D[0]);
|
||||
index=0;
|
||||
bb=(float)FABS(D[1]);
|
||||
cc=(float)FABS(D[2]);
|
||||
if(bb>max) max=bb,index=1;
|
||||
if(cc>max) max=cc,index=2;
|
||||
|
||||
/* this is the simplified projection onto L*/
|
||||
vp0= tri1->m_vertices[0][index];
|
||||
vp1= tri1->m_vertices[1][index];
|
||||
vp2= tri1->m_vertices[2][index];
|
||||
|
||||
up0= tri2->m_vertices[0][index];
|
||||
up1= tri2->m_vertices[1][index];
|
||||
up2= tri2->m_vertices[2][index];
|
||||
|
||||
/* compute interval for triangle 1 */
|
||||
float a,b,c,x0,x1;
|
||||
NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
|
||||
|
||||
/* compute interval for triangle 2 */
|
||||
float d,e,f,y0,y1;
|
||||
NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
|
||||
|
||||
float xx,yy,xxyy,tmp;
|
||||
xx=x0*x1;
|
||||
yy=y0*y1;
|
||||
xxyy=xx*yy;
|
||||
|
||||
tmp=a*xxyy;
|
||||
isect1[0]=tmp+b*x1*yy;
|
||||
isect1[1]=tmp+c*x0*yy;
|
||||
|
||||
tmp=d*xxyy;
|
||||
isect2[0]=tmp+e*xx*y1;
|
||||
isect2[1]=tmp+f*xx*y0;
|
||||
|
||||
SORT(isect1[0],isect1[1]);
|
||||
SORT(isect2[0],isect2[1]);
|
||||
|
||||
if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return 0;
|
||||
return 1;
|
||||
}
|
||||
Reference in New Issue
Block a user