apply _clang-format to Bullet/src/LinearMath/btScalar.h, disable around preprocessor defines

(issue with clang-format lacking preprocessor indentation support, see
https://bugs.llvm.org//show_bug.cgi?id=17362
and possibly apply this patch:
https://github.com/mkurdej/clang/tree/indent-pp-directives
)
This commit is contained in:
Erwin Coumans
2017-03-13 11:17:42 -07:00
parent b088f7febe
commit bdaadf57e0

View File

@@ -12,18 +12,14 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_SCALAR_H
#define BT_SCALAR_H
#ifdef BT_MANAGED_CODE
//Aligned data types not supported in managed code
#pragma unmanaged
#endif
#include <math.h>
#include <stdlib.h> //size_t for MSVC 6.0
#include <float.h>
@@ -36,15 +32,14 @@ inline int btGetVersion()
return BT_BULLET_VERSION;
}
// clang and most formatting tools don't support indentation of preprocessor guards, so turn it off
// clang-format off
#if defined(DEBUG) || defined (_DEBUG)
#define BT_DEBUG
#endif
#ifdef _WIN32
#if defined(__MINGW32__) || defined(__CYGWIN__) || (defined (_MSC_VER) && _MSC_VER < 1300)
#define SIMD_FORCE_INLINE inline
#define ATTRIBUTE_ALIGNED16(a) a
#define ATTRIBUTE_ALIGNED64(a) a
@@ -54,7 +49,7 @@ inline int btGetVersion()
#define ATTRIBUTE_ALIGNED16(a) __declspec() a
#define ATTRIBUTE_ALIGNED64(a) __declspec() a
#define ATTRIBUTE_ALIGNED128(a) __declspec () a
#else
#else//__MINGW32__
//#define BT_HAS_ALIGNED_ALLOCATOR
#pragma warning(disable : 4324) // disable padding warning
// #pragma warning(disable:4530) // Disable the exception disable but used in MSCV Stl warning.
@@ -119,7 +114,7 @@ inline int btGetVersion()
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#else
#else//_WIN32
#if defined (__CELLOS_LV2__)
#define SIMD_FORCE_INLINE inline __attribute__((always_inline))
@@ -138,16 +133,16 @@ inline int btGetVersion()
#define btAssert assert
#endif
#else
#else//BT_DEBUG
#define btAssert(x)
#endif
#endif//BT_DEBUG
//btFullAssert is optional, slows down a lot
#define btFullAssert(x)
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#else
#else//defined (__CELLOS_LV2__)
#ifdef USE_LIBSPE2
@@ -171,7 +166,7 @@ inline int btGetVersion()
#define btUnlikely(_c) __builtin_expect((_c), 0)
#else
#else//USE_LIBSPE2
//non-windows systems
#if (defined (__APPLE__) && (!defined (BT_USE_DOUBLE_PRECISION)))
@@ -236,7 +231,7 @@ inline int btGetVersion()
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#else
#else//__APPLE__
#define SIMD_FORCE_INLINE inline
///@todo: check out alignment methods for other platforms/compilers
@@ -261,21 +256,17 @@ inline int btGetVersion()
#define btLikely(_c) _c
#define btUnlikely(_c) _c
#endif //__APPLE__
#endif // LIBSPE2
#endif //__CELLOS_LV2__
#endif
#endif//_WIN32
///The btScalar type abstracts floating point numbers, to easily switch between double and single floating point precision.
#if defined(BT_USE_DOUBLE_PRECISION)
typedef double btScalar;
//this number could be bigger in double precision
#define BT_LARGE_FLOAT 1e30
#else
typedef float btScalar;
//keep BT_LARGE_FLOAT*BT_LARGE_FLOAT < FLT_MAX
#define BT_LARGE_FLOAT 1e18f
@@ -303,6 +294,8 @@ inline int btGetInfinityMask()//suppress stupid compiler warning
}
#endif
//use this, in case there are clashes (such as xnamath.h)
#ifndef BT_NO_SIMD_OPERATOR_OVERLOADS
inline __m128 operator+(const __m128 A, const __m128 B)
@@ -335,11 +328,12 @@ inline __m128 operator * (const __m128 A, const __m128 B)
#define btCastiTo128f(a) ((__m128)(a))
#define btCastdTo128f(a) ((__m128)(a))
#define btCastdTo128i(a) ((__m128i)(a))
#define btAssign128(r0,r1,r2,r3) (__m128){r0,r1,r2,r3}
#define btAssign128(r0, r1, r2, r3) \
(__m128) { r0, r1, r2, r3 }
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#endif //_WIN32
#else
#else//BT_USE_SSE
#ifdef BT_USE_NEON
#include <arm_neon.h>
@@ -347,7 +341,8 @@ inline __m128 operator * (const __m128 A, const __m128 B)
typedef float32x4_t btSimdFloat4;
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#define btAssign128(r0,r1,r2,r3) (float32x4_t){r0,r1,r2,r3}
#define btAssign128(r0, r1, r2, r3) \
(float32x4_t) { r0, r1, r2, r3 }
#else //BT_USE_NEON
#ifndef BT_INFINITY
@@ -379,12 +374,9 @@ inline __m128 operator * (const __m128 A, const __m128 B)
typedef float32x4_t btSimdFloat4;
#define BT_INFINITY INFINITY
#define BT_NAN NAN
#define btAssign128(r0,r1,r2,r3) (float32x4_t){r0,r1,r2,r3}
#endif
#define btAssign128(r0, r1, r2, r3) \
(float32x4_t) { r0, r1, r2, r3 }
#endif//BT_USE_NEON
#define BT_DECLARE_ALIGNED_ALLOCATOR() \
SIMD_FORCE_INLINE void *operator new(size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
@@ -394,19 +386,30 @@ typedef float32x4_t btSimdFloat4;
SIMD_FORCE_INLINE void *operator new[](size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
SIMD_FORCE_INLINE void operator delete[](void *ptr) { btAlignedFree(ptr); } \
SIMD_FORCE_INLINE void *operator new[](size_t, void *ptr) { return ptr; } \
SIMD_FORCE_INLINE void operator delete[](void*, void*) { } \
SIMD_FORCE_INLINE void operator delete[](void *, void *) {}
#if defined(BT_USE_DOUBLE_PRECISION) || defined(BT_FORCE_DOUBLE_FUNCTIONS)
SIMD_FORCE_INLINE btScalar btSqrt(btScalar x) { return sqrt(x); }
SIMD_FORCE_INLINE btScalar btSqrt(btScalar x)
{
return sqrt(x);
}
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabs(x); }
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cos(x); }
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sin(x); }
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tan(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x) { if (x<btScalar(-1)) x=btScalar(-1); if (x>btScalar(1)) x=btScalar(1); return acos(x); }
SIMD_FORCE_INLINE btScalar btAsin(btScalar x) { if (x<btScalar(-1)) x=btScalar(-1); if (x>btScalar(1)) x=btScalar(1); return asin(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
{
if (x < btScalar(-1)) x = btScalar(-1);
if (x > btScalar(1)) x = btScalar(1);
return acos(x);
}
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
{
if (x < btScalar(-1)) x = btScalar(-1);
if (x > btScalar(1)) x = btScalar(1);
return asin(x);
}
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atan(x); }
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2(x, y); }
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return exp(x); }
@@ -414,7 +417,7 @@ SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return log(x); }
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return pow(x, y); }
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmod(x, y); }
#else
#else//BT_USE_DOUBLE_PRECISION
SIMD_FORCE_INLINE btScalar btSqrt(btScalar y)
{
@@ -451,14 +454,16 @@ SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabsf(x); }
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cosf(x); }
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sinf(x); }
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tanf(x); }
SIMD_FORCE_INLINE btScalar btAcos(btScalar x) {
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
{
if (x < btScalar(-1))
x = btScalar(-1);
if (x > btScalar(1))
x = btScalar(1);
return acosf(x);
}
SIMD_FORCE_INLINE btScalar btAsin(btScalar x) {
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
{
if (x < btScalar(-1))
x = btScalar(-1);
if (x > btScalar(1))
@@ -472,7 +477,7 @@ SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return logf(x); }
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return powf(x, y); }
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmodf(x, y); }
#endif
#endif//BT_USE_DOUBLE_PRECISION
#define SIMD_PI btScalar(3.1415926535897932384626433832795029)
#define SIMD_2_PI (btScalar(2.0) * SIMD_PI)
@@ -480,7 +485,6 @@ SIMD_FORCE_INLINE btScalar btFmod(btScalar x,btScalar y) { return fmodf(x,y); }
#define SIMD_RADS_PER_DEG (SIMD_2_PI / btScalar(360.0))
#define SIMD_DEGS_PER_RAD (btScalar(360.0) / SIMD_2_PI)
#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)
#define btRecipSqrt(x) ((btScalar)(btScalar(1.0) / btSqrt(btScalar(x)))) /* reciprocal square root */
#define btRecip(x) (btScalar(1.0) / btScalar(x))
@@ -500,16 +504,21 @@ SIMD_FORCE_INLINE btScalar btFmod(btScalar x,btScalar y) { return fmodf(x,y); }
#define BT_HALF 0.5f
#endif
// clang-format on
SIMD_FORCE_INLINE btScalar btAtan2Fast(btScalar y, btScalar x)
{
btScalar coeff_1 = SIMD_PI / 4.0f;
btScalar coeff_2 = 3.0f * coeff_1;
btScalar abs_y = btFabs(y);
btScalar angle;
if (x >= 0.0f) {
if (x >= 0.0f)
{
btScalar r = (x - abs_y) / (x + abs_y);
angle = coeff_1 - coeff_1 * r;
} else {
}
else
{
btScalar r = (x + abs_y) / (abs_y - x);
angle = coeff_2 - coeff_1 * r;
}
@@ -518,22 +527,28 @@ SIMD_FORCE_INLINE btScalar btAtan2Fast(btScalar y, btScalar x)
SIMD_FORCE_INLINE bool btFuzzyZero(btScalar x) { return btFabs(x) < SIMD_EPSILON; }
SIMD_FORCE_INLINE bool btEqual(btScalar a, btScalar eps) {
SIMD_FORCE_INLINE bool btEqual(btScalar a, btScalar eps)
{
return (((a) <= eps) && !((a) < -eps));
}
SIMD_FORCE_INLINE bool btGreaterEqual (btScalar a, btScalar eps) {
SIMD_FORCE_INLINE bool btGreaterEqual(btScalar a, btScalar eps)
{
return (!((a) <= eps));
}
SIMD_FORCE_INLINE int btIsNegative(btScalar x) {
SIMD_FORCE_INLINE int btIsNegative(btScalar x)
{
return x < btScalar(0.0) ? 1 : 0;
}
SIMD_FORCE_INLINE btScalar btRadians(btScalar x) { return x * SIMD_RADS_PER_DEG; }
SIMD_FORCE_INLINE btScalar btDegrees(btScalar x) { return x * SIMD_DEGS_PER_RAD; }
#define BT_DECLARE_HANDLE(name) typedef struct name##__ { int unused; } *name
#define BT_DECLARE_HANDLE(name) \
typedef struct name##__ \
{ \
int unused; \
} * name
#ifndef btFsel
SIMD_FORCE_INLINE btScalar btFsel(btScalar a, btScalar b, btScalar c)
@@ -543,7 +558,6 @@ SIMD_FORCE_INLINE btScalar btFsel(btScalar a, btScalar b, btScalar c)
#endif
#define btFsels(a, b, c) (btScalar) btFsel(a, b, c)
SIMD_FORCE_INLINE bool btMachineIsLittleEndian()
{
long int i = 1;
@@ -554,8 +568,6 @@ SIMD_FORCE_INLINE bool btMachineIsLittleEndian()
return false;
}
///btSelect avoids branches, which makes performance much better for consoles like Playstation 3 and XBox 360
///Thanks Phil Knight. See also http://www.cellperformance.com/articles/2006/04/more_techniques_for_eliminatin_1.html
SIMD_FORCE_INLINE unsigned btSelect(unsigned condition, unsigned valueIfConditionNonZero, unsigned valueIfConditionZero)
@@ -583,14 +595,14 @@ SIMD_FORCE_INLINE float btSelect(unsigned condition, float valueIfConditionNonZe
#endif
}
template<typename T> SIMD_FORCE_INLINE void btSwap(T& a, T& b)
template <typename T>
SIMD_FORCE_INLINE void btSwap(T &a, T &b)
{
T tmp = a;
a = b;
b = tmp;
}
//PCK: endian swapping functions
SIMD_FORCE_INLINE unsigned btSwapEndian(unsigned val)
{
@@ -646,7 +658,6 @@ SIMD_FORCE_INLINE float btUnswapEndianFloat(unsigned int a)
return d;
}
// swap using char pointers
SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char *dst)
{
@@ -660,7 +671,6 @@ SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char* dst)
dst[5] = src[2];
dst[6] = src[1];
dst[7] = src[0];
}
// unswap using char pointers
@@ -693,16 +703,18 @@ SIMD_FORCE_INLINE void btSetZero(T* a, int n)
}
}
SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int n)
{
btScalar p0, q0, m0, p1, q1, m1, sum;
sum = 0;
n -= 2;
while (n >= 0) {
p0 = a[0]; q0 = b[0];
while (n >= 0)
{
p0 = a[0];
q0 = b[0];
m0 = p0 * q0;
p1 = a[1]; q1 = b[1];
p1 = a[1];
q1 = b[1];
m1 = p1 * q1;
sum += m0;
sum += m1;
@@ -711,7 +723,8 @@ SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int
n -= 2;
}
n += 2;
while (n > 0) {
while (n > 0)
{
sum += (*a) * (*b);
a++;
b++;
@@ -720,7 +733,6 @@ SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int
return sum;
}
// returns normalized value in range [-SIMD_PI, SIMD_PI]
SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
{
@@ -739,8 +751,6 @@ SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
}
}
///rudimentary class to provide type info
struct btTypedObject
{
@@ -755,23 +765,19 @@ struct btTypedObject
}
};
///align a pointer to the provided alignment, upwards
template <typename T>T* btAlignPointer(T* unalignedPtr, size_t alignment)
template <typename T>
T *btAlignPointer(T *unalignedPtr, size_t alignment)
{
struct btConvertPointerSizeT
{
union
{
union {
T *ptr;
size_t integer;
};
};
btConvertPointerSizeT converter;
const size_t bit_mask = ~(alignment - 1);
converter.ptr = unalignedPtr;
converter.integer += alignment - 1;
@@ -779,5 +785,4 @@ template <typename T>T* btAlignPointer(T* unalignedPtr, size_t alignment)
return converter.ptr;
}
#endif //BT_SCALAR_H