Some performance improvements and fixes related to btVector3 being aligned on SPU.
btQuantizedBvh has a version number, memory layout might be different now (due to aligned btVector3) reorganized some data members of some classes, to reduce memory footprint
This commit is contained in:
@@ -20,22 +20,30 @@ subject to the following restrictions:
|
||||
#include "btMinMax.h"
|
||||
#include <math.h>
|
||||
|
||||
|
||||
#if defined (__CELLOS_LV2) && defined (__SPU__)
|
||||
#include <altivec.h>
|
||||
#endif
|
||||
|
||||
/**@brief The btQuadWordStorage class is base class for btVector3 and btQuaternion.
|
||||
* Some issues under PS3 Linux with IBM 2.1 SDK, gcc compiler prevent from using aligned quadword. @todo look into this
|
||||
* ATTRIBUTE_ALIGNED16(class) btQuadWordStorage */
|
||||
class btQuadWordStorage
|
||||
* Some issues under PS3 Linux with IBM 2.1 SDK, gcc compiler prevent from using aligned quadword.
|
||||
*/
|
||||
|
||||
ATTRIBUTE_ALIGNED16(class) btQuadWordStorage
|
||||
{
|
||||
protected:
|
||||
|
||||
btScalar m_x;
|
||||
btScalar m_y;
|
||||
btScalar m_z;
|
||||
btScalar m_unusedW;
|
||||
|
||||
#if defined (__SPU__)
|
||||
union {
|
||||
vec_float4 mVec128;
|
||||
btScalar m_floats[4];
|
||||
};
|
||||
public:
|
||||
|
||||
vec_float4 get128() const
|
||||
{
|
||||
return mVec128;
|
||||
}
|
||||
#else
|
||||
btScalar m_floats[4];
|
||||
#endif
|
||||
};
|
||||
|
||||
|
||||
@@ -44,34 +52,34 @@ class btQuadWord : public btQuadWordStorage
|
||||
{
|
||||
public:
|
||||
|
||||
// SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_x)[i]; }
|
||||
// SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_x)[i]; }
|
||||
// SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
|
||||
// SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
|
||||
/**@brief Return the x value */
|
||||
SIMD_FORCE_INLINE const btScalar& getX() const { return m_x; }
|
||||
SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
|
||||
/**@brief Return the y value */
|
||||
SIMD_FORCE_INLINE const btScalar& getY() const { return m_y; }
|
||||
SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
|
||||
/**@brief Return the z value */
|
||||
SIMD_FORCE_INLINE const btScalar& getZ() const { return m_z; }
|
||||
SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
|
||||
/**@brief Set the x value */
|
||||
SIMD_FORCE_INLINE void setX(btScalar x) { m_x = x;};
|
||||
SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x;};
|
||||
/**@brief Set the y value */
|
||||
SIMD_FORCE_INLINE void setY(btScalar y) { m_y = y;};
|
||||
SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y;};
|
||||
/**@brief Set the z value */
|
||||
SIMD_FORCE_INLINE void setZ(btScalar z) { m_z = z;};
|
||||
SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z;};
|
||||
/**@brief Set the w value */
|
||||
SIMD_FORCE_INLINE void setW(btScalar w) { m_unusedW = w;};
|
||||
SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w;};
|
||||
/**@brief Return the x value */
|
||||
SIMD_FORCE_INLINE const btScalar& x() const { return m_x; }
|
||||
SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
|
||||
/**@brief Return the y value */
|
||||
SIMD_FORCE_INLINE const btScalar& y() const { return m_y; }
|
||||
SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
|
||||
/**@brief Return the z value */
|
||||
SIMD_FORCE_INLINE const btScalar& z() const { return m_z; }
|
||||
SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
|
||||
/**@brief Return the w value */
|
||||
SIMD_FORCE_INLINE const btScalar& w() const { return m_unusedW; }
|
||||
SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE operator btScalar *() { return &m_x; }
|
||||
SIMD_FORCE_INLINE operator const btScalar *() const { return &m_x; }
|
||||
SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
|
||||
SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
|
||||
|
||||
|
||||
/**@brief Set x,y,z and zero w
|
||||
@@ -81,17 +89,17 @@ class btQuadWord : public btQuadWordStorage
|
||||
*/
|
||||
SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z)
|
||||
{
|
||||
m_x=x;
|
||||
m_y=y;
|
||||
m_z=z;
|
||||
m_unusedW = 0.f;
|
||||
m_floats[0]=x;
|
||||
m_floats[1]=y;
|
||||
m_floats[2]=z;
|
||||
m_floats[3] = 0.f;
|
||||
}
|
||||
|
||||
/* void getValue(btScalar *m) const
|
||||
{
|
||||
m[0] = m_x;
|
||||
m[1] = m_y;
|
||||
m[2] = m_z;
|
||||
m[0] = m_floats[0];
|
||||
m[1] = m_floats[1];
|
||||
m[2] = m_floats[2];
|
||||
}
|
||||
*/
|
||||
/**@brief Set the values
|
||||
@@ -102,14 +110,14 @@ class btQuadWord : public btQuadWordStorage
|
||||
*/
|
||||
SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
|
||||
{
|
||||
m_x=x;
|
||||
m_y=y;
|
||||
m_z=z;
|
||||
m_unusedW=w;
|
||||
m_floats[0]=x;
|
||||
m_floats[1]=y;
|
||||
m_floats[2]=z;
|
||||
m_floats[3]=w;
|
||||
}
|
||||
/**@brief No initialization constructor */
|
||||
SIMD_FORCE_INLINE btQuadWord()
|
||||
// :m_x(btScalar(0.)),m_y(btScalar(0.)),m_z(btScalar(0.)),m_unusedW(btScalar(0.))
|
||||
// :m_floats[0](btScalar(0.)),m_floats[1](btScalar(0.)),m_floats[2](btScalar(0.)),m_floats[3](btScalar(0.))
|
||||
{
|
||||
}
|
||||
/**@brief Copy constructor */
|
||||
@@ -124,7 +132,7 @@ class btQuadWord : public btQuadWordStorage
|
||||
*/
|
||||
SIMD_FORCE_INLINE btQuadWord(const btScalar& x, const btScalar& y, const btScalar& z)
|
||||
{
|
||||
m_x = x, m_y = y, m_z = z, m_unusedW = 0.0f;
|
||||
m_floats[0] = x, m_floats[1] = y, m_floats[2] = z, m_floats[3] = 0.0f;
|
||||
}
|
||||
|
||||
/**@brief Initializing constructor
|
||||
@@ -135,7 +143,7 @@ class btQuadWord : public btQuadWordStorage
|
||||
*/
|
||||
SIMD_FORCE_INLINE btQuadWord(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
|
||||
{
|
||||
m_x = x, m_y = y, m_z = z, m_unusedW = w;
|
||||
m_floats[0] = x, m_floats[1] = y, m_floats[2] = z, m_floats[3] = w;
|
||||
}
|
||||
|
||||
/**@brief Set each element to the max of the current values and the values of another btQuadWord
|
||||
@@ -143,20 +151,20 @@ class btQuadWord : public btQuadWordStorage
|
||||
*/
|
||||
SIMD_FORCE_INLINE void setMax(const btQuadWord& other)
|
||||
{
|
||||
btSetMax(m_x, other.m_x);
|
||||
btSetMax(m_y, other.m_y);
|
||||
btSetMax(m_z, other.m_z);
|
||||
btSetMax(m_unusedW, other.m_unusedW);
|
||||
btSetMax(m_floats[0], other.m_floats[0]);
|
||||
btSetMax(m_floats[1], other.m_floats[1]);
|
||||
btSetMax(m_floats[2], other.m_floats[2]);
|
||||
btSetMax(m_floats[3], other.m_floats[3]);
|
||||
}
|
||||
/**@brief Set each element to the min of the current values and the values of another btQuadWord
|
||||
* @param other The other btQuadWord to compare with
|
||||
*/
|
||||
SIMD_FORCE_INLINE void setMin(const btQuadWord& other)
|
||||
{
|
||||
btSetMin(m_x, other.m_x);
|
||||
btSetMin(m_y, other.m_y);
|
||||
btSetMin(m_z, other.m_z);
|
||||
btSetMin(m_unusedW, other.m_unusedW);
|
||||
btSetMin(m_floats[0], other.m_floats[0]);
|
||||
btSetMin(m_floats[1], other.m_floats[1]);
|
||||
btSetMin(m_floats[2], other.m_floats[2]);
|
||||
btSetMin(m_floats[3], other.m_floats[3]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -106,14 +106,14 @@ public:
|
||||
* @param q The quaternion to add to this one */
|
||||
btQuaternion& operator+=(const btQuaternion& q)
|
||||
{
|
||||
m_x += q.x(); m_y += q.y(); m_z += q.z(); m_unusedW += q.m_unusedW;
|
||||
m_floats[0] += q.x(); m_floats[1] += q.y(); m_floats[2] += q.z(); m_floats[3] += q.m_floats[3];
|
||||
return *this;
|
||||
}
|
||||
/**@brief Subtract out a quaternion
|
||||
* @param q The quaternion to subtract from this one */
|
||||
btQuaternion& operator-=(const btQuaternion& q)
|
||||
{
|
||||
m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_unusedW -= q.m_unusedW;
|
||||
m_floats[0] -= q.x(); m_floats[1] -= q.y(); m_floats[2] -= q.z(); m_floats[3] -= q.m_floats[3];
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -121,7 +121,7 @@ public:
|
||||
* @param s The scalar to scale by */
|
||||
btQuaternion& operator*=(const btScalar& s)
|
||||
{
|
||||
m_x *= s; m_y *= s; m_z *= s; m_unusedW *= s;
|
||||
m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; m_floats[3] *= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -130,17 +130,17 @@ public:
|
||||
* Equivilant to this = this * q */
|
||||
btQuaternion& operator*=(const btQuaternion& q)
|
||||
{
|
||||
setValue(m_unusedW * q.x() + m_x * q.m_unusedW + m_y * q.z() - m_z * q.y(),
|
||||
m_unusedW * q.y() + m_y * q.m_unusedW + m_z * q.x() - m_x * q.z(),
|
||||
m_unusedW * q.z() + m_z * q.m_unusedW + m_x * q.y() - m_y * q.x(),
|
||||
m_unusedW * q.m_unusedW - m_x * q.x() - m_y * q.y() - m_z * q.z());
|
||||
setValue(m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
|
||||
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
|
||||
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
|
||||
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
|
||||
return *this;
|
||||
}
|
||||
/**@brief Return the dot product between this quaternion and another
|
||||
* @param q The other quaternion */
|
||||
btScalar dot(const btQuaternion& q) const
|
||||
{
|
||||
return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_unusedW * q.m_unusedW;
|
||||
return m_floats[0] * q.x() + m_floats[1] * q.y() + m_floats[2] * q.z() + m_floats[3] * q.m_floats[3];
|
||||
}
|
||||
|
||||
/**@brief Return the length squared of the quaternion */
|
||||
@@ -167,7 +167,7 @@ public:
|
||||
SIMD_FORCE_INLINE btQuaternion
|
||||
operator*(const btScalar& s) const
|
||||
{
|
||||
return btQuaternion(x() * s, y() * s, z() * s, m_unusedW * s);
|
||||
return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
|
||||
}
|
||||
|
||||
|
||||
@@ -203,7 +203,7 @@ public:
|
||||
/**@brief Return the angle of rotation represented by this quaternion */
|
||||
btScalar getAngle() const
|
||||
{
|
||||
btScalar s = btScalar(2.) * btAcos(m_unusedW);
|
||||
btScalar s = btScalar(2.) * btAcos(m_floats[3]);
|
||||
return s;
|
||||
}
|
||||
|
||||
@@ -211,7 +211,7 @@ public:
|
||||
/**@brief Return the inverse of this quaternion */
|
||||
btQuaternion inverse() const
|
||||
{
|
||||
return btQuaternion(-m_x, -m_y, -m_z, m_unusedW);
|
||||
return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
|
||||
}
|
||||
|
||||
/**@brief Return the sum of this quaternion and the other
|
||||
@@ -220,7 +220,7 @@ public:
|
||||
operator+(const btQuaternion& q2) const
|
||||
{
|
||||
const btQuaternion& q1 = *this;
|
||||
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_unusedW + q2.m_unusedW);
|
||||
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
|
||||
}
|
||||
|
||||
/**@brief Return the difference between this quaternion and the other
|
||||
@@ -229,7 +229,7 @@ public:
|
||||
operator-(const btQuaternion& q2) const
|
||||
{
|
||||
const btQuaternion& q1 = *this;
|
||||
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_unusedW - q2.m_unusedW);
|
||||
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
|
||||
}
|
||||
|
||||
/**@brief Return the negative of this quaternion
|
||||
@@ -237,7 +237,7 @@ public:
|
||||
SIMD_FORCE_INLINE btQuaternion operator-() const
|
||||
{
|
||||
const btQuaternion& q2 = *this;
|
||||
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_unusedW);
|
||||
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
|
||||
}
|
||||
/**@todo document this and it's use */
|
||||
SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
|
||||
@@ -262,10 +262,10 @@ public:
|
||||
btScalar d = btScalar(1.0) / btSin(theta);
|
||||
btScalar s0 = btSin((btScalar(1.0) - t) * theta);
|
||||
btScalar s1 = btSin(t * theta);
|
||||
return btQuaternion((m_x * s0 + q.x() * s1) * d,
|
||||
(m_y * s0 + q.y() * s1) * d,
|
||||
(m_z * s0 + q.z() * s1) * d,
|
||||
(m_unusedW * s0 + q.m_unusedW * s1) * d);
|
||||
return btQuaternion((m_floats[0] * s0 + q.x() * s1) * d,
|
||||
(m_floats[1] * s0 + q.y() * s1) * d,
|
||||
(m_floats[2] * s0 + q.z() * s1) * d,
|
||||
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
|
||||
}
|
||||
else
|
||||
{
|
||||
@@ -273,7 +273,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE const btScalar& getW() const { return m_unusedW; }
|
||||
SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
|
||||
|
||||
|
||||
};
|
||||
|
||||
@@ -100,6 +100,32 @@ public:
|
||||
predictedTransform.setRotation(predictedOrn);
|
||||
}
|
||||
|
||||
static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
|
||||
{
|
||||
linVel = (pos1 - pos0) / timeStep;
|
||||
btVector3 axis;
|
||||
btScalar angle;
|
||||
calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle);
|
||||
angVel = axis * angle / timeStep;
|
||||
}
|
||||
|
||||
static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle)
|
||||
{
|
||||
btQuaternion orn1 = orn0.farthest(orn1a);
|
||||
btQuaternion dorn = orn1 * orn0.inverse();
|
||||
///floating point inaccuracy can lead to w component > 1..., which breaks
|
||||
dorn.normalize();
|
||||
angle = dorn.getAngle();
|
||||
axis = btVector3(dorn.x(),dorn.y(),dorn.z());
|
||||
axis[3] = btScalar(0.);
|
||||
//check for axis length
|
||||
btScalar len = axis.length2();
|
||||
if (len < SIMD_EPSILON*SIMD_EPSILON)
|
||||
axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
|
||||
else
|
||||
axis /= btSqrt(len);
|
||||
}
|
||||
|
||||
static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
|
||||
{
|
||||
linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
|
||||
@@ -111,20 +137,11 @@ public:
|
||||
|
||||
static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle)
|
||||
{
|
||||
|
||||
#ifdef USE_QUATERNION_DIFF
|
||||
btQuaternion orn0 = transform0.getRotation();
|
||||
btQuaternion orn1a = transform1.getRotation();
|
||||
btQuaternion orn1 = orn0.farthest(orn1a);
|
||||
btQuaternion dorn = orn1 * orn0.inverse();
|
||||
#else
|
||||
btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
|
||||
btQuaternion dorn;
|
||||
dmat.getRotation(dorn);
|
||||
#endif//USE_QUATERNION_DIFF
|
||||
|
||||
///floating point inaccuracy can lead to w component > 1..., which breaks
|
||||
|
||||
///floating point inaccuracy can lead to w component > 1..., which breaks
|
||||
dorn.normalize();
|
||||
|
||||
angle = dorn.getAngle();
|
||||
@@ -145,13 +162,15 @@ public:
|
||||
///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance
|
||||
class btConvexSeparatingDistanceUtil
|
||||
{
|
||||
btTransform m_cachedTransformA;
|
||||
btTransform m_cachedTransformB;
|
||||
btQuaternion m_ornA;
|
||||
btQuaternion m_ornB;
|
||||
btVector3 m_posA;
|
||||
btVector3 m_posB;
|
||||
|
||||
btVector3 m_separatingNormal;
|
||||
|
||||
btScalar m_boundingRadiusA;
|
||||
btScalar m_boundingRadiusB;
|
||||
|
||||
btVector3 m_separatingNormal;
|
||||
btScalar m_separatingDistance;
|
||||
|
||||
public:
|
||||
@@ -170,15 +189,18 @@ public:
|
||||
|
||||
void updateSeparatingDistance(const btTransform& transA,const btTransform& transB)
|
||||
{
|
||||
const btVector3& toPosA = transA.getOrigin();
|
||||
const btVector3& toPosB = transB.getOrigin();
|
||||
btQuaternion toOrnA = transA.getRotation();
|
||||
btQuaternion toOrnB = transB.getRotation();
|
||||
|
||||
if (m_separatingDistance>0.f)
|
||||
{
|
||||
const btTransform& fromA = m_cachedTransformA;
|
||||
const btTransform& fromB = m_cachedTransformB;
|
||||
const btTransform& toA = transA;
|
||||
const btTransform& toB = transB;
|
||||
|
||||
|
||||
btVector3 linVelA,angVelA,linVelB,angVelB;
|
||||
btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
|
||||
btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
|
||||
btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA);
|
||||
btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB);
|
||||
btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB;
|
||||
btVector3 relLinVel = (linVelB-linVelA);
|
||||
btScalar relLinVelocLength = (linVelB-linVelA).dot(m_separatingNormal);
|
||||
@@ -191,16 +213,25 @@ public:
|
||||
m_separatingDistance -= projectedMotion;
|
||||
}
|
||||
|
||||
m_cachedTransformA = transA;
|
||||
m_cachedTransformB = transB;
|
||||
m_posA = toPosA;
|
||||
m_posB = toPosB;
|
||||
m_ornA = toOrnA;
|
||||
m_ornB = toOrnB;
|
||||
}
|
||||
|
||||
void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB)
|
||||
{
|
||||
m_separatingNormal = separatingVector;
|
||||
m_separatingDistance = separatingDistance;
|
||||
m_cachedTransformA = transA;
|
||||
m_cachedTransformB = transB;
|
||||
|
||||
const btVector3& toPosA = transA.getOrigin();
|
||||
const btVector3& toPosB = transB.getOrigin();
|
||||
btQuaternion toOrnA = transA.getRotation();
|
||||
btQuaternion toOrnB = transB.getRotation();
|
||||
m_posA = toPosA;
|
||||
m_posB = toPosB;
|
||||
m_ornA = toOrnA;
|
||||
m_ornB = toOrnB;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
@@ -57,7 +57,7 @@ public:
|
||||
SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
|
||||
{
|
||||
|
||||
m_x += v.x(); m_y += v.y(); m_z += v.z();
|
||||
m_floats[0] += v.x(); m_floats[1] += v.y(); m_floats[2] += v.z();
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -66,14 +66,14 @@ public:
|
||||
* @param The vector to subtract */
|
||||
SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
|
||||
{
|
||||
m_x -= v.x(); m_y -= v.y(); m_z -= v.z();
|
||||
m_floats[0] -= v.x(); m_floats[1] -= v.y(); m_floats[2] -= v.z();
|
||||
return *this;
|
||||
}
|
||||
/**@brief Scale the vector
|
||||
* @param s Scale factor */
|
||||
SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
|
||||
{
|
||||
m_x *= s; m_y *= s; m_z *= s;
|
||||
m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -89,7 +89,7 @@ public:
|
||||
* @param v The other vector in the dot product */
|
||||
SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
|
||||
{
|
||||
return m_x * v.x() + m_y * v.y() + m_z * v.z();
|
||||
return m_floats[0] * v.x() + m_floats[1] * v.y() + m_floats[2] * v.z();
|
||||
}
|
||||
|
||||
/**@brief Return the length of the vector squared */
|
||||
@@ -139,39 +139,39 @@ public:
|
||||
SIMD_FORCE_INLINE btVector3 absolute() const
|
||||
{
|
||||
return btVector3(
|
||||
btFabs(m_x),
|
||||
btFabs(m_y),
|
||||
btFabs(m_z));
|
||||
btFabs(m_floats[0]),
|
||||
btFabs(m_floats[1]),
|
||||
btFabs(m_floats[2]));
|
||||
}
|
||||
/**@brief Return the cross product between this and another vector
|
||||
* @param v The other vector */
|
||||
SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
|
||||
{
|
||||
return btVector3(
|
||||
m_y * v.z() - m_z * v.y(),
|
||||
m_z * v.x() - m_x * v.z(),
|
||||
m_x * v.y() - m_y * v.x());
|
||||
m_floats[1] * v.z() - m_floats[2] * v.y(),
|
||||
m_floats[2] * v.x() - m_floats[0] * v.z(),
|
||||
m_floats[0] * v.y() - m_floats[1] * v.x());
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
|
||||
{
|
||||
return m_x * (v1.y() * v2.z() - v1.z() * v2.y()) +
|
||||
m_y * (v1.z() * v2.x() - v1.x() * v2.z()) +
|
||||
m_z * (v1.x() * v2.y() - v1.y() * v2.x());
|
||||
return m_floats[0] * (v1.y() * v2.z() - v1.z() * v2.y()) +
|
||||
m_floats[1] * (v1.z() * v2.x() - v1.x() * v2.z()) +
|
||||
m_floats[2] * (v1.x() * v2.y() - v1.y() * v2.x());
|
||||
}
|
||||
|
||||
/**@brief Return the axis with the smallest value
|
||||
* Note return values are 0,1,2 for x, y, or z */
|
||||
SIMD_FORCE_INLINE int minAxis() const
|
||||
{
|
||||
return m_x < m_y ? (m_x < m_z ? 0 : 2) : (m_y < m_z ? 1 : 2);
|
||||
return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
|
||||
}
|
||||
|
||||
/**@brief Return the axis with the largest value
|
||||
* Note return values are 0,1,2 for x, y, or z */
|
||||
SIMD_FORCE_INLINE int maxAxis() const
|
||||
{
|
||||
return m_x < m_y ? (m_y < m_z ? 2 : 1) : (m_x < m_z ? 2 : 0);
|
||||
return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE int furthestAxis() const
|
||||
@@ -187,9 +187,9 @@ public:
|
||||
SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
|
||||
{
|
||||
btScalar s = btScalar(1.0) - rt;
|
||||
m_x = s * v0.x() + rt * v1.x();
|
||||
m_y = s * v0.y() + rt * v1.y();
|
||||
m_z = s * v0.z() + rt * v1.z();
|
||||
m_floats[0] = s * v0.x() + rt * v1.x();
|
||||
m_floats[1] = s * v0.y() + rt * v1.y();
|
||||
m_floats[2] = s * v0.z() + rt * v1.z();
|
||||
//don't do the unused w component
|
||||
// m_co[3] = s * v0[3] + rt * v1[3];
|
||||
}
|
||||
@@ -199,16 +199,16 @@ public:
|
||||
* @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
|
||||
SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
|
||||
{
|
||||
return btVector3(m_x + (v.x() - m_x) * t,
|
||||
m_y + (v.y() - m_y) * t,
|
||||
m_z + (v.z() - m_z) * t);
|
||||
return btVector3(m_floats[0] + (v.x() - m_floats[0]) * t,
|
||||
m_floats[1] + (v.y() - m_floats[1]) * t,
|
||||
m_floats[2] + (v.z() - m_floats[2]) * t);
|
||||
}
|
||||
|
||||
/**@brief Elementwise multiply this vector by the other
|
||||
* @param v The other vector */
|
||||
SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
|
||||
{
|
||||
m_x *= v.x(); m_y *= v.y(); m_z *= v.z();
|
||||
m_floats[0] *= v.x(); m_floats[1] *= v.y(); m_floats[2] *= v.z();
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -369,47 +369,47 @@ public:
|
||||
SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z,const btScalar& w)
|
||||
: btVector3(x,y,z)
|
||||
{
|
||||
m_unusedW = w;
|
||||
m_floats[3] = w;
|
||||
}
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE btVector4 absolute4() const
|
||||
{
|
||||
return btVector4(
|
||||
btFabs(m_x),
|
||||
btFabs(m_y),
|
||||
btFabs(m_z),
|
||||
btFabs(m_unusedW));
|
||||
btFabs(m_floats[0]),
|
||||
btFabs(m_floats[1]),
|
||||
btFabs(m_floats[2]),
|
||||
btFabs(m_floats[3]));
|
||||
}
|
||||
|
||||
|
||||
|
||||
btScalar getW() const { return m_unusedW;}
|
||||
btScalar getW() const { return m_floats[3];}
|
||||
|
||||
|
||||
SIMD_FORCE_INLINE int maxAxis4() const
|
||||
{
|
||||
int maxIndex = -1;
|
||||
btScalar maxVal = btScalar(-1e30);
|
||||
if (m_x > maxVal)
|
||||
if (m_floats[0] > maxVal)
|
||||
{
|
||||
maxIndex = 0;
|
||||
maxVal = m_x;
|
||||
maxVal = m_floats[0];
|
||||
}
|
||||
if (m_y > maxVal)
|
||||
if (m_floats[1] > maxVal)
|
||||
{
|
||||
maxIndex = 1;
|
||||
maxVal = m_y;
|
||||
maxVal = m_floats[1];
|
||||
}
|
||||
if (m_z > maxVal)
|
||||
if (m_floats[2] > maxVal)
|
||||
{
|
||||
maxIndex = 2;
|
||||
maxVal = m_z;
|
||||
maxVal = m_floats[2];
|
||||
}
|
||||
if (m_unusedW > maxVal)
|
||||
if (m_floats[3] > maxVal)
|
||||
{
|
||||
maxIndex = 3;
|
||||
maxVal = m_unusedW;
|
||||
maxVal = m_floats[3];
|
||||
}
|
||||
|
||||
|
||||
@@ -424,25 +424,25 @@ public:
|
||||
{
|
||||
int minIndex = -1;
|
||||
btScalar minVal = btScalar(1e30);
|
||||
if (m_x < minVal)
|
||||
if (m_floats[0] < minVal)
|
||||
{
|
||||
minIndex = 0;
|
||||
minVal = m_x;
|
||||
minVal = m_floats[0];
|
||||
}
|
||||
if (m_y < minVal)
|
||||
if (m_floats[1] < minVal)
|
||||
{
|
||||
minIndex = 1;
|
||||
minVal = m_y;
|
||||
minVal = m_floats[1];
|
||||
}
|
||||
if (m_z < minVal)
|
||||
if (m_floats[2] < minVal)
|
||||
{
|
||||
minIndex = 2;
|
||||
minVal = m_z;
|
||||
minVal = m_floats[2];
|
||||
}
|
||||
if (m_unusedW < minVal)
|
||||
if (m_floats[3] < minVal)
|
||||
{
|
||||
minIndex = 3;
|
||||
minVal = m_unusedW;
|
||||
minVal = m_floats[3];
|
||||
}
|
||||
|
||||
return minIndex;
|
||||
|
||||
Reference in New Issue
Block a user