Refactored SpuGatheringCollisionTask to use code in SpuCollisionShapes.

More work on SpuBatchRaycaster. It is working now on the PS3 and Windows.
This commit is contained in:
johnmccutchan
2008-01-14 23:44:07 +00:00
parent 6ba6805b43
commit be0beaf7bd
20 changed files with 1190 additions and 1474 deletions

View File

@@ -21,6 +21,8 @@ ADD_LIBRARY(LibBulletMultiThreaded
SpuSampleTaskProcess.h SpuSampleTaskProcess.h
SpuSampleTaskProcess.cpp SpuSampleTaskProcess.cpp
SpuCollisionObjectWrapper.cpp
SpuCollisionObjectWrapper.h
SpuCollisionTaskProcess.h SpuCollisionTaskProcess.h
SpuCollisionTaskProcess.cpp SpuCollisionTaskProcess.cpp
SpuGatheringCollisionDispatcher.h SpuGatheringCollisionDispatcher.h
@@ -39,15 +41,20 @@ ADD_LIBRARY(LibBulletMultiThreaded
SpuNarrowPhaseCollisionTask/SpuVoronoiSimplexSolver.h SpuNarrowPhaseCollisionTask/SpuVoronoiSimplexSolver.h
SpuNarrowPhaseCollisionTask/SpuGjkPairDetector.cpp SpuNarrowPhaseCollisionTask/SpuGjkPairDetector.cpp
SpuNarrowPhaseCollisionTask/SpuGjkPairDetector.h SpuNarrowPhaseCollisionTask/SpuGjkPairDetector.h
SpuNarrowPhaseCollisionTask/SpuLocalSupport.h SpuNarrowPhaseCollisionTask/SpuCollisionShapes.cpp
SpuNarrowPhaseCollisionTask/SpuCollisionShapes.h
SpuParallelSolver.cpp SpuParallelSolver.cpp
SpuParallelSolver.h SpuParallelSolver.h
SpuSolverTask/SpuParallellSolverTask.cpp SpuSolverTask/SpuParallellSolverTask.cpp
SpuSolverTask/SpuParallellSolverTask.h SpuSolverTask/SpuParallellSolverTask.h
# SpuRaycastTaskProcess.cpp SpuBatchRaycaster.cpp
# SpuRaycastTaskProcess.h SpuBatchRaycaster.h
# SpuRaycastTask/SpuRaycastTask.cpp SpuRaycastTaskProcess.cpp
# SpuRaycastTask/SpuRaycastTask.h SpuRaycastTaskProcess.h
SpuRaycastTask/SpuRaycastTask.cpp
SpuRaycastTask/SpuRaycastTask.h
SpuRaycastTask/SpuSubSimplexConvexCast.cpp
SpuRaycastTask/SpuSubSimplexConvexCast.h
) )

View File

@@ -55,7 +55,6 @@ void SequentialThreadSupport::sendRequest(uint32_t uiCommand, uint32_t uiArgumen
} }
///check for messages from SPUs ///check for messages from SPUs
void SequentialThreadSupport::waitForResponse(unsigned int *puiArgument0, unsigned int *puiArgument1) void SequentialThreadSupport::waitForResponse(unsigned int *puiArgument0, unsigned int *puiArgument1)
{ {
@@ -65,8 +64,6 @@ void SequentialThreadSupport::waitForResponse(unsigned int *puiArgument0, unsign
*puiArgument1 = spuStatus.m_status; *puiArgument1 = spuStatus.m_status;
} }
void SequentialThreadSupport::startThreads(SequentialThreadConstructionInfo& threadConstructionInfo) void SequentialThreadSupport::startThreads(SequentialThreadConstructionInfo& threadConstructionInfo)
{ {
m_activeSpuStatus.resize(1); m_activeSpuStatus.resize(1);
@@ -78,7 +75,7 @@ void SequentialThreadSupport::startThreads(SequentialThreadConstructionInfo& thr
spuStatus.m_status = 0; spuStatus.m_status = 0;
spuStatus.m_lsMemory = threadConstructionInfo.m_lsMemoryFunc(); spuStatus.m_lsMemory = threadConstructionInfo.m_lsMemoryFunc();
spuStatus.m_userThreadFunc = threadConstructionInfo.m_userThreadFunc; spuStatus.m_userThreadFunc = threadConstructionInfo.m_userThreadFunc;
printf("STS: Created local store at %p for function %p\n",spuStatus.m_lsMemory, spuStatus.m_userThreadFunc); printf("STS: Created local store at %p for task %s\n", spuStatus.m_lsMemory, threadConstructionInfo.m_uniqueName);
} }
void SequentialThreadSupport::startSPU() void SequentialThreadSupport::startSPU()

View File

@@ -39,7 +39,7 @@ void
SpuBatchRaycaster::addRay (const btVector3& rayFrom, const btVector3& rayTo) SpuBatchRaycaster::addRay (const btVector3& rayFrom, const btVector3& rayTo)
{ {
SpuRaycastTaskWorkUnitOut workUnitOut; SpuRaycastTaskWorkUnitOut workUnitOut;
workUnitOut.hitFraction = 0.99; workUnitOut.hitFraction = 1.0;
workUnitOut.hitNormal = btVector3(0.0, 1.0, 0.0); workUnitOut.hitNormal = btVector3(0.0, 1.0, 0.0);
rayBatchOutput.push_back (workUnitOut); rayBatchOutput.push_back (workUnitOut);

View File

@@ -16,7 +16,7 @@ subject to the following restrictions:
#include "PlatformDefinitions.h" #include "PlatformDefinitions.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
class SpuCollisionObjectWrapper ATTRIBUTE_ALIGNED16(class) SpuCollisionObjectWrapper
{ {
protected: protected:
int m_shapeType; int m_shapeType;

View File

@@ -390,7 +390,6 @@ void dmaConvexVertexData (SpuConvexPolyhedronVertexData* convexVertexData, btCon
register int dmaSize = convexVertexData->gNumConvexPoints*sizeof(btPoint3); register int dmaSize = convexVertexData->gNumConvexPoints*sizeof(btPoint3);
ppu_address_t pointsPPU = (ppu_address_t) convexShapeSPU->getPoints(); ppu_address_t pointsPPU = (ppu_address_t) convexShapeSPU->getPoints();
cellDmaGet(&convexVertexData->g_convexPointBuffer[0], pointsPPU , dmaSize, DMA_TAG(2), 0, 0); cellDmaGet(&convexVertexData->g_convexPointBuffer[0], pointsPPU , dmaSize, DMA_TAG(2), 0, 0);
} }
void dmaCollisionShape (void* collisionShapeLocation, ppu_address_t collisionShapePtr, uint32_t dmaTag, int shapeType) void dmaCollisionShape (void* collisionShapeLocation, ppu_address_t collisionShapePtr, uint32_t dmaTag, int shapeType)
@@ -422,6 +421,7 @@ void dmaCompoundSubShapes (CompoundShape_LocalStoreMemory* compoundShapeLocation
} }
} }
void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex) void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex)
{ {

View File

@@ -53,7 +53,7 @@ inline btScalar calculateCombinedRestitution(btScalar restitution0,btScalar rest
void SpuContactResult::setContactInfo(btPersistentManifold* spuManifold, uint64_t manifoldAddress,const btTransform& worldTrans0,const btTransform& worldTrans1, btScalar restitution0,btScalar restitution1, btScalar friction0,btScalar friction1, bool isSwapped) void SpuContactResult::setContactInfo(btPersistentManifold* spuManifold, ppu_address_t manifoldAddress,const btTransform& worldTrans0,const btTransform& worldTrans1, btScalar restitution0,btScalar restitution1, btScalar friction0,btScalar friction1, bool isSwapped)
{ {
//spu_printf("SpuContactResult::setContactInfo ManifoldAddress: %lu\n", manifoldAddress); //spu_printf("SpuContactResult::setContactInfo ManifoldAddress: %lu\n", manifoldAddress);
m_rootWorldTransform0 = worldTrans0; m_rootWorldTransform0 = worldTrans0;

View File

@@ -35,10 +35,10 @@ subject to the following restrictions:
struct SpuCollisionPairInput struct SpuCollisionPairInput
{ {
uint64_t m_collisionShapes[2]; ppu_address_t m_collisionShapes[2];
void* m_spuCollisionShapes[2]; void* m_spuCollisionShapes[2];
uint64_t m_persistentManifoldPtr; ppu_address_t m_persistentManifoldPtr;
btVector3 m_primitiveDimensions0; btVector3 m_primitiveDimensions0;
btVector3 m_primitiveDimensions1; btVector3 m_primitiveDimensions1;
int m_shapeType0; int m_shapeType0;
@@ -50,9 +50,6 @@ struct SpuCollisionPairInput
btTransform m_worldTransform1; btTransform m_worldTransform1;
bool m_isSwapped; bool m_isSwapped;
}; };
@@ -68,7 +65,7 @@ struct SpuClosestPointInput
btTransform m_transformB; btTransform m_transformB;
float m_maximumDistanceSquared; float m_maximumDistanceSquared;
class btStackAlloc* m_stackAlloc; class btStackAlloc* m_stackAlloc;
struct SpuConvexPolyhedronVertexData* m_convexVertexData; struct SpuConvexPolyhedronVertexData* m_convexVertexData[2];
}; };
///SpuContactResult exports the contact points using double-buffered DMA transfers, only when needed ///SpuContactResult exports the contact points using double-buffered DMA transfers, only when needed
@@ -77,7 +74,7 @@ class SpuContactResult
{ {
btTransform m_rootWorldTransform0; btTransform m_rootWorldTransform0;
btTransform m_rootWorldTransform1; btTransform m_rootWorldTransform1;
uint64_t m_manifoldAddress; ppu_address_t m_manifoldAddress;
btPersistentManifold* m_spuManifold; btPersistentManifold* m_spuManifold;
bool m_RequiresWriteBack; bool m_RequiresWriteBack;
@@ -99,7 +96,7 @@ class SpuContactResult
virtual void setShapeIdentifiers(int partId0,int index0, int partId1,int index1); virtual void setShapeIdentifiers(int partId0,int index0, int partId1,int index1);
void setContactInfo(btPersistentManifold* spuManifold, uint64_t manifoldAddress,const btTransform& worldTrans0,const btTransform& worldTrans1, btScalar restitution0,btScalar restitution1, btScalar friction0,btScalar friction01, bool isSwapped); void setContactInfo(btPersistentManifold* spuManifold, ppu_address_t manifoldAddress,const btTransform& worldTrans0,const btTransform& worldTrans1, btScalar restitution0,btScalar restitution1, btScalar friction0,btScalar friction01, bool isSwapped);
void writeDoubleBufferedManifold(btPersistentManifold* lsManifold, btPersistentManifold* mmManifold); void writeDoubleBufferedManifold(btPersistentManifold* lsManifold, btPersistentManifold* mmManifold);

View File

@@ -39,7 +39,8 @@ public:
btTransform& transA,const btTransform& transB, btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb, btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc, class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc,
struct SpuConvexPolyhedronVertexData* convexVertexData struct SpuConvexPolyhedronVertexData* convexVertexDataA,
struct SpuConvexPolyhedronVertexData* convexVertexDataB
) const = 0; ) const = 0;

View File

@@ -26,7 +26,7 @@
#include "SpuGjkPairDetector.h" #include "SpuGjkPairDetector.h"
#include "SpuVoronoiSimplexSolver.h" #include "SpuVoronoiSimplexSolver.h"
#include "SpuLocalSupport.h" //definition of SpuConvexPolyhedronVertexData #include "SpuCollisionShapes.h" //definition of SpuConvexPolyhedronVertexData
#ifdef __CELLOS_LV2__ #ifdef __CELLOS_LV2__
///Software caching from the IBM Cell SDK, it reduces 25% SPU time for our test cases ///Software caching from the IBM Cell SDK, it reduces 25% SPU time for our test cases
@@ -92,16 +92,11 @@ int g_CacheHits=0;
#include <stdio.h> #include <stdio.h>
#endif #endif
#define MAX_SHAPE_SIZE 256
//int gNumConvexPoints0=0; //int gNumConvexPoints0=0;
///Make sure no destructors are called on this memory ///Make sure no destructors are called on this memory
struct CollisionTask_LocalStoreMemory struct CollisionTask_LocalStoreMemory
{ {
ATTRIBUTE_ALIGNED16(char bufferProxy0[16]); ATTRIBUTE_ALIGNED16(char bufferProxy0[16]);
ATTRIBUTE_ALIGNED16(char bufferProxy1[16]); ATTRIBUTE_ALIGNED16(char bufferProxy1[16]);
@@ -138,41 +133,16 @@ struct CollisionTask_LocalStoreMemory
} }
btPersistentManifold gPersistentManifold; btPersistentManifold gPersistentManifold;
ATTRIBUTE_ALIGNED16(char gCollisionShape0[MAX_SHAPE_SIZE]); CollisionShape_LocalStoreMemory gCollisionShapes[2];
ATTRIBUTE_ALIGNED16(char gCollisionShape1[MAX_SHAPE_SIZE]);
ATTRIBUTE_ALIGNED16(int spuIndices[16]); ATTRIBUTE_ALIGNED16(int spuIndices[16]);
//ATTRIBUTE_ALIGNED16(btOptimizedBvh gOptimizedBvh); bvhMeshShape_LocalStoreMemory bvhShapeData;
ATTRIBUTE_ALIGNED16(char gOptimizedBvh[sizeof(btOptimizedBvh)+16]); SpuConvexPolyhedronVertexData convexVertexData[2];
btOptimizedBvh* getOptimizedBvh() CompoundShape_LocalStoreMemory compoundShapeData[2];
{
return (btOptimizedBvh*) gOptimizedBvh;
}
ATTRIBUTE_ALIGNED16(btTriangleIndexVertexArray gTriangleMeshInterfaceStorage);
btTriangleIndexVertexArray* gTriangleMeshInterfacePtr;
///only a single mesh part for now, we can add support for multiple parts, but quantized trees don't support this at the moment
ATTRIBUTE_ALIGNED16(btIndexedMesh gIndexMesh);
#define MAX_SPU_SUBTREE_HEADERS 32
//1024
ATTRIBUTE_ALIGNED16(btBvhSubtreeInfo gSubtreeHeaders[MAX_SPU_SUBTREE_HEADERS]);
ATTRIBUTE_ALIGNED16(btQuantizedBvhNode gSubtreeNodes[MAX_SUBTREE_SIZE_IN_BYTES/sizeof(btQuantizedBvhNode)]);
SpuConvexPolyhedronVertexData convexVertexData;
// Compound data
#define MAX_SPU_COMPOUND_SUBSHAPES 16
ATTRIBUTE_ALIGNED16(btCompoundShapeChild gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES*2]);
ATTRIBUTE_ALIGNED16(char gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES*2][MAX_SHAPE_SIZE]);
}; };
#if defined(__CELLOS_LV2__) || defined(USE_LIBSPE2) #if defined(__CELLOS_LV2__) || defined(USE_LIBSPE2)
ATTRIBUTE_ALIGNED16(CollisionTask_LocalStoreMemory gLocalStoreMemory); ATTRIBUTE_ALIGNED16(CollisionTask_LocalStoreMemory gLocalStoreMemory);
@@ -189,73 +159,8 @@ void* createCollisionLocalStoreMemory()
#endif #endif
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts); void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts);
#define USE_BRANCHFREE_TEST 1
#ifdef USE_BRANCHFREE_TEST
SIMD_FORCE_INLINE unsigned int spuTestQuantizedAabbAgainstQuantizedAabb(unsigned short int* aabbMin1,unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
return btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
& (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
& (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
1, 0);
}
#else
unsigned int spuTestQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
unsigned int overlap = 1;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? 0 : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? 0 : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? 0 : overlap;
return overlap;
}
#endif
void spuWalkStacklessQuantizedTree(btNodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode,int startNodeIndex,int endNodeIndex)
{
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
int escapeIndex;
unsigned int aabbOverlap, isLeafNode;
while (curIndex < endNodeIndex)
{
//catch bugs in tree data
assert (walkIterations < subTreeSize);
walkIterations++;
aabbOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
if (isLeafNode && aabbOverlap)
{
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
nodeCallback->processNode(0,rootNode->getTriangleIndex());
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
}
if (aabbOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
}
SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t size) SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t size)
{ {
@@ -271,7 +176,6 @@ SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t s
#endif #endif
} }
SIMD_FORCE_INLINE void small_cache_read_triple( void* ls0, ppu_address_t ea0, SIMD_FORCE_INLINE void small_cache_read_triple( void* ls0, ppu_address_t ea0,
void* ls1, ppu_address_t ea1, void* ls1, ppu_address_t ea1,
void* ls2, ppu_address_t ea2, void* ls2, ppu_address_t ea2,
@@ -326,7 +230,7 @@ class spuNodeCallback : public btNodeOverlapCallback
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]); ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]); ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
ATTRIBUTE_ALIGNED16(int spuIndices[16]); //ATTRIBUTE_ALIGNED16(int spuIndices[16]);
public: public:
@@ -346,7 +250,7 @@ public:
int* indexBasePtr = (int*)(m_lsMemPtr->gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->gIndexMesh.m_triangleIndexStride); int* indexBasePtr = (int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0], small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0],
&m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1], &m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1],
@@ -358,13 +262,13 @@ public:
// spu_printf("SPU index2=%d ,",spuIndices[2]); // spu_printf("SPU index2=%d ,",spuIndices[2]);
// spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr); // spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr);
const btVector3& meshScaling = m_lsMemPtr->gTriangleMeshInterfacePtr->getScaling(); const btVector3& meshScaling = m_lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getScaling();
for (int j=2;btLikely( j>=0 );j--) for (int j=2;btLikely( j>=0 );j--)
{ {
int graphicsindex = m_lsMemPtr->spuIndices[j]; int graphicsindex = m_lsMemPtr->spuIndices[j];
// spu_printf("SPU index=%d ,",graphicsindex); // spu_printf("SPU index=%d ,",graphicsindex);
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->gIndexMesh.m_vertexStride); btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexStride);
// spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr); // spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr);
@@ -405,38 +309,18 @@ public:
}; };
//////////////////////// ////////////////////////
/// Convex versus Concave triangle mesh collision detection (handles concave triangle mesh versus sphere, box, cylinder, triangle, cone, convex polyhedron etc) /// Convex versus Concave triangle mesh collision detection (handles concave triangle mesh versus sphere, box, cylinder, triangle, cone, convex polyhedron etc)
/////////////////// ///////////////////
void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts) void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
{ {
//order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite //order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite
register int dmaSize; register int dmaSize;
register ppu_address_t dmaPpuAddress2; register ppu_address_t dmaPpuAddress2;
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)wuInput->m_spuCollisionShapes[1]; btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)wuInput->m_spuCollisionShapes[1];
//need the mesh interface, for access to triangle vertices //need the mesh interface, for access to triangle vertices
dmaBvhShapeData (&lsMemPtr->bvhShapeData, trimeshShape);
dmaSize = sizeof(btTriangleIndexVertexArray);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(trimeshShape->getMeshInterface());
// spu_printf("trimeshShape->getMeshInterface() == %llx\n",dmaPpuAddress2);
lsMemPtr->gTriangleMeshInterfacePtr = (btTriangleIndexVertexArray*)cellDmaGetReadOnly(&lsMemPtr->gTriangleMeshInterfaceStorage, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
///now DMA over the BVH
dmaSize = sizeof(btOptimizedBvh);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(trimeshShape->getOptimizedBvh());
//spu_printf("trimeshShape->getOptimizedBvh() == %llx\n",dmaPpuAddress2);
cellDmaGet(&lsMemPtr->gOptimizedBvh, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
btVector3 aabbMin(-1,-400,-1); btVector3 aabbMin(-1,-400,-1);
btVector3 aabbMax(1,400,1); btVector3 aabbMax(1,400,1);
@@ -446,82 +330,9 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
btTransform convexInTriangleSpace; btTransform convexInTriangleSpace;
convexInTriangleSpace = wuInput->m_worldTransform1.inverse() * wuInput->m_worldTransform0; convexInTriangleSpace = wuInput->m_worldTransform1.inverse() * wuInput->m_worldTransform0;
btConvexInternalShape* convexShape = (btConvexInternalShape*)wuInput->m_spuCollisionShapes[0]; btConvexInternalShape* convexShape = (btConvexInternalShape*)wuInput->m_spuCollisionShapes[0];
//calculate the aabb, given the types...
switch (wuInput->m_shapeType0)
{
case CYLINDER_SHAPE_PROXYTYPE:
case BOX_SHAPE_PROXYTYPE: computeAabb (aabbMin, aabbMax, convexShape, wuInput->m_collisionShapes[0], wuInput->m_shapeType0, convexInTriangleSpace);
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
btTransform& t = convexInTriangleSpace;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
float margin=convexShape->getMarginNV();
btVector3 halfExtents = convexShape->getImplicitShapeDimensions();
//add the radius to y-axis to get full height
btScalar radius = halfExtents[0];
halfExtents[1] += radius;
btTransform& t = convexInTriangleSpace;
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
extent += btVector3(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case SPHERE_SHAPE_PROXYTYPE:
{
float radius = convexShape->getImplicitShapeDimensions().getX();// * convexShape->getLocalScaling().getX();
float margin = radius + convexShape->getMarginNV();
btTransform& t = convexInTriangleSpace;
const btVector3& center = t.getOrigin();
btVector3 extent(margin,margin,margin);
aabbMin = center - extent;
aabbMax = center + extent;
break;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
dmaSize = sizeof(btConvexHullShape);
dmaPpuAddress2 = wuInput->m_collisionShapes[0];
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
cellDmaGet(&convexHullShape0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0;
btTransform& t = convexInTriangleSpace;
btScalar margin = convexShape->getMarginNV();
localPtr->getNonvirtualAabb(t,aabbMin,aabbMax,margin);
//spu_printf("SPU convex aabbMin=%f,%f,%f=\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ());
//spu_printf("SPU convex aabbMax=%f,%f,%f=\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ());
break;
}
default:
spu_printf("SPU: unsupported shapetype %d in AABB calculation\n");
};
//CollisionShape* triangleShape = static_cast<btCollisionShape*>(triBody->m_collisionShape); //CollisionShape* triangleShape = static_cast<btCollisionShape*>(triBody->m_collisionShape);
//convexShape->getAabb(convexInTriangleSpace,m_aabbMin,m_aabbMax); //convexShape->getAabb(convexInTriangleSpace,m_aabbMin,m_aabbMax);
@@ -531,51 +342,38 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
// aabbMax += extra; // aabbMax += extra;
// aabbMin -= extra; // aabbMin -= extra;
///quantize query AABB ///quantize query AABB
unsigned short int quantizedQueryAabbMin[3]; unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3]; unsigned short int quantizedQueryAabbMax[3];
lsMemPtr->getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin); lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
lsMemPtr->getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax); lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
QuantizedNodeArray& nodeArray = lsMemPtr->getOptimizedBvh()->getQuantizedNodeArray(); QuantizedNodeArray& nodeArray = lsMemPtr->bvhShapeData.getOptimizedBvh()->getQuantizedNodeArray();
//spu_printf("SPU: numNodes = %d\n",nodeArray.size()); //spu_printf("SPU: numNodes = %d\n",nodeArray.size());
BvhSubtreeInfoArray& subTrees = lsMemPtr->getOptimizedBvh()->getSubtreeInfoArray(); BvhSubtreeInfoArray& subTrees = lsMemPtr->bvhShapeData.getOptimizedBvh()->getSubtreeInfoArray();
spuNodeCallback nodeCallback(wuInput,lsMemPtr,spuContacts); spuNodeCallback nodeCallback(wuInput,lsMemPtr,spuContacts);
IndexedMeshArray& indexArray = lsMemPtr->gTriangleMeshInterfacePtr->getIndexedMeshArray(); IndexedMeshArray& indexArray = lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getIndexedMeshArray();
//spu_printf("SPU:indexArray.size() = %d\n",indexArray.size()); //spu_printf("SPU:indexArray.size() = %d\n",indexArray.size());
// spu_printf("SPU: numSubTrees = %d\n",subTrees.size()); // spu_printf("SPU: numSubTrees = %d\n",subTrees.size());
//not likely to happen //not likely to happen
if (subTrees.size() && indexArray.size() == 1) if (subTrees.size() && indexArray.size() == 1)
{ {
///DMA in the index info ///DMA in the index info
dmaBvhIndexedMesh (&lsMemPtr->bvhShapeData.gIndexMesh, indexArray, 0 /* index into indexArray */, 1 /* dmaTag */);
dmaSize = sizeof(btIndexedMesh);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(&indexArray[0]);
cellDmaGet(&lsMemPtr->gIndexMesh, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
//spu_printf("SPU gIndexMesh dma finished\n");
//display the headers //display the headers
int numBatch = subTrees.size(); int numBatch = subTrees.size();
for (int i=0;i<numBatch;) for (int i=0;i<numBatch;)
{ {
// BEN: TODO - can reorder DMA transfers for less stall // BEN: TODO - can reorder DMA transfers for less stall
int remaining = subTrees.size() - i; int remaining = subTrees.size() - i;
int nextBatch = remaining < MAX_SPU_SUBTREE_HEADERS ? remaining : MAX_SPU_SUBTREE_HEADERS; int nextBatch = remaining < MAX_SPU_SUBTREE_HEADERS ? remaining : MAX_SPU_SUBTREE_HEADERS;
dmaSize = nextBatch* sizeof(btBvhSubtreeInfo); dmaBvhSubTreeHeaders (&lsMemPtr->bvhShapeData.gSubtreeHeaders[0], (ppu_address_t)(&subTrees[i]), nextBatch, 1);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(&subTrees[i]);
// spu_printf("&subtree[i]=%llx, dmaSize = %d\n",dmaPpuAddress2,dmaSize);
cellDmaGet(&lsMemPtr->gSubtreeHeaders[0], dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
@@ -583,7 +381,7 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
for (int j=0;j<nextBatch;j++) for (int j=0;j<nextBatch;j++)
{ {
const btBvhSubtreeInfo& subtree = lsMemPtr->gSubtreeHeaders[j]; const btBvhSubtreeInfo& subtree = lsMemPtr->bvhShapeData.gSubtreeHeaders[j];
unsigned int overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); unsigned int overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap) if (overlap)
@@ -591,23 +389,15 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
btAssert(subtree.m_subtreeSize); btAssert(subtree.m_subtreeSize);
//dma the actual nodes of this subtree //dma the actual nodes of this subtree
dmaBvhSubTreeNodes (&lsMemPtr->bvhShapeData.gSubtreeNodes[0], subtree, nodeArray, 2);
dmaSize = subtree.m_subtreeSize* sizeof(btQuantizedBvhNode);
dmaPpuAddress2 = reinterpret_cast<ppu_address_t>(&nodeArray[subtree.m_rootNodeIndex]);
cellDmaGet(&lsMemPtr->gSubtreeNodes[0], dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(2));
/* Walk this subtree */
spuWalkStacklessQuantizedTree(&nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, spuWalkStacklessQuantizedTree(&nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,
&lsMemPtr->gSubtreeNodes[0], &lsMemPtr->bvhShapeData.gSubtreeNodes[0],
0, 0,
subtree.m_subtreeSize); subtree.m_subtreeSize);
} }
// spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize); // spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize);
} }
@@ -619,73 +409,10 @@ void ProcessConvexConcaveSpuCollision(SpuCollisionPairInput* wuInput, CollisionT
} }
//pre-fetch first tree, then loop and double buffer //pre-fetch first tree, then loop and double buffer
} }
} }
///getShapeTypeSize could easily be optimized, but it is not likely a bottleneck
SIMD_FORCE_INLINE int getShapeTypeSize(int shapeType)
{
switch (shapeType)
{
case CYLINDER_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCylinderShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case BOX_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btBoxShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case SPHERE_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btSphereShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case TRIANGLE_MESH_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btBvhTriangleMeshShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCapsuleShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btConvexHullShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
case COMPOUND_SHAPE_PROXYTYPE:
{
int shapeSize = sizeof(btCompoundShape);
btAssert(shapeSize < MAX_SHAPE_SIZE);
return shapeSize;
}
default:
btAssert(0);
//unsupported shapetype, please add here
return 0;
}
}
//////////////////////// ////////////////////////
@@ -693,8 +420,6 @@ SIMD_FORCE_INLINE int getShapeTypeSize(int shapeType)
/////////////////// ///////////////////
void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts) void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTask_LocalStoreMemory* lsMemPtr, SpuContactResult& spuContacts)
{ {
register int dmaSize; register int dmaSize;
register ppu_address_t dmaPpuAddress2; register ppu_address_t dmaPpuAddress2;
@@ -705,12 +430,8 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1]; //CollisionShape* shape1 = (CollisionShape*)wuInput->m_collisionShapes[1];
btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr; btPersistentManifold* manifold = (btPersistentManifold*)wuInput->m_persistentManifoldPtr;
bool genericGjk = true; bool genericGjk = true;
if (genericGjk) if (genericGjk)
{ {
//try generic GJK //try generic GJK
@@ -718,8 +439,6 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
SpuVoronoiSimplexSolver vsSolver; SpuVoronoiSimplexSolver vsSolver;
SpuMinkowskiPenetrationDepthSolver penetrationSolver; SpuMinkowskiPenetrationDepthSolver penetrationSolver;
///DMA in the vertices for convex shapes ///DMA in the vertices for convex shapes
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]); ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]); ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]);
@@ -735,12 +454,8 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//cellDmaWaitTagStatusAll(DMA_MASK(1)); //cellDmaWaitTagStatusAll(DMA_MASK(1));
} }
if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) ) if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{ {
// spu_printf("SPU: DMA btConvexHullShape\n"); // spu_printf("SPU: DMA btConvexHullShape\n");
dmaSize = sizeof(btConvexHullShape); dmaSize = sizeof(btConvexHullShape);
dmaPpuAddress2 = wuInput->m_collisionShapes[1]; dmaPpuAddress2 = wuInput->m_collisionShapes[1];
@@ -748,68 +463,31 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//cellDmaWaitTagStatusAll(DMA_MASK(1)); //cellDmaWaitTagStatusAll(DMA_MASK(1));
} }
if ( btLikely( wuInput->m_shapeType0 == CONVEX_HULL_SHAPE_PROXYTYPE ) ) if ( btLikely( wuInput->m_shapeType0 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{ {
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape0; dmaConvexVertexData (&lsMemPtr->convexVertexData[0], (btConvexHullShape*)&convexHullShape0);
lsMemPtr->convexVertexData[0].gSpuConvexShapePtr = wuInput->m_spuCollisionShapes[0];
lsMemPtr->convexVertexData.gNumConvexPoints0 = localPtr->getNumPoints();
if (lsMemPtr->convexVertexData.gNumConvexPoints0>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints0);
return;
}
dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints0*sizeof(btPoint3);
dmaPpuAddress2 = (ppu_address_t) localPtr->getPoints();
cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer0, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
lsMemPtr->convexVertexData.gSpuConvexShapePtr0 = wuInput->m_spuCollisionShapes[0];
} }
if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) ) if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{ {
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexHullShape* localPtr = (btConvexHullShape*)&convexHullShape1; dmaConvexVertexData (&lsMemPtr->convexVertexData[1], (btConvexHullShape*)&convexHullShape1);
lsMemPtr->convexVertexData[1].gSpuConvexShapePtr = wuInput->m_spuCollisionShapes[1];
lsMemPtr->convexVertexData.gNumConvexPoints1 = localPtr->getNumPoints();
if (lsMemPtr->convexVertexData.gNumConvexPoints1>MAX_NUM_SPU_CONVEX_POINTS)
{
btAssert(0);
spu_printf("SPU: Error: MAX_NUM_SPU_CONVEX_POINTS(%d) exceeded: %d\n",MAX_NUM_SPU_CONVEX_POINTS,lsMemPtr->convexVertexData.gNumConvexPoints1);
return;
}
dmaSize = lsMemPtr->convexVertexData.gNumConvexPoints1*sizeof(btPoint3);
dmaPpuAddress2 = (ppu_address_t) localPtr->getPoints();
cellDmaGet(&lsMemPtr->convexVertexData.g_convexPointBuffer1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
lsMemPtr->convexVertexData.gSpuConvexShapePtr1 = wuInput->m_spuCollisionShapes[1];
} }
if ( btLikely( wuInput->m_shapeType0 == CONVEX_HULL_SHAPE_PROXYTYPE ) ) if ( btLikely( wuInput->m_shapeType0 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{ {
cellDmaWaitTagStatusAll(DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(2));
lsMemPtr->convexVertexData[0].gConvexPoints = &lsMemPtr->convexVertexData[0].g_convexPointBuffer[0];
lsMemPtr->convexVertexData.gConvexPoints0 = &lsMemPtr->convexVertexData.g_convexPointBuffer0[0];
} }
if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) ) if ( btLikely( wuInput->m_shapeType1 == CONVEX_HULL_SHAPE_PROXYTYPE ) )
{ {
cellDmaWaitTagStatusAll(DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(2));
lsMemPtr->convexVertexData[1].gConvexPoints = &lsMemPtr->convexVertexData[1].g_convexPointBuffer[0];
lsMemPtr->convexVertexData.gConvexPoints1 = &lsMemPtr->convexVertexData.g_convexPointBuffer1[0];
} }
@@ -821,7 +499,8 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
float marginB = wuInput->m_collisionMargin1; float marginB = wuInput->m_collisionMargin1;
SpuClosestPointInput cpInput; SpuClosestPointInput cpInput;
cpInput.m_convexVertexData = &lsMemPtr->convexVertexData; cpInput.m_convexVertexData[0] = &lsMemPtr->convexVertexData[0];
cpInput.m_convexVertexData[1] = &lsMemPtr->convexVertexData[1];
cpInput.m_transformA = wuInput->m_worldTransform0; cpInput.m_transformA = wuInput->m_worldTransform0;
cpInput.m_transformB = wuInput->m_worldTransform1; cpInput.m_transformB = wuInput->m_worldTransform1;
float sumMargin = (marginA+marginB+lsMemPtr->gPersistentManifold.getContactBreakingThreshold()); float sumMargin = (marginA+marginB+lsMemPtr->gPersistentManifold.getContactBreakingThreshold());
@@ -858,27 +537,18 @@ SIMD_FORCE_INLINE void dmaAndSetupCollisionObjects(SpuCollisionPairInput& collis
register int dmaSize; register int dmaSize;
register ppu_address_t dmaPpuAddress2; register ppu_address_t dmaPpuAddress2;
dmaSize = sizeof(btCollisionObject); dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr0->m_clientObject; dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr0->m_clientObject;
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0); cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaSize = sizeof(btCollisionObject); dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr1->m_clientObject; dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr1->m_clientObject;
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0); cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
collisionPairInput.m_worldTransform0 = lsMem.getColObj0()->getWorldTransform(); collisionPairInput.m_worldTransform0 = lsMem.getColObj0()->getWorldTransform();
collisionPairInput.m_worldTransform1 = lsMem.getColObj1()->getWorldTransform(); collisionPairInput.m_worldTransform1 = lsMem.getColObj1()->getWorldTransform();
#ifdef DEBUG_SPU_COLLISION_DETECTION
#endif //DEBUG_SPU_COLLISION_DETECTION
} }
@@ -894,26 +564,11 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0) if (btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType0)
&& btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1)) && btBroadphaseProxy::isConvex(collisionPairInput.m_shapeType1))
{ {
//dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
if (dmaShapes) if (dmaShapes)
{ {
dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0); dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
//uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
} }
btConvexInternalShape* spuConvexShape0 = (btConvexInternalShape*)collisionShape0Loc; btConvexInternalShape* spuConvexShape0 = (btConvexInternalShape*)collisionShape0Loc;
@@ -935,82 +590,41 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
{ {
//snPause(); //snPause();
// Both are compounds, do N^2 CD for now dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
// TODO: add some AABB-based pruning dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
// Both are compounds, do N^2 CD for now
// TODO: add some AABB-based pruning
btCompoundShape* spuCompoundShape0 = (btCompoundShape*)collisionShape0Loc; btCompoundShape* spuCompoundShape0 = (btCompoundShape*)collisionShape0Loc;
btCompoundShape* spuCompoundShape1 = (btCompoundShape*)collisionShape1Loc; btCompoundShape* spuCompoundShape1 = (btCompoundShape*)collisionShape1Loc;
int childShapeCount0 = spuCompoundShape0->getNumChildShapes(); dmaCompoundShapeInfo (&lsMem.compoundShapeData[0], spuCompoundShape0, 1);
int childShapeCount1 = spuCompoundShape1->getNumChildShapes(); dmaCompoundShapeInfo (&lsMem.compoundShapeData[1], spuCompoundShape1, 2);
// dma the first list of child shapes
dmaSize = childShapeCount0 * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape0->getChildList();
cellDmaGet(lsMem.gSubshapes, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
// dma the second list of child shapes
dmaSize = childShapeCount1 * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape1->getChildList();
cellDmaGet(&lsMem.gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES], dmaPpuAddress2, dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
int i; dmaCompoundSubShapes (&lsMem.compoundShapeData[0], spuCompoundShape0, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
// DMA all the subshapes dmaCompoundSubShapes (&lsMem.compoundShapeData[1], spuCompoundShape1, 1);
for ( i = 0; i < childShapeCount0; ++i)
{
btCompoundShapeChild& childShape = lsMem.gSubshapes[i];
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
}
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
for ( i = 0; i < childShapeCount1; ++i) int childShapeCount0 = spuCompoundShape0->getNumChildShapes();
{ int childShapeCount1 = spuCompoundShape1->getNumChildShapes();
btCompoundShapeChild& childShape = lsMem.gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES+i];
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES+i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
}
cellDmaWaitTagStatusAll(DMA_MASK(1));
// Start the N^2 // Start the N^2
for ( i = 0; i < childShapeCount0; ++i) for (int i = 0; i < childShapeCount0; ++i)
{ {
btCompoundShapeChild& childShape0 = lsMem.gSubshapes[i]; btCompoundShapeChild& childShape0 = lsMem.compoundShapeData[0].gSubshapes[i];
for (int j = 0; j < childShapeCount1; ++j) for (int j = 0; j < childShapeCount1; ++j)
{ {
btCompoundShapeChild& childShape1 = lsMem.gSubshapes[MAX_SPU_COMPOUND_SUBSHAPES+j]; btCompoundShapeChild& childShape1 = lsMem.compoundShapeData[1].gSubshapes[j];
/* Create a new collision pair input struct using the two child shapes */
SpuCollisionPairInput cinput (collisionPairInput); SpuCollisionPairInput cinput (collisionPairInput);
cinput.m_worldTransform0 = collisionPairInput.m_worldTransform0 * childShape0.m_transform; cinput.m_worldTransform0 = collisionPairInput.m_worldTransform0 * childShape0.m_transform;
cinput.m_shapeType0 = childShape0.m_childShapeType; cinput.m_shapeType0 = childShape0.m_childShapeType;
cinput.m_collisionMargin0 = childShape0.m_childMargin; cinput.m_collisionMargin0 = childShape0.m_childMargin;
@@ -1018,10 +632,10 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
cinput.m_worldTransform1 = collisionPairInput.m_worldTransform1 * childShape1.m_transform; cinput.m_worldTransform1 = collisionPairInput.m_worldTransform1 * childShape1.m_transform;
cinput.m_shapeType1 = childShape1.m_childShapeType; cinput.m_shapeType1 = childShape1.m_childShapeType;
cinput.m_collisionMargin1 = childShape1.m_childMargin; cinput.m_collisionMargin1 = childShape1.m_childMargin;
/* Recursively call handleCollisionPair () with new collision pair input */
handleCollisionPair(cinput, lsMem, spuContacts, handleCollisionPair(cinput, lsMem, spuContacts,
(ppu_address_t)childShape0.m_childShape, lsMem.gSubshapeShape[i], (ppu_address_t)childShape0.m_childShape, lsMem.compoundShapeData[0].gSubshapeShape[i],
(ppu_address_t)childShape1.m_childShape, lsMem.gSubshapeShape[MAX_SPU_COMPOUND_SUBSHAPES+i], false); (ppu_address_t)childShape1.m_childShape, lsMem.compoundShapeData[1].gSubshapeShape[j], false); // bug fix: changed index to j.
} }
} }
} }
@@ -1029,55 +643,32 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
{ {
//snPause(); //snPause();
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0); dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaPpuAddress2 = collisionShape0Ptr; dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
// cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
// object 0 compound, object 1 non-compound // object 0 compound, object 1 non-compound
btCompoundShape* spuCompoundShape = (btCompoundShape*)collisionShape0Loc; btCompoundShape* spuCompoundShape = (btCompoundShape*)collisionShape0Loc;
dmaCompoundShapeInfo (&lsMem.compoundShapeData[0], spuCompoundShape, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
int childShapeCount = spuCompoundShape->getNumChildShapes(); int childShapeCount = spuCompoundShape->getNumChildShapes();
// dma the list of child shapes
dmaSize = childShapeCount * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape->getChildList();
cellDmaGet(lsMem.gSubshapes, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
for (int i = 0; i < childShapeCount; ++i) for (int i = 0; i < childShapeCount; ++i)
{ {
btCompoundShapeChild& childShape = lsMem.gSubshapes[i]; btCompoundShapeChild& childShape = lsMem.compoundShapeData[0].gSubshapes[i];
// Dma the child shape // Dma the child shape
dmaCollisionShape (&lsMem.compoundShapeData[0].gSubshapeShape[i], (ppu_address_t)childShape.m_childShape, 1, childShape.m_childShapeType);
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
SpuCollisionPairInput cinput (collisionPairInput); SpuCollisionPairInput cinput (collisionPairInput);
cinput.m_worldTransform0 = collisionPairInput.m_worldTransform0 * childShape.m_transform; cinput.m_worldTransform0 = collisionPairInput.m_worldTransform0 * childShape.m_transform;
cinput.m_shapeType0 = childShape.m_childShapeType; cinput.m_shapeType0 = childShape.m_childShapeType;
cinput.m_collisionMargin0 = childShape.m_childMargin; cinput.m_collisionMargin0 = childShape.m_childMargin;
handleCollisionPair(cinput, lsMem, spuContacts, handleCollisionPair(cinput, lsMem, spuContacts,
(ppu_address_t)childShape.m_childShape, lsMem.gSubshapeShape[i], (ppu_address_t)childShape.m_childShape, lsMem.compoundShapeData[0].gSubshapeShape[i],
collisionShape1Ptr, collisionShape1Loc, false); collisionShape1Ptr, collisionShape1Loc, false);
} }
} }
@@ -1085,57 +676,30 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
{ {
//snPause(); //snPause();
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0); dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaPpuAddress2 = collisionShape0Ptr; dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
// object 0 non-compound, object 1 compound // object 0 non-compound, object 1 compound
btCompoundShape* spuCompoundShape = (btCompoundShape*)collisionShape1Loc; btCompoundShape* spuCompoundShape = (btCompoundShape*)collisionShape1Loc;
dmaCompoundShapeInfo (&lsMem.compoundShapeData[0], spuCompoundShape, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
int childShapeCount = spuCompoundShape->getNumChildShapes(); int childShapeCount = spuCompoundShape->getNumChildShapes();
// dma the list of child shapes
dmaSize = childShapeCount * sizeof(btCompoundShapeChild);
dmaPpuAddress2 = (ppu_address_t)spuCompoundShape->getChildList();
cellDmaGet(lsMem.gSubshapes, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
for (int i = 0; i < childShapeCount; ++i) for (int i = 0; i < childShapeCount; ++i)
{ {
btCompoundShapeChild& childShape = lsMem.gSubshapes[i]; btCompoundShapeChild& childShape = lsMem.compoundShapeData[0].gSubshapes[i];
// Dma the child shape // Dma the child shape
dmaCollisionShape (&lsMem.compoundShapeData[0].gSubshapeShape[i], (ppu_address_t)childShape.m_childShape, 1, childShape.m_childShapeType);
dmaSize = getShapeTypeSize(childShape.m_childShapeType);
dmaPpuAddress2 = (ppu_address_t)childShape.m_childShape;
cellDmaGet(lsMem.gSubshapeShape[i], dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
SpuCollisionPairInput cinput (collisionPairInput); SpuCollisionPairInput cinput (collisionPairInput);
cinput.m_worldTransform1 = collisionPairInput.m_worldTransform1 * childShape.m_transform; cinput.m_worldTransform1 = collisionPairInput.m_worldTransform1 * childShape.m_transform;
cinput.m_shapeType1 = childShape.m_childShapeType; cinput.m_shapeType1 = childShape.m_childShapeType;
cinput.m_collisionMargin1 = childShape.m_childMargin; cinput.m_collisionMargin1 = childShape.m_childMargin;
handleCollisionPair(cinput, lsMem, spuContacts, handleCollisionPair(cinput, lsMem, spuContacts,
collisionShape0Ptr, collisionShape0Loc, collisionShape0Ptr, collisionShape0Loc,
(ppu_address_t)childShape.m_childShape, lsMem.gSubshapeShape[i], false); (ppu_address_t)childShape.m_childShape, lsMem.compoundShapeData[0].gSubshapeShape[i], false);
} }
} }
@@ -1166,29 +730,11 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
} }
if (handleConvexConcave) if (handleConvexConcave)
{ {
if (dmaShapes) if (dmaShapes)
{ {
///dma and initialize the convex object dmaCollisionShape (collisionShape0Loc, collisionShape0Ptr, 1, collisionPairInput.m_shapeType0);
dmaCollisionShape (collisionShape1Loc, collisionShape1Ptr, 2, collisionPairInput.m_shapeType1);
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType0);
//uint64_t dmaPpuAddress2 = (uint64_t)lsMem.gColObj0.getCollisionShape();
dmaPpuAddress2 = collisionShape0Ptr;
cellDmaGet(collisionShape0Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(1));
///dma and initialize the concave object
dmaSize = getShapeTypeSize(collisionPairInput.m_shapeType1);
dmaPpuAddress2 = collisionShape1Ptr;
cellDmaGet(collisionShape1Loc, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
//cellDmaWaitTagStatusAll(DMA_MASK(2));
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
} }
btConvexInternalShape* spuConvexShape0 = (btConvexInternalShape*)collisionShape0Loc; btConvexInternalShape* spuConvexShape0 = (btConvexInternalShape*)collisionShape0Loc;
@@ -1210,7 +756,6 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
} }
void processCollisionTask(void* userPtr, void* lsMemPtr) void processCollisionTask(void* userPtr, void* lsMemPtr)
{ {
@@ -1225,7 +770,7 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
//////////////////// ////////////////////
uint64_t dmaInPtr = taskDesc.inPtr; ppu_address_t dmaInPtr = taskDesc.inPtr;
unsigned int numPages = taskDesc.numPages; unsigned int numPages = taskDesc.numPages;
unsigned int numOnLastPage = taskDesc.numOnLastPage; unsigned int numOnLastPage = taskDesc.numOnLastPage;
@@ -1336,7 +881,7 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
lsMem.gProxyPtr0 = (btBroadphaseProxy*) lsMem.bufferProxy0; lsMem.gProxyPtr0 = (btBroadphaseProxy*) lsMem.bufferProxy0;
stallingUnalignedDmaSmallGet(lsMem.gProxyPtr0, dmaPpuAddress2 , dmaSize); stallingUnalignedDmaSmallGet(lsMem.gProxyPtr0, dmaPpuAddress2 , dmaSize);
collisionPairInput.m_persistentManifoldPtr = (uint64_t) lsMem.gSpuContactManifoldAlgo.getContactManifoldPtr(); collisionPairInput.m_persistentManifoldPtr = (ppu_address_t) lsMem.gSpuContactManifoldAlgo.getContactManifoldPtr();
collisionPairInput.m_isSwapped = false; collisionPairInput.m_isSwapped = false;
@@ -1387,8 +932,8 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
dmaAndSetupCollisionObjects(collisionPairInput, lsMem); dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
handleCollisionPair(collisionPairInput, lsMem, spuContacts, handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), lsMem.gCollisionShape0, (ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), lsMem.gCollisionShape1); (ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
} }
} }

View File

@@ -23,11 +23,11 @@ subject to the following restrictions:
///Task Description for SPU collision detection ///Task Description for SPU collision detection
struct SpuGatherAndProcessPairsTaskDesc struct SpuGatherAndProcessPairsTaskDesc
{ {
uint64_t inPtr;//m_pairArrayPtr; ppu_address_t inPtr;//m_pairArrayPtr;
//mutex variable //mutex variable
uint32_t m_someMutexVariableInMainMemory; uint32_t m_someMutexVariableInMainMemory;
uint64_t m_dispatcher; ppu_address_t m_dispatcher;
uint32_t numOnLastPage; uint32_t numOnLastPage;

View File

@@ -15,7 +15,7 @@ subject to the following restrictions:
#include "SpuGjkPairDetector.h" #include "SpuGjkPairDetector.h"
#include "SpuConvexPenetrationDepthSolver.h" #include "SpuConvexPenetrationDepthSolver.h"
#include "SpuLocalSupport.h" #include "SpuCollisionShapes.h"
@@ -106,8 +106,8 @@ void SpuGjkPairDetector::getClosestPoints(const SpuClosestPointInput& input,SpuC
// btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA); // btVector3 pInA = m_minkowskiA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
// btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB); // btVector3 qInB = m_minkowskiB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
btVector3 pInA = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData);//, &featureIndexA); btVector3 pInA = localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData[0]);//, &featureIndexA);
btVector3 qInB = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData);//, &featureIndexB); btVector3 qInB = localGetSupportingVertexWithoutMargin(m_shapeTypeB, m_minkowskiB, seperatingAxisInB,input.m_convexVertexData[1]);//, &featureIndexB);
btPoint3 pWorld = localTransA(pInA); btPoint3 pWorld = localTransA(pInA);
@@ -250,7 +250,7 @@ void SpuGjkPairDetector::getClosestPoints(const SpuClosestPointInput& input,SpuC
marginA, marginB, marginA, marginB,
localTransA,localTransB, localTransA,localTransB,
m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB, m_cachedSeparatingAxis, tmpPointOnA, tmpPointOnB,
0,input.m_stackAlloc,input.m_convexVertexData 0,input.m_stackAlloc,input.m_convexVertexData[0], input.m_convexVertexData[1]
); );
if (isValid2) if (isValid2)

View File

@@ -16,233 +16,4 @@ subject to the following restrictions:
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionShapes/btConvexInternalShape.h"
#include "BulletCollision/CollisionShapes/btCylinderShape.h"
#define MAX_NUM_SPU_CONVEX_POINTS 128
struct SpuConvexPolyhedronVertexData
{
void* gSpuConvexShapePtr0;
void* gSpuConvexShapePtr1;
btPoint3* gConvexPoints0;
btPoint3* gConvexPoints1;
int gNumConvexPoints0;
int gNumConvexPoints1;
ATTRIBUTE_ALIGNED16(btPoint3 g_convexPointBuffer0[MAX_NUM_SPU_CONVEX_POINTS]);
ATTRIBUTE_ALIGNED16(btPoint3 g_convexPointBuffer1[MAX_NUM_SPU_CONVEX_POINTS]);
};
inline btPoint3 localGetSupportingVertexWithoutMargin(int shapeType, void* shape, btVector3& localDir,struct SpuConvexPolyhedronVertexData* convexVertexData)//, int *featureIndex)
{
switch (shapeType)
{
case SPHERE_SHAPE_PROXYTYPE:
{
return btPoint3(0,0,0);
}
case BOX_SHAPE_PROXYTYPE:
{
// spu_printf("SPU: getSupport BOX_SHAPE_PROXYTYPE\n");
btConvexInternalShape* convexShape = (btConvexInternalShape*)shape;
const btVector3& halfExtents = convexShape->getImplicitShapeDimensions();
return btPoint3(
localDir.getX() < 0.0f ? -halfExtents.x() : halfExtents.x(),
localDir.getY() < 0.0f ? -halfExtents.y() : halfExtents.y(),
localDir.getZ() < 0.0f ? -halfExtents.z() : halfExtents.z());
}
case TRIANGLE_SHAPE_PROXYTYPE:
{
btVector3 dir(localDir.getX(),localDir.getY(),localDir.getZ());
btVector3* vertices = (btVector3*)shape;
btVector3 dots(dir.dot(vertices[0]), dir.dot(vertices[1]), dir.dot(vertices[2]));
btVector3 sup = vertices[dots.maxAxis()];
return btPoint3(sup.getX(),sup.getY(),sup.getZ());
break;
}
case CYLINDER_SHAPE_PROXYTYPE:
{
btCylinderShape* cylShape = (btCylinderShape*)shape;
//mapping of halfextents/dimension onto radius/height depends on how cylinder local orientation is (upAxis)
btVector3 halfExtents = cylShape->getImplicitShapeDimensions();
btVector3 v(localDir.getX(),localDir.getY(),localDir.getZ());
int cylinderUpAxis = cylShape->getUpAxis();
int XX(1),YY(0),ZZ(2);
switch (cylinderUpAxis)
{
case 0:
{
XX = 1;
YY = 0;
ZZ = 2;
break;
}
case 1:
{
XX = 0;
YY = 1;
ZZ = 2;
break;
}
case 2:
{
XX = 0;
YY = 2;
ZZ = 1;
break;
}
default:
btAssert(0);
//printf("SPU:localGetSupportingVertexWithoutMargin unknown Cylinder up-axis\n");
};
btScalar radius = halfExtents[XX];
btScalar halfHeight = halfExtents[cylinderUpAxis];
btVector3 tmp;
btScalar d ;
btScalar s = btSqrt(v[XX] * v[XX] + v[ZZ] * v[ZZ]);
if (s != btScalar(0.0))
{
d = radius / s;
tmp[XX] = v[XX] * d;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = v[ZZ] * d;
return btPoint3(tmp.getX(),tmp.getY(),tmp.getZ());
}
else
{
tmp[XX] = radius;
tmp[YY] = v[YY] < 0.0 ? -halfHeight : halfHeight;
tmp[ZZ] = btScalar(0.0);
return btPoint3(tmp.getX(),tmp.getY(),tmp.getZ());
}
}
case CAPSULE_SHAPE_PROXYTYPE:
{
//spu_printf("SPU: todo: getSupport CAPSULE_SHAPE_PROXYTYPE\n");
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
btConvexInternalShape* cnvxShape = (btConvexInternalShape*)shape;
btVector3 halfExtents = cnvxShape->getImplicitShapeDimensions();
btScalar halfHeight = halfExtents.getY();
btScalar radius = halfExtents.getX();
btVector3 supVec(0,0,0);
btScalar maxDot(btScalar(-1e30));
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
btVector3 vtx;
btScalar newDot;
{
btVector3 pos(0,halfHeight,0);
vtx = pos +vec*(radius);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
{
btVector3 pos(0,-halfHeight,0);
vtx = pos +vec*(radius);
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return btPoint3(supVec.getX(),supVec.getY(),supVec.getZ());
break;
};
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
//spu_printf("SPU: todo: getSupport CONVEX_HULL_SHAPE_PROXYTYPE\n");
btPoint3* points = 0;
int numPoints = 0;
if (shape==convexVertexData->gSpuConvexShapePtr0)
{
points = convexVertexData->gConvexPoints0;
numPoints = convexVertexData->gNumConvexPoints0;
}
if (shape == convexVertexData->gSpuConvexShapePtr1)
{
points = convexVertexData->gConvexPoints1;
numPoints = convexVertexData->gNumConvexPoints1;
}
// spu_printf("numPoints = %d\n",numPoints);
btVector3 supVec(btScalar(0.),btScalar(0.),btScalar(0.));
btScalar newDot,maxDot = btScalar(-1e30);
btVector3 vec0(localDir.getX(),localDir.getY(),localDir.getZ());
btVector3 vec = vec0;
btScalar lenSqr = vec.length2();
if (lenSqr < btScalar(0.0001))
{
vec.setValue(1,0,0);
} else
{
btScalar rlen = btScalar(1.) / btSqrt(lenSqr );
vec *= rlen;
}
for (int i=0;i<numPoints;i++)
{
btPoint3 vtx = points[i];// * m_localScaling;
newDot = vec.dot(vtx);
if (newDot > maxDot)
{
maxDot = newDot;
supVec = vtx;
}
}
return btPoint3(supVec.getX(),supVec.getY(),supVec.getZ());
break;
};
default:
//spu_printf("SPU:(type %i) missing support function\n",shapeType);
#if __ASSERT
spu_printf("localGetSupportingVertexWithoutMargin() - Unsupported bound type: %d.\n", shapeType);
#endif // __ASSERT
return btPoint3(0.f, 0.f, 0.f);
}
}

View File

@@ -20,7 +20,7 @@ subject to the following restrictions:
#include "SpuPreferredPenetrationDirections.h" #include "SpuPreferredPenetrationDirections.h"
#include "SpuLocalSupport.h" #include "SpuCollisionShapes.h"
#define NUM_UNITSPHERE_POINTS 42 #define NUM_UNITSPHERE_POINTS 42
static btVector3 sPenetrationDirections[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2] = static btVector3 sPenetrationDirections[NUM_UNITSPHERE_POINTS+MAX_PREFERRED_PENETRATION_DIRECTIONS*2] =
@@ -74,7 +74,8 @@ bool SpuMinkowskiPenetrationDepthSolver::calcPenDepth( SpuVoronoiSimplexSolver&
btTransform& transA,const btTransform& transB, btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb, btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc, class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc,
struct SpuConvexPolyhedronVertexData* convexVertexData struct SpuConvexPolyhedronVertexData* convexVertexDataA,
struct SpuConvexPolyhedronVertexData* convexVertexDataB
) const ) const
{ {
@@ -241,8 +242,8 @@ bool SpuMinkowskiPenetrationDepthSolver::calcPenDepth( SpuVoronoiSimplexSolver&
seperatingAxisInA = (-norm)* transA.getBasis(); seperatingAxisInA = (-norm)* transA.getBasis();
seperatingAxisInB = norm* transB.getBasis(); seperatingAxisInB = norm* transB.getBasis();
pInA = localGetSupportingVertexWithoutMargin(shapeTypeA, convexA, seperatingAxisInA,convexVertexData);//, NULL); pInA = localGetSupportingVertexWithoutMargin(shapeTypeA, convexA, seperatingAxisInA,convexVertexDataA);//, NULL);
qInB = localGetSupportingVertexWithoutMargin(shapeTypeB, convexB, seperatingAxisInB,convexVertexData);//, NULL); qInB = localGetSupportingVertexWithoutMargin(shapeTypeB, convexB, seperatingAxisInB,convexVertexDataB);//, NULL);
// pInA = convexA->localGetSupportingVertexWithoutMargin(seperatingAxisInA); // pInA = convexA->localGetSupportingVertexWithoutMargin(seperatingAxisInA);
// qInB = convexB->localGetSupportingVertexWithoutMargin(seperatingAxisInB); // qInB = convexB->localGetSupportingVertexWithoutMargin(seperatingAxisInB);
@@ -299,7 +300,8 @@ bool SpuMinkowskiPenetrationDepthSolver::calcPenDepth( SpuVoronoiSimplexSolver&
SpuClosestPointInput input; SpuClosestPointInput input;
input.m_convexVertexData = convexVertexData; input.m_convexVertexData[0] = convexVertexDataA;
input.m_convexVertexData[1] = convexVertexDataB;
btVector3 newOrg = transA.getOrigin() + offset; btVector3 newOrg = transA.getOrigin() + offset;
btTransform displacedTrans = transA; btTransform displacedTrans = transA;

View File

@@ -35,7 +35,8 @@ public:
btTransform& transA,const btTransform& transB, btTransform& transA,const btTransform& transB,
btVector3& v, btPoint3& pa, btPoint3& pb, btVector3& v, btPoint3& pa, btPoint3& pb,
class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc, class btIDebugDraw* debugDraw,btStackAlloc* stackAlloc,
struct SpuConvexPolyhedronVertexData* convexVertexData struct SpuConvexPolyhedronVertexData* convexVertexDataA,
struct SpuConvexPolyhedronVertexData* convexVertexDataB
) const; ) const;

View File

@@ -1,10 +1,21 @@
#include <stdio.h>
#include "SpuRaycastTask.h" #include "SpuRaycastTask.h"
#include "SpuCollisionObjectWrapper.h" #include "SpuCollisionObjectWrapper.h"
#include "SpuNarrowPhaseCollisionTask/SpuCollisionShapes.h" #include "SpuNarrowPhaseCollisionTask/SpuCollisionShapes.h"
#include "SpuSubSimplexConvexCast.h"
#include "LinearMath/btAabbUtil2.h"
/* Future optimization strategies:
1. BBOX prune before loading shape data
2. When doing bvh tree traversal do it once for entire batch of rays.
*/
/* Future work:
1. support first hit, closest hit, etc rather than just closest hit.
2. support compound objects
*/
struct RaycastTask_LocalStoreMemory struct RaycastTask_LocalStoreMemory
{ {
@@ -14,7 +25,7 @@ struct RaycastTask_LocalStoreMemory
return (btCollisionObject*) gColObj; return (btCollisionObject*) gColObj;
} }
SpuCollisionObjectWrapper gCollisionObjectWrapper; ATTRIBUTE_ALIGNED16(SpuCollisionObjectWrapper gCollisionObjectWrapper);
SpuCollisionObjectWrapper* getCollisionObjectWrapper () SpuCollisionObjectWrapper* getCollisionObjectWrapper ()
{ {
return &gCollisionObjectWrapper; return &gCollisionObjectWrapper;
@@ -41,7 +52,7 @@ void* createRaycastLocalStoreMemory()
} }
#endif #endif
void GatherCollisionObjectAndShapeData (RaycastGatheredObjectData& gatheredObjectData, RaycastTask_LocalStoreMemory& lsMem, ppu_address_t objectWrapper) void GatherCollisionObjectAndShapeData (RaycastGatheredObjectData* gatheredObjectData, RaycastTask_LocalStoreMemory* lsMemPtr, ppu_address_t objectWrapper)
{ {
register int dmaSize; register int dmaSize;
register ppu_address_t dmaPpuAddress2; register ppu_address_t dmaPpuAddress2;
@@ -49,27 +60,32 @@ void GatherCollisionObjectAndShapeData (RaycastGatheredObjectData& gatheredObjec
/* DMA Collision object wrapper into local store */ /* DMA Collision object wrapper into local store */
dmaSize = sizeof(SpuCollisionObjectWrapper); dmaSize = sizeof(SpuCollisionObjectWrapper);
dmaPpuAddress2 = objectWrapper; dmaPpuAddress2 = objectWrapper;
cellDmaGet(&lsMem.gCollisionObjectWrapper, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0); cellDmaGet(&lsMemPtr->gCollisionObjectWrapper, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
/* DMA Collision object into local store */ /* DMA Collision object into local store */
dmaSize = sizeof(btCollisionObject); dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = lsMem.getCollisionObjectWrapper()->getCollisionObjectPtr(); dmaPpuAddress2 = lsMemPtr->getCollisionObjectWrapper()->getCollisionObjectPtr();
cellDmaGet(&lsMem.gColObj, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0); cellDmaGet(&lsMemPtr->gColObj, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(2)); cellDmaWaitTagStatusAll(DMA_MASK(2));
/* Gather information about collision object and shape */ /* Gather information about collision object and shape */
gatheredObjectData.m_worldTransform = lsMem.getColObj()->getWorldTransform(); gatheredObjectData->m_worldTransform = lsMemPtr->getColObj()->getWorldTransform();
gatheredObjectData.m_collisionMargin = lsMem.getCollisionObjectWrapper()->getCollisionMargin (); gatheredObjectData->m_collisionMargin = lsMemPtr->getCollisionObjectWrapper()->getCollisionMargin ();
gatheredObjectData.m_shapeType = lsMem.getCollisionObjectWrapper()->getShapeType (); gatheredObjectData->m_shapeType = lsMemPtr->getCollisionObjectWrapper()->getShapeType ();
gatheredObjectData.m_collisionShape = (ppu_address_t)lsMem.getColObj()->getCollisionShape(); gatheredObjectData->m_collisionShape = (ppu_address_t)lsMemPtr->getColObj()->getCollisionShape();
gatheredObjectData.m_spuCollisionShape = (void*)&lsMem.gCollisionShape.collisionShape[0]; gatheredObjectData->m_spuCollisionShape = (void*)&lsMemPtr->gCollisionShape.collisionShape;
/* DMA shape data */ /* DMA shape data */
dmaCollisionShape (gatheredObjectData.m_spuCollisionShape, gatheredObjectData.m_collisionShape, 1, gatheredObjectData.m_shapeType); dmaCollisionShape (gatheredObjectData->m_spuCollisionShape, gatheredObjectData->m_collisionShape, 1, gatheredObjectData->m_shapeType);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
btConvexInternalShape* spuConvexShape = (btConvexInternalShape*)gatheredObjectData.m_spuCollisionShape; if (btBroadphaseProxy::isConvex (gatheredObjectData->m_shapeType))
gatheredObjectData.m_primitiveDimensions = spuConvexShape->getImplicitShapeDimensions (); {
btConvexInternalShape* spuConvexShape = (btConvexInternalShape*)gatheredObjectData->m_spuCollisionShape;
gatheredObjectData->m_primitiveDimensions = spuConvexShape->getImplicitShapeDimensions ();
} else {
gatheredObjectData->m_primitiveDimensions = btVector3(1.0, 1.0, 1.0);
}
} }
void dmaLoadRayOutput (ppu_address_t rayOutputAddr, SpuRaycastTaskWorkUnitOut* rayOutput, uint32_t dmaTag) void dmaLoadRayOutput (ppu_address_t rayOutputAddr, SpuRaycastTaskWorkUnitOut* rayOutput, uint32_t dmaTag)
@@ -82,6 +98,366 @@ void dmaStoreRayOutput (ppu_address_t rayOutputAddr, const SpuRaycastTaskWorkUni
cellDmaLargePut (rayOutput, rayOutputAddr, sizeof(*rayOutput), DMA_TAG(dmaTag), 0, 0); cellDmaLargePut (rayOutput, rayOutputAddr, sizeof(*rayOutput), DMA_TAG(dmaTag), 0, 0);
} }
#if 0
SIMD_FORCE_INLINE void small_cache_read(void* buffer, ppu_address_t ea, size_t size)
{
#if USE_SOFTWARE_CACHE
// Check for alignment requirements. We need to make sure the entire request fits within one cache line,
// so the first and last bytes should fall on the same cache line
btAssert((ea & ~SPE_CACHELINE_MASK) == ((ea + size - 1) & ~SPE_CACHELINE_MASK));
void* ls = spe_cache_read(ea);
memcpy(buffer, ls, size);
#else
stallingUnalignedDmaSmallGet(buffer,ea,size);
#endif
}
#endif
void small_cache_read_triple( void* ls0, ppu_address_t ea0,
void* ls1, ppu_address_t ea1,
void* ls2, ppu_address_t ea2,
size_t size)
{
btAssert(size<16);
ATTRIBUTE_ALIGNED16(char tmpBuffer0[32]);
ATTRIBUTE_ALIGNED16(char tmpBuffer1[32]);
ATTRIBUTE_ALIGNED16(char tmpBuffer2[32]);
uint32_t i;
///make sure last 4 bits are the same, for cellDmaSmallGet
char* localStore0 = (char*)ls0;
uint32_t last4BitsOffset = ea0 & 0x0f;
char* tmpTarget0 = tmpBuffer0 + last4BitsOffset;
tmpTarget0 = (char*)cellDmaSmallGetReadOnly(tmpTarget0,ea0,size,DMA_TAG(1),0,0);
char* localStore1 = (char*)ls1;
last4BitsOffset = ea1 & 0x0f;
char* tmpTarget1 = tmpBuffer1 + last4BitsOffset;
tmpTarget1 = (char*)cellDmaSmallGetReadOnly(tmpTarget1,ea1,size,DMA_TAG(1),0,0);
char* localStore2 = (char*)ls2;
last4BitsOffset = ea2 & 0x0f;
char* tmpTarget2 = tmpBuffer2 + last4BitsOffset;
tmpTarget2 = (char*)cellDmaSmallGetReadOnly(tmpTarget2,ea2,size,DMA_TAG(1),0,0);
cellDmaWaitTagStatusAll( DMA_MASK(1) );
//this is slowish, perhaps memcpy on SPU is smarter?
for (i=0; btLikely( i<size );i++)
{
localStore0[i] = tmpTarget0[i];
localStore1[i] = tmpTarget1[i];
localStore2[i] = tmpTarget2[i];
}
}
void performRaycastAgainstConvex (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr);
class spuRaycastNodeCallback : public btNodeOverlapCallback
{
RaycastGatheredObjectData* m_gatheredObjectData;
const SpuRaycastTaskWorkUnit& m_workUnit;
SpuRaycastTaskWorkUnitOut* m_workUnitOut;
RaycastTask_LocalStoreMemory* m_lsMemPtr;
ATTRIBUTE_ALIGNED16(btVector3 spuTriangleVertices[3]);
ATTRIBUTE_ALIGNED16(btScalar spuUnscaledVertex[4]);
//ATTRIBUTE_ALIGNED16(int spuIndices[16]);
public:
spuRaycastNodeCallback(RaycastGatheredObjectData* gatheredObjectData,const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
: m_gatheredObjectData(gatheredObjectData),
m_workUnit(workUnit),
m_workUnitOut(workUnitOut),
m_lsMemPtr (lsMemPtr)
{
}
virtual void processNode(int subPart, int triangleIndex)
{
///Create a triangle on the stack, call process collision, with GJK
///DMA the vertices, can benefit from software caching
// spu_printf("processNode with triangleIndex %d\n",triangleIndex);
int* indexBasePtr = (int*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexBase+triangleIndex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_triangleIndexStride);
small_cache_read_triple(&m_lsMemPtr->spuIndices[0],(ppu_address_t)&indexBasePtr[0],
&m_lsMemPtr->spuIndices[1],(ppu_address_t)&indexBasePtr[1],
&m_lsMemPtr->spuIndices[2],(ppu_address_t)&indexBasePtr[2],
sizeof(int));
//printf("%d %d %d\n", m_lsMemPtr->spuIndices[0], m_lsMemPtr->spuIndices[1], m_lsMemPtr->spuIndices[2]);
// spu_printf("SPU index0=%d ,",spuIndices[0]);
// spu_printf("SPU index1=%d ,",spuIndices[1]);
// spu_printf("SPU index2=%d ,",spuIndices[2]);
// spu_printf("SPU: indexBasePtr=%llx\n",indexBasePtr);
const btVector3& meshScaling = m_lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getScaling();
for (int j=2;btLikely( j>=0 );j--)
{
int graphicsindex = m_lsMemPtr->spuIndices[j];
//spu_printf("SPU index=%d ,",graphicsindex);
btScalar* graphicsbasePtr = (btScalar*)(m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexBase+graphicsindex*m_lsMemPtr->bvhShapeData.gIndexMesh.m_vertexStride);
// spu_printf("SPU graphicsbasePtr=%llx\n",graphicsbasePtr);
///handle un-aligned vertices...
//another DMA for each vertex
small_cache_read_triple(&spuUnscaledVertex[0],(ppu_address_t)&graphicsbasePtr[0],
&spuUnscaledVertex[1],(ppu_address_t)&graphicsbasePtr[1],
&spuUnscaledVertex[2],(ppu_address_t)&graphicsbasePtr[2],
sizeof(btScalar));
//printf("%f %f %f\n", spuUnscaledVertex[0],spuUnscaledVertex[1],spuUnscaledVertex[2]);
spuTriangleVertices[j] = btVector3(
spuUnscaledVertex[0]*meshScaling.getX(),
spuUnscaledVertex[1]*meshScaling.getY(),
spuUnscaledVertex[2]*meshScaling.getZ());
//spu_printf("SPU:triangle vertices:%f,%f,%f\n",spuTriangleVertices[j].x(),spuTriangleVertices[j].y(),spuTriangleVertices[j].z());
}
RaycastGatheredObjectData triangleGatheredObjectData (*m_gatheredObjectData);
triangleGatheredObjectData.m_shapeType = TRIANGLE_SHAPE_PROXYTYPE;
triangleGatheredObjectData.m_spuCollisionShape = &spuTriangleVertices[0];
//printf("%f %f %f\n", spuTriangleVertices[0][0],spuTriangleVertices[0][1],spuTriangleVertices[0][2]);
//printf("%f %f %f\n", spuTriangleVertices[1][0],spuTriangleVertices[1][1],spuTriangleVertices[1][2]);
//printf("%f %f %f\n", spuTriangleVertices[2][0],spuTriangleVertices[2][1],spuTriangleVertices[2][2]);
SpuRaycastTaskWorkUnitOut out;
out.hitFraction = 1.0;
performRaycastAgainstConvex (&triangleGatheredObjectData, m_workUnit, &out, m_lsMemPtr);
/* XXX: For now only take the closest hit */
if (out.hitFraction < m_workUnitOut->hitFraction)
{
m_workUnitOut->hitFraction = out.hitFraction;
m_workUnitOut->hitNormal = out.hitNormal;
}
}
};
void spuWalkStacklessQuantizedTreeAgainstRay(RaycastTask_LocalStoreMemory* lsMemPtr, btNodeOverlapCallback* nodeCallback,const btVector3& raySource, const btVector3& rayTarget,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,const btQuantizedBvhNode* rootNode, int startNodeIndex,int endNodeIndex)
{
int curIndex = startNodeIndex;
int walkIterations = 0;
int subTreeSize = endNodeIndex - startNodeIndex;
int escapeIndex;
unsigned int boxBoxOverlap, rayBoxOverlap;
unsigned int isLeafNode;
#define RAYAABB2
#ifdef RAYAABB2
btScalar lambda_max = 1.0;
btVector3 rayFrom = raySource;
btVector3 rayDirection = (rayTarget-raySource);
rayDirection.normalize ();
lambda_max = rayDirection.dot(rayTarget-raySource);
rayDirection[0] = btScalar(1.0) / rayDirection[0];
rayDirection[1] = btScalar(1.0) / rayDirection[1];
rayDirection[2] = btScalar(1.0) / rayDirection[2];
unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0};
#endif
while (curIndex < endNodeIndex)
{
//catch bugs in tree data
assert (walkIterations < subTreeSize);
walkIterations++;
boxBoxOverlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax);
isLeafNode = rootNode->isLeafNode();
rayBoxOverlap = 0;
btScalar param = 1.0;
btVector3 normal;
if (boxBoxOverlap)
{
btVector3 bounds[2];
bounds[0] = lsMemPtr->bvhShapeData.getOptimizedBvh()->unQuantize(rootNode->m_quantizedAabbMin);
bounds[1] = lsMemPtr->bvhShapeData.getOptimizedBvh()->unQuantize(rootNode->m_quantizedAabbMax);
#ifdef RAYAABB2
rayBoxOverlap = btRayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max);
#else
rayBoxOverlap = btRayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal);
#endif
}
if (isLeafNode && rayBoxOverlap)
{
//printf("overlap with node %d\n",rootNode->getTriangleIndex());
nodeCallback->processNode(0,rootNode->getTriangleIndex());
// spu_printf("SPU: overlap detected with triangleIndex:%d\n",rootNode->getTriangleIndex());
}
if (rayBoxOverlap || isLeafNode)
{
rootNode++;
curIndex++;
} else
{
escapeIndex = rootNode->getEscapeIndex();
rootNode += escapeIndex;
curIndex += escapeIndex;
}
}
}
void performRaycastAgainstConcave (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
{
//order: first collision shape is convex, second concave. m_isSwapped is true, if the original order was opposite
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
btBvhTriangleMeshShape* trimeshShape = (btBvhTriangleMeshShape*)gatheredObjectData->m_spuCollisionShape;
//need the mesh interface, for access to triangle vertices
dmaBvhShapeData (&(lsMemPtr->bvhShapeData), trimeshShape);
btVector3 aabbMin;
btVector3 aabbMax;
/* Calculate the AABB for the ray in the triangle mesh shape */
btTransform rayInTriangleSpace;
rayInTriangleSpace = gatheredObjectData->m_worldTransform.inverse();
btVector3 rayFromInTriangleSpace = rayInTriangleSpace(workUnit.rayFrom);
btVector3 rayToInTriangleSpace = rayInTriangleSpace(workUnit.rayTo);
aabbMin = rayFromInTriangleSpace;
aabbMin.setMin (rayToInTriangleSpace);
aabbMax = rayFromInTriangleSpace;
aabbMax.setMax (rayToInTriangleSpace);
unsigned short int quantizedQueryAabbMin[3];
unsigned short int quantizedQueryAabbMax[3];
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMin,aabbMin);
lsMemPtr->bvhShapeData.getOptimizedBvh()->quantizeWithClamp(quantizedQueryAabbMax,aabbMax);
QuantizedNodeArray& nodeArray = lsMemPtr->bvhShapeData.getOptimizedBvh()->getQuantizedNodeArray();
//spu_printf("SPU: numNodes = %d\n",nodeArray.size());
BvhSubtreeInfoArray& subTrees = lsMemPtr->bvhShapeData.getOptimizedBvh()->getSubtreeInfoArray();
spuRaycastNodeCallback nodeCallback (gatheredObjectData, workUnit, workUnitOut, lsMemPtr);
IndexedMeshArray& indexArray = lsMemPtr->bvhShapeData.gTriangleMeshInterfacePtr->getIndexedMeshArray();
//spu_printf("SPU:indexArray.size() = %d\n",indexArray.size());
// spu_printf("SPU: numSubTrees = %d\n",subTrees.size());
//not likely to happen
if (subTrees.size() && indexArray.size() == 1)
{
///DMA in the index info
dmaBvhIndexedMesh (&lsMemPtr->bvhShapeData.gIndexMesh, indexArray, 0 /* index into indexArray */, 1 /* dmaTag */);
cellDmaWaitTagStatusAll(DMA_MASK(1));
//display the headers
int numBatch = subTrees.size();
for (int i=0;i<numBatch;)
{
// BEN: TODO - can reorder DMA transfers for less stall
int remaining = subTrees.size() - i;
int nextBatch = remaining < MAX_SPU_SUBTREE_HEADERS ? remaining : MAX_SPU_SUBTREE_HEADERS;
dmaBvhSubTreeHeaders (&lsMemPtr->bvhShapeData.gSubtreeHeaders[0], (ppu_address_t)(&subTrees[i]), nextBatch, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1));
// spu_printf("nextBatch = %d\n",nextBatch);
for (int j=0;j<nextBatch;j++)
{
const btBvhSubtreeInfo& subtree = lsMemPtr->bvhShapeData.gSubtreeHeaders[j];
unsigned int overlap = spuTestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);
if (overlap)
{
btAssert(subtree.m_subtreeSize);
//dma the actual nodes of this subtree
dmaBvhSubTreeNodes (&lsMemPtr->bvhShapeData.gSubtreeNodes[0], subtree, nodeArray, 2);
cellDmaWaitTagStatusAll(DMA_MASK(2));
/* Walk this subtree */
spuWalkStacklessQuantizedTreeAgainstRay(lsMemPtr, &nodeCallback,rayFromInTriangleSpace, rayToInTriangleSpace, quantizedQueryAabbMin,quantizedQueryAabbMax,
&lsMemPtr->bvhShapeData.gSubtreeNodes[0],
0,
subtree.m_subtreeSize);
}
// spu_printf("subtreeSize = %d\n",gSubtreeHeaders[j].m_subtreeSize);
}
// unsigned short int m_quantizedAabbMin[3];
// unsigned short int m_quantizedAabbMax[3];
// int m_rootNodeIndex;
// int m_subtreeSize;
i+=nextBatch;
}
//pre-fetch first tree, then loop and double buffer
}
}
void performRaycastAgainstCompound (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
{
spu_printf ("Currently no support for ray. vs compound objects. Support coming soon.\n");
}
void
performRaycastAgainstConvex (RaycastGatheredObjectData* gatheredObjectData, const SpuRaycastTaskWorkUnit& workUnit, SpuRaycastTaskWorkUnitOut* workUnitOut, RaycastTask_LocalStoreMemory* lsMemPtr)
{
SpuVoronoiSimplexSolver simplexSolver;
btTransform rayFromTrans, rayToTrans;
rayFromTrans.setIdentity ();
rayFromTrans.setOrigin (workUnit.rayFrom);
rayToTrans.setIdentity ();
rayToTrans.setOrigin (workUnit.rayTo);
SpuCastResult result;
/* Load the vertex data if the shape is a convex hull */
/* XXX: We might be loading the shape twice */
ATTRIBUTE_ALIGNED16(char convexHullShape[sizeof(btConvexHullShape)]);
if (gatheredObjectData->m_shapeType == CONVEX_HULL_SHAPE_PROXYTYPE)
{
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
dmaSize = sizeof(btConvexHullShape);
dmaPpuAddress2 = gatheredObjectData->m_collisionShape;
cellDmaGet(&convexHullShape, dmaPpuAddress2, dmaSize, DMA_TAG(1), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1));
dmaConvexVertexData (&lsMemPtr->convexVertexData, (btConvexHullShape*)&convexHullShape);
cellDmaWaitTagStatusAll(DMA_MASK(2)); // dmaConvexVertexData uses dma channel 2!
lsMemPtr->convexVertexData.gSpuConvexShapePtr = gatheredObjectData->m_spuCollisionShape;
lsMemPtr->convexVertexData.gConvexPoints = &lsMemPtr->convexVertexData.g_convexPointBuffer[0];
}
/* performRaycast */
SpuSubsimplexRayCast caster (gatheredObjectData->m_spuCollisionShape, &lsMemPtr->convexVertexData, gatheredObjectData->m_shapeType, 0.0, &simplexSolver);
bool r = caster.calcTimeOfImpact (rayFromTrans, rayToTrans, gatheredObjectData->m_worldTransform, gatheredObjectData->m_worldTransform,result);
if (r)
{
workUnitOut->hitFraction = result.m_fraction;
workUnitOut->hitNormal = result.m_normal;
}
}
void processRaycastTask(void* userPtr, void* lsMemory) void processRaycastTask(void* userPtr, void* lsMemory)
{ {
RaycastTask_LocalStoreMemory* localMemory = (RaycastTask_LocalStoreMemory*)lsMemory; RaycastTask_LocalStoreMemory* localMemory = (RaycastTask_LocalStoreMemory*)lsMemory;
@@ -95,22 +471,36 @@ void processRaycastTask(void* userPtr, void* lsMemory)
for (int objectId = 0; objectId < taskDesc.numSpuCollisionObjectWrappers; objectId++) for (int objectId = 0; objectId < taskDesc.numSpuCollisionObjectWrappers; objectId++)
{ {
RaycastGatheredObjectData gatheredObjectData; RaycastGatheredObjectData gatheredObjectData;
GatherCollisionObjectAndShapeData (gatheredObjectData, *localMemory, (ppu_address_t)&cows[objectId]); GatherCollisionObjectAndShapeData (&gatheredObjectData, localMemory, (ppu_address_t)&cows[objectId]);
/* load initial collision shape */ /* load initial collision shape */
for (int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++) for (int rayId = 0; rayId < taskDesc.numWorkUnits; rayId++)
{ {
SpuRaycastTaskWorkUnitOut rayOut; const SpuRaycastTaskWorkUnit& workUnit = taskDesc.workUnits[rayId];
ATTRIBUTE_ALIGNED16(SpuRaycastTaskWorkUnitOut workUnitOut);
dmaLoadRayOutput ((ppu_address_t)taskDesc.workUnits[rayId].output, &rayOut, 1); dmaLoadRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
float t = (float)rayId/(float)taskDesc.numWorkUnits; SpuRaycastTaskWorkUnitOut tWorkUnitOut;
/* performRaycast */ tWorkUnitOut.hitFraction = 1.0;
rayOut.hitFraction = 0.1f * t;
rayOut.hitNormal = btVector3(1.0, 0.0, 0.0); if (btBroadphaseProxy::isConvex (gatheredObjectData.m_shapeType))
{
//performRaycastAgainstConvex (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
} else if (btBroadphaseProxy::isCompound (gatheredObjectData.m_shapeType)) {
performRaycastAgainstCompound (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
} else if (btBroadphaseProxy::isConcave (gatheredObjectData.m_shapeType)) {
performRaycastAgainstConcave (&gatheredObjectData, workUnit, &tWorkUnitOut, localMemory);
}
/* XXX Only support taking the closest hit for now */
if (tWorkUnitOut.hitFraction < workUnitOut.hitFraction)
{
workUnitOut.hitFraction = tWorkUnitOut.hitFraction;
workUnitOut.hitNormal = tWorkUnitOut.hitNormal;
}
/* write ray cast data back */ /* write ray cast data back */
dmaStoreRayOutput ((ppu_address_t)taskDesc.workUnits[rayId].output, &rayOut, 1); dmaStoreRayOutput ((ppu_address_t)workUnit.output, &workUnitOut, 1);
cellDmaWaitTagStatusAll(DMA_MASK(1)); cellDmaWaitTagStatusAll(DMA_MASK(1));
} }
} }

View File

@@ -16,7 +16,7 @@ struct RaycastGatheredObjectData
btTransform m_worldTransform; btTransform m_worldTransform;
}; };
struct SpuRaycastTaskWorkUnitOut ATTRIBUTE_ALIGNED16(struct) SpuRaycastTaskWorkUnitOut
{ {
btVector3 hitNormal; /* out */ btVector3 hitNormal; /* out */
btScalar hitFraction; /* out */ btScalar hitFraction; /* out */
@@ -24,14 +24,14 @@ struct SpuRaycastTaskWorkUnitOut
}; };
/* Perform a raycast on collision object */ /* Perform a raycast on collision object */
struct SpuRaycastTaskWorkUnit ATTRIBUTE_ALIGNED16(struct) SpuRaycastTaskWorkUnit
{ {
btVector3 rayFrom; /* in */ btVector3 rayFrom; /* in */
btVector3 rayTo; /* in */ btVector3 rayTo; /* in */
SpuRaycastTaskWorkUnitOut* output; /* out */ SpuRaycastTaskWorkUnitOut* output; /* out */
}; };
#define SPU_RAYCAST_WORK_UNITS_PER_TASK 16 #define SPU_RAYCAST_WORK_UNITS_PER_TASK 4
struct SpuRaycastTaskDesc struct SpuRaycastTaskDesc
{ {

View File

@@ -13,19 +13,17 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution. 3. This notice may not be removed or altered from any source distribution.
*/ */
#include "SpuSubSimplexConvexCast.h" #include "SpuSubSimplexConvexCast.h"
#include "SpuNarrowPhaseCollisionTask/SpuCollisionShapes.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h" #include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h" #include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h" #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
SpuSubsimplexConvexCast::SpuSubsimplexConvexCast (const void* convexA, SpuSubsimplexRayCast::SpuSubsimplexRayCast (void* shapeB, SpuConvexPolyhedronVertexData* convexDataB, int shapeTypeB, float marginB,
const void* convexB,
SpuVoronoiSimplexSolver* simplexSolver) SpuVoronoiSimplexSolver* simplexSolver)
:m_simplexSolver(simplexSolver), m_convexA(convexA),m_convexB(convexB) :m_simplexSolver(simplexSolver), m_shapeB(shapeB), m_convexDataB(convexDataB), m_shapeTypeB(shapeTypeB), m_marginB(marginB)
{ {
} }
@@ -37,27 +35,33 @@ SpuSubsimplexConvexCast::SpuSubsimplexConvexCast (const void* convexA,
#define MAX_ITERATIONS 32 #define MAX_ITERATIONS 32
#endif #endif
bool SpuSubsimplexConvexCast::calcTimeOfImpact(const btTransform& fromA, /* Returns the support point of the minkowski sum:
const btTransform& toA, * MSUM(Pellet, ConvexShape)
*
*/
btVector3 supportPoint (btTransform xform, int shapeType, const void* shape, SpuConvexPolyhedronVertexData* convexVertexData, btVector3 seperatingAxis)
{
btVector3 SupportPellet = btVector3(0.0, 0.0, 0.0);
btVector3 rotatedSeperatingAxis = seperatingAxis * xform.getBasis();
btVector3 SupportShape = xform(localGetSupportingVertexWithoutMargin(shapeType, (void*)shape, rotatedSeperatingAxis, convexVertexData));
return SupportPellet + SupportShape;
}
bool SpuSubsimplexRayCast::calcTimeOfImpact(const btTransform& fromRay,
const btTransform& toRay,
const btTransform& fromB, const btTransform& fromB,
const btTransform& toB, const btTransform& toB,
SpuCastResult& result) SpuCastResult& result)
{ {
//localGetSupportingVertexWithoutMargin(m_shapeTypeA, m_minkowskiA, seperatingAxisInA,input.m_convexVertexData[0]);
#if 0
btMinkowskiSumShape combi(m_convexA,m_convexB);
btMinkowskiSumShape* convex = &combi;
btTransform rayFromLocalA; btTransform rayFromLocalA;
btTransform rayToLocalA; btTransform rayToLocalA;
rayFromLocalA = fromA.inverse()* fromB; rayFromLocalA = fromRay.inverse()* fromB;
rayToLocalA = toA.inverse()* toB; rayToLocalA = toRay.inverse()* toB;
m_simplexSolver->reset(); m_simplexSolver->reset();
convex->setTransformB(btTransform(rayFromLocalA.getBasis())); btTransform bXform = btTransform(rayFromLocalA.getBasis());
//btScalar radius = btScalar(0.01); //btScalar radius = btScalar(0.01);
@@ -69,8 +73,7 @@ bool SpuSubsimplexConvexCast::calcTimeOfImpact(const btTransform& fromA,
btVector3 r = -(rayToLocalA.getOrigin()-rayFromLocalA.getOrigin()); btVector3 r = -(rayToLocalA.getOrigin()-rayFromLocalA.getOrigin());
btVector3 x = s; btVector3 x = s;
btVector3 v; btVector3 v;
btVector3 arbitraryPoint = convex->localGetSupportingVertex(r); btVector3 arbitraryPoint = supportPoint(bXform, m_shapeTypeB, m_shapeB, m_convexDataB, r);
v = x - arbitraryPoint; v = x - arbitraryPoint;
int maxIter = MAX_ITERATIONS; int maxIter = MAX_ITERATIONS;
@@ -82,7 +85,6 @@ bool SpuSubsimplexConvexCast::calcTimeOfImpact(const btTransform& fromA,
btScalar lastLambda = lambda; btScalar lastLambda = lambda;
btScalar dist2 = v.length2(); btScalar dist2 = v.length2();
#ifdef BT_USE_DOUBLE_PRECISION #ifdef BT_USE_DOUBLE_PRECISION
btScalar epsilon = btScalar(0.0001); btScalar epsilon = btScalar(0.0001);
@@ -94,7 +96,7 @@ bool SpuSubsimplexConvexCast::calcTimeOfImpact(const btTransform& fromA,
while ( (dist2 > epsilon) && maxIter--) while ( (dist2 > epsilon) && maxIter--)
{ {
p = convex->localGetSupportingVertex( v); p = supportPoint(bXform, m_shapeTypeB, m_shapeB, m_convexDataB, v);
w = x - p; w = x - p;
btScalar VdotW = v.dot(w); btScalar VdotW = v.dot(w);
@@ -136,8 +138,6 @@ bool SpuSubsimplexConvexCast::calcTimeOfImpact(const btTransform& fromA,
result.m_fraction = lambda; result.m_fraction = lambda;
result.m_normal = n; result.m_normal = n;
#endif
return true; return true;
} }

View File

@@ -14,43 +14,47 @@ subject to the following restrictions:
*/ */
#ifndef SPU_SUBSIMPLEX_CONVEX_CAST_H #ifndef SPU_SUBSIMPLEX_RAY_CAST_H
#define SPU_SUBSIMPLEX_CONVEX_CAST_H #define SPU_SUBSIMPLEX_RAY_CAST_H
#include "SpuNarrowPhaseCollisionTask/SpuVoronoiSimplexSolver.h" #include "SpuNarrowPhaseCollisionTask/SpuVoronoiSimplexSolver.h"
#include "SpuNarrowPhaseCollisionTask/SpuCollisionShapes.h"
#include "SpuRaycastTask.h" #include "SpuRaycastTask.h"
class btConvexShape; class btConvexShape;
struct SpuCastResult struct SpuCastResult
{ {
float m_fraction;
btVector3 m_normal;
}; };
/// btSubsimplexConvexCast implements Gino van den Bergens' paper /// btSubsimplexConvexCast implements Gino van den Bergens' paper
///"Ray Casting against bteral Convex Objects with Application to Continuous Collision Detection" ///"Ray Casting against bteral Convex Objects with Application to Continuous Collision Detection"
/// GJK based Ray Cast, optimized version /// GJK based Ray Cast, optimized version
/// Objects should not start in overlap, otherwise results are not defined. /// Objects should not start in overlap, otherwise results are not defined.
class SpuSubsimplexConvexCast class SpuSubsimplexRayCast
{ {
SpuVoronoiSimplexSolver* m_simplexSolver; SpuVoronoiSimplexSolver* m_simplexSolver;
const void* m_convexA; void* m_shapeB;
const void* m_convexB; SpuConvexPolyhedronVertexData* m_convexDataB;
RaycastGatheredObjectData* m_dataB; int m_shapeTypeB;
public: float m_marginB;
SpuSubsimplexConvexCast (const void* shapeA, public:
const void* shapeB, SpuSubsimplexRayCast (void* shapeB, SpuConvexPolyhedronVertexData* convexDataB, int shapeTypeB, float marginB,
SpuVoronoiSimplexSolver* simplexSolver); SpuVoronoiSimplexSolver* simplexSolver);
//virtual ~btSubsimplexConvexCast(); //virtual ~btSubsimplexConvexCast();
///SimsimplexConvexCast calculateTimeOfImpact calculates the time of impact+normal for the linear cast (sweep) between two moving objects. ///SimsimplexConvexCast calculateTimeOfImpact calculates the time of impact+normal for the linear cast (sweep) between two moving objects.
///Precondition is that objects should not penetration/overlap at the start from the interval. Overlap can be tested using btGjkPairDetector. ///Precondition is that objects should not penetration/overlap at the start from the interval. Overlap can be tested using btGjkPairDetector.
bool calcTimeOfImpact(const btTransform& fromA, bool calcTimeOfImpact(const btTransform& fromRay,
const btTransform& toA, const btTransform& toRay,
const btTransform& fromB, const btTransform& fromB,
const btTransform& toB, const btTransform& toB,
SpuCastResult& result); SpuCastResult& result);
}; };
#endif //SUBSIMPLEX_CONVEX_CAST_H #endif //SUBSIMPLEX_RAY_CAST_H

View File

@@ -13,9 +13,9 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution. 3. This notice may not be removed or altered from any source distribution.
*/ */
#include "SpuRaycastTaskProcess.h" #include "SpuRaycastTaskProcess.h"
SpuRaycastTaskProcess::SpuRaycastTaskProcess(class btThreadSupportInterface* threadInterface, unsigned int maxNumOutstandingTasks) SpuRaycastTaskProcess::SpuRaycastTaskProcess(class btThreadSupportInterface* threadInterface, unsigned int maxNumOutstandingTasks)
:m_threadInterface(threadInterface), :m_threadInterface(threadInterface),
m_maxNumOutstandingTasks(maxNumOutstandingTasks) m_maxNumOutstandingTasks(maxNumOutstandingTasks)

View File

@@ -17,6 +17,7 @@ Written by: Marten Svanfeldt
#define IN_PARALLELL_SOLVER 1 #define IN_PARALLELL_SOLVER 1
#include "SpuParallellSolverTask.h" #include "SpuParallellSolverTask.h"
#include "BulletDynamics/Dynamics/btRigidBody.h" #include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"