Add the option for the btSimulationIslandManager to avoid splitting islands (for constraint solving)

Move the convertContact inside constraint solver to its own method
This commit is contained in:
erwin.coumans
2009-02-13 02:34:46 +00:00
parent 26d7757135
commit d886c06fa5
10 changed files with 452 additions and 363 deletions

View File

@@ -13,17 +13,27 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#define LARGE_DEMO 0
#if LARGE_DEMO
///create 512 (8x8x8) dynamic object
#define ARRAY_SIZE_X 8
#define ARRAY_SIZE_Y 8
#define ARRAY_SIZE_Z 8
#else
///create 125 (5x5x5) dynamic object
#define ARRAY_SIZE_X 5
#define ARRAY_SIZE_Y 5
#define ARRAY_SIZE_Z 5
#endif
///create 125 (5x5x5) dynamic object
#define ARRAY_SIZE_X 5
#define ARRAY_SIZE_Y 5
#define ARRAY_SIZE_Z 5
//maximum number of objects (and allow user to shoot additional boxes)
#define MAX_PROXIES (ARRAY_SIZE_X*ARRAY_SIZE_Y*ARRAY_SIZE_Z + 1024)
///scaling of the objects (0.1 = 20 centimeter boxes )
#define SCALING 0.1
//#define SCALING 0.1
#define SCALING 1
#define START_POS_X -5
#define START_POS_Y -5
#define START_POS_Z -3
@@ -34,6 +44,9 @@ subject to the following restrictions:
#include "btBulletDynamicsCommon.h"
#include <stdio.h> //printf debugging
#include "BulletDynamics/ConstraintSolver/btParallelBatchConstraintSolver.h"
#include "BulletDynamics/ConstraintSolver/btParallelBatchConstraintSolver2.h"
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
void BasicDemo::clientMoveAndDisplay()
{
@@ -46,6 +59,10 @@ void BasicDemo::clientMoveAndDisplay()
if (m_dynamicsWorld)
{
m_dynamicsWorld->stepSimulation(ms / 1000000.f);
if (m_idle)
{
CProfileManager::dumpAll();
}
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
}
@@ -75,6 +92,10 @@ void BasicDemo::displayCallback(void) {
}
static btSequentialImpulseConstraintSolver* sDefSeqImpSolver = 0;
static btParallelBatchConstraintSolver* sParallelBatchSolver = 0;
static btParallelBatchConstraintSolver2* sParallelBatchSolver2 = 0;
@@ -94,22 +115,31 @@ void BasicDemo::initPhysics()
m_broadphase = new btDbvtBroadphase();
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
m_solver = sol;
sDefSeqImpSolver = new btSequentialImpulseConstraintSolver;
// create parallel batch solver for tests
sParallelBatchSolver = new btParallelBatchConstraintSolver();
sParallelBatchSolver2 = new btParallelBatchConstraintSolver2();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
// start with parallel batch solver
m_solver = sParallelBatchSolver;
btDiscreteDynamicsWorld* ddw = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = ddw;
ddw->getSimulationIslandManager()->setSplitIslands(false);
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
///create a few basic rigid bodies
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(30.),btScalar(1.),btScalar(30.)));
// btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,0));
groundTransform.setOrigin(btVector3(0,-5,0));
// groundTransform.setOrigin(btVector3(0,-50,0));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
@@ -215,7 +245,9 @@ void BasicDemo::exitPhysics()
delete m_dynamicsWorld;
delete m_solver;
m_solver = 0;
delete sDefSeqImpSolver;
delete sParallelBatchSolver;
delete m_broadphase;
@@ -228,4 +260,48 @@ void BasicDemo::exitPhysics()
void BasicDemo::keyboardCallback(unsigned char key, int x, int y)
{
(void)x;
(void)y;
switch (key)
{
case 'q' :
exitPhysics();
break;
case 'S' :
{
btConstraintSolver* curr_solver = m_dynamicsWorld->getConstraintSolver();
btDiscreteDynamicsWorld* pDdw = (btDiscreteDynamicsWorld*)m_dynamicsWorld;
if(curr_solver == sDefSeqImpSolver)
{
static bool toggle = true;
toggle=!toggle;
if (toggle)
{
pDdw->setConstraintSolver(sParallelBatchSolver);
pDdw->getSimulationIslandManager()->setSplitIslands(false);
printf("\nUsing ParallelBatch constraint solver\n");
} else
{
pDdw->setConstraintSolver(sParallelBatchSolver2);
pDdw->getSimulationIslandManager()->setSplitIslands(false);
printf("\nUsing ParallelBatch constraint solver2\n");
}
}
else
{
m_dynamicsWorld->setConstraintSolver(sDefSeqImpSolver);
pDdw->getSimulationIslandManager()->setSplitIslands(true);
printf("\nUsing default SequentialImpulse constraint solver\n");
}
}
break;
default :
break;
}
DemoApplication::keyboardCallback(key, x, y);
}

View File

@@ -58,6 +58,8 @@ class BasicDemo : public DemoApplication
virtual void displayCallback();
virtual void keyboardCallback(unsigned char key, int x, int y);
static DemoApplication* Create()
{
BasicDemo* demo = new BasicDemo;

View File

@@ -1269,6 +1269,7 @@ void DemoApplication::clientResetScene()
numObjects = m_dynamicsWorld->getNumCollisionObjects();
}
///create a copy of the array, not a reference!
btCollisionObjectArray copyArray = m_dynamicsWorld->getCollisionObjectArray();
for (i=0;i<copyArray.size();i++)
@@ -1297,8 +1298,8 @@ void DemoApplication::clientResetScene()
colObj->setDeactivationTime(0);
//colObj->setActivationState(WANTS_DEACTIVATION);
}
//removed cached contact points
//m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(colObj->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
//removed cached contact points (this is not necessary if all objects have been removed from the dynamics world)
m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(colObj->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
btRigidBody* body = btRigidBody::upcast(colObj);
if (body && !body->isStaticObject())
@@ -1310,6 +1311,7 @@ void DemoApplication::clientResetScene()
}
///reset some internal cached data in the broadphase
m_dynamicsWorld->getBroadphase()->resetPool(getDynamicsWorld()->getDispatcher());
m_dynamicsWorld->getConstraintSolver()->reset();

View File

@@ -24,7 +24,8 @@ subject to the following restrictions:
//#include <stdio.h>
#include "LinearMath/btQuickprof.h"
btSimulationIslandManager::btSimulationIslandManager()
btSimulationIslandManager::btSimulationIslandManager():
m_splitIslands(true)
{
}
@@ -251,11 +252,11 @@ void btSimulationIslandManager::buildIslands(btDispatcher* dispatcher,btCollisio
int i;
int maxNumManifolds = dispatcher->getNumManifolds();
#define SPLIT_ISLANDS 1
#ifdef SPLIT_ISLANDS
//#define SPLIT_ISLANDS 1
//#ifdef SPLIT_ISLANDS
#endif //SPLIT_ISLANDS
//#endif //SPLIT_ISLANDS
for (i=0;i<maxNumManifolds ;i++)
@@ -279,11 +280,12 @@ void btSimulationIslandManager::buildIslands(btDispatcher* dispatcher,btCollisio
{
colObj0->activate();
}
#ifdef SPLIT_ISLANDS
// //filtering for response
if (dispatcher->needsResponse(colObj0,colObj1))
m_islandmanifold.push_back(manifold);
#endif //SPLIT_ISLANDS
if(m_splitIslands)
{
//filtering for response
if (dispatcher->needsResponse(colObj0,colObj1))
m_islandmanifold.push_back(manifold);
}
}
}
}
@@ -303,84 +305,86 @@ void btSimulationIslandManager::buildAndProcessIslands(btDispatcher* dispatcher,
BT_PROFILE("processIslands");
#ifndef SPLIT_ISLANDS
btPersistentManifold** manifold = dispatcher->getInternalManifoldPointer();
callback->ProcessIsland(&collisionObjects[0],collisionObjects.size(),manifold,maxNumManifolds, -1);
#else
// Sort manifolds, based on islands
// Sort the vector using predicate and std::sort
//std::sort(islandmanifold.begin(), islandmanifold.end(), btPersistentManifoldSortPredicate);
int numManifolds = int (m_islandmanifold.size());
//we should do radix sort, it it much faster (O(n) instead of O (n log2(n))
m_islandmanifold.quickSort(btPersistentManifoldSortPredicate());
//now process all active islands (sets of manifolds for now)
int startManifoldIndex = 0;
int endManifoldIndex = 1;
//int islandId;
// printf("Start Islands\n");
//traverse the simulation islands, and call the solver, unless all objects are sleeping/deactivated
for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex)
if(!m_splitIslands)
{
int islandId = getUnionFind().getElement(startIslandIndex).m_id;
btPersistentManifold** manifold = dispatcher->getInternalManifoldPointer();
int maxNumManifolds = dispatcher->getNumManifolds();
callback->ProcessIsland(&collisionObjects[0],collisionObjects.size(),manifold,maxNumManifolds, -1);
}
else
{
// Sort manifolds, based on islands
// Sort the vector using predicate and std::sort
//std::sort(islandmanifold.begin(), islandmanifold.end(), btPersistentManifoldSortPredicate);
int numManifolds = int (m_islandmanifold.size());
//we should do radix sort, it it much faster (O(n) instead of O (n log2(n))
m_islandmanifold.quickSort(btPersistentManifoldSortPredicate());
//now process all active islands (sets of manifolds for now)
int startManifoldIndex = 0;
int endManifoldIndex = 1;
//int islandId;
bool islandSleeping = false;
for (endIslandIndex = startIslandIndex;(endIslandIndex<numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId);endIslandIndex++)
{
int i = getUnionFind().getElement(endIslandIndex).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
m_islandBodies.push_back(colObj0);
if (!colObj0->isActive())
islandSleeping = true;
}
// printf("Start Islands\n");
//find the accompanying contact manifold for this islandId
int numIslandManifolds = 0;
btPersistentManifold** startManifold = 0;
if (startManifoldIndex<numManifolds)
//traverse the simulation islands, and call the solver, unless all objects are sleeping/deactivated
for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex)
{
int curIslandId = getIslandId(m_islandmanifold[startManifoldIndex]);
if (curIslandId == islandId)
int islandId = getUnionFind().getElement(startIslandIndex).m_id;
bool islandSleeping = false;
for (endIslandIndex = startIslandIndex;(endIslandIndex<numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId);endIslandIndex++)
{
int i = getUnionFind().getElement(endIslandIndex).m_sz;
btCollisionObject* colObj0 = collisionObjects[i];
m_islandBodies.push_back(colObj0);
if (!colObj0->isActive())
islandSleeping = true;
}
//find the accompanying contact manifold for this islandId
int numIslandManifolds = 0;
btPersistentManifold** startManifold = 0;
if (startManifoldIndex<numManifolds)
{
startManifold = &m_islandmanifold[startManifoldIndex];
for (endManifoldIndex = startManifoldIndex+1;(endManifoldIndex<numManifolds) && (islandId == getIslandId(m_islandmanifold[endManifoldIndex]));endManifoldIndex++)
int curIslandId = getIslandId(m_islandmanifold[startManifoldIndex]);
if (curIslandId == islandId)
{
startManifold = &m_islandmanifold[startManifoldIndex];
for (endManifoldIndex = startManifoldIndex+1;(endManifoldIndex<numManifolds) && (islandId == getIslandId(m_islandmanifold[endManifoldIndex]));endManifoldIndex++)
{
}
/// Process the actual simulation, only if not sleeping/deactivated
numIslandManifolds = endManifoldIndex-startManifoldIndex;
}
/// Process the actual simulation, only if not sleeping/deactivated
numIslandManifolds = endManifoldIndex-startManifoldIndex;
}
if (!islandSleeping)
{
callback->ProcessIsland(&m_islandBodies[0],m_islandBodies.size(),startManifold,numIslandManifolds, islandId);
// printf("Island callback of size:%d bodies, %d manifolds\n",islandBodies.size(),numIslandManifolds);
}
if (numIslandManifolds)
{
startManifoldIndex = endManifoldIndex;
}
m_islandBodies.resize(0);
}
if (!islandSleeping)
{
callback->ProcessIsland(&m_islandBodies[0],m_islandBodies.size(),startManifold,numIslandManifolds, islandId);
// printf("Island callback of size:%d bodies, %d manifolds\n",islandBodies.size(),numIslandManifolds);
}
if (numIslandManifolds)
{
startManifoldIndex = endManifoldIndex;
}
m_islandBodies.resize(0);
}
#endif //SPLIT_ISLANDS
} // else if(!splitIslands)
}

View File

@@ -35,6 +35,7 @@ class btSimulationIslandManager
btAlignedObjectArray<btPersistentManifold*> m_islandmanifold;
btAlignedObjectArray<btCollisionObject* > m_islandBodies;
bool m_splitIslands;
public:
btSimulationIslandManager();
@@ -65,6 +66,15 @@ public:
void buildIslands(btDispatcher* dispatcher,btCollisionWorld* colWorld);
bool getSplitIslands()
{
return m_splitIslands;
}
void setSplitIslands(bool doSplitIslands)
{
m_splitIslands = doSplitIslands;
}
};
#endif //SIMULATION_ISLAND_MANAGER_H

View File

@@ -120,7 +120,6 @@ SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstra
body2.applyImpulse(-c.m_contactNormal*body2.m_invMass,c.m_angularComponentB,deltaImpulse);
}
SIMD_FORCE_INLINE void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& body1,btSolverBody& body2,const btSolverConstraint& c)
{
#ifdef USE_SIMD
@@ -269,7 +268,7 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
solverConstraint.m_appliedImpulse = 0.f;
// solverConstraint.m_appliedPushImpulse = 0.f;
solverConstraint.m_penetration = 0.f;
{
btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal);
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
@@ -324,10 +323,8 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = 0.f;
positionalError = 0;//-solverConstraint.m_penetration * infoGlobal.m_erp/infoGlobal.m_timeStep;
solverConstraint.m_restitution=0.f;
btSimdScalar velocityError = solverConstraint.m_restitution - rel_vel;
btSimdScalar velocityError = - rel_vel;
btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
solverConstraint.m_rhs = velocityImpulse;
solverConstraint.m_cfm = 0.f;
@@ -364,6 +361,249 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
}
#include <stdio.h>
void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
{
btCollisionObject* colObj0=0,*colObj1=0;
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
int solverBodyIdA=-1;
int solverBodyIdB=-1;
if (manifold->getNumContacts())
{
solverBodyIdA = getOrInitSolverBody(*colObj0);
solverBodyIdB = getOrInitSolverBody(*colObj1);
}
btVector3 rel_pos1;
btVector3 rel_pos2;
btScalar relaxation;
for (int j=0;j<manifold->getNumContacts();j++)
{
btManifoldPoint& cp = manifold->getContactPoint(j);
///this is a bad test and results in jitter -> always solve for those zero-distanc contacts!
///-> if (cp.getDistance() <= btScalar(0.))
//if (cp.getDistance() <= manifold->getContactBreakingThreshold())
{
const btVector3& pos1 = cp.getPositionWorldOnA();
const btVector3& pos2 = cp.getPositionWorldOnB();
rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
relaxation = 1.f;
btScalar rel_vel;
btVector3 vel;
int frictionIndex = m_tmpSolverContactConstraintPool.size();
{
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expand();
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_originalContactPoint = &cp;
btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0 : btVector3(0,0,0);
btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1 : btVector3(0,0,0);
{
#ifdef COMPUTE_IMPULSE_DENOM
btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
#else
btVector3 vec;
btScalar denom0 = 0.f;
btScalar denom1 = 0.f;
if (rb0)
{
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
}
if (rb1)
{
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
}
#endif //COMPUTE_IMPULSE_DENOM
btScalar denom = relaxation/(denom0+denom1);
solverConstraint.m_jacDiagABInv = denom;
}
solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB);
btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
vel = vel1 - vel2;
rel_vel = cp.m_normalWorldOnB.dot(vel);
btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
solverConstraint.m_friction = cp.m_combinedFriction;
btScalar restitution = 0.f;
if (cp.m_lifeTime>infoGlobal.m_restingContactRestitutionThreshold)
{
restitution = 0.f;
} else
{
restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
if (restitution <= btScalar(0.))
{
restitution = 0.f;
};
}
///warm starting (or zero if disabled)
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass(),-solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
} else
{
solverConstraint.m_appliedImpulse = 0.f;
}
// solverConstraint.m_appliedPushImpulse = 0.f;
{
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?rb0->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(rb0?rb0->getAngularVelocity():btVector3(0,0,0));
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(rb1?rb1->getAngularVelocity():btVector3(0,0,0));
rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = 0.f;
positionalError = -penetration * infoGlobal.m_erp/infoGlobal.m_timeStep;
btScalar velocityError = restitution - rel_vel;// * damping;
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
solverConstraint.m_cfm = 0.f;
solverConstraint.m_lowerLimit = 0;
solverConstraint.m_upperLimit = 1e10f;
}
/////setup the friction constraints
if (1)
{
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
{
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
{
cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
cp.m_lateralFrictionDir2.normalize();//??
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
cp.m_lateralFrictionInitialized = true;
} else
{
//re-calculate friction direction every frame, todo: check if this is really needed
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
cp.m_lateralFrictionInitialized = true;
}
} else
{
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING)
{
{
btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass(),-frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
} else
{
frictionConstraint1.m_appliedImpulse = 0.f;
}
}
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
} else
{
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
} else
{
btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
frictionConstraint1.m_appliedImpulse = 0.f;
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
}
}
}
}
}
btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** /*bodies */,int /*numBodies */,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc)
{
BT_PROFILE("solveGroupCacheFriendlySetup");
@@ -443,7 +683,6 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
currentConstraintRow[j].m_lowerLimit = -FLT_MAX;
currentConstraintRow[j].m_upperLimit = FLT_MAX;
currentConstraintRow[j].m_appliedImpulse = 0.f;
currentConstraintRow[j].m_penetration = 0.f;
currentConstraintRow[j].m_appliedPushImpulse = 0.f;
currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA;
currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB;
@@ -510,9 +749,9 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
rel_vel = vel1Dotn+vel2Dotn;
btScalar restitution = 0.f;
btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
solverConstraint.m_restitution = 0.f;
btScalar velocityError = solverConstraint.m_restitution - rel_vel;// * damping;
btScalar velocityError = restitution - rel_vel;// * damping;
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
@@ -533,258 +772,7 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
for (i=0;i<numManifolds;i++)
{
manifold = manifoldPtr[i];
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
int solverBodyIdA=-1;
int solverBodyIdB=-1;
if (manifold->getNumContacts())
{
solverBodyIdA = getOrInitSolverBody(*colObj0);
solverBodyIdB = getOrInitSolverBody(*colObj1);
}
if (solverBodyIdA == 0 && solverBodyIdB == 0)
continue;
btVector3 rel_pos1;
btVector3 rel_pos2;
btScalar relaxation;
for (int j=0;j<manifold->getNumContacts();j++)
{
btManifoldPoint& cp = manifold->getContactPoint(j);
///this is a bad test and results in jitter -> always solve for those zero-distanc contacts!
///-> if (cp.getDistance() <= btScalar(0.))
//if (cp.getDistance() <= manifold->getContactBreakingThreshold())
{
const btVector3& pos1 = cp.getPositionWorldOnA();
const btVector3& pos2 = cp.getPositionWorldOnB();
rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
relaxation = 1.f;
btScalar rel_vel;
btVector3 vel;
int frictionIndex = m_tmpSolverContactConstraintPool.size();
{
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expand();
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_originalContactPoint = &cp;
btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0 : btVector3(0,0,0);
btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1 : btVector3(0,0,0);
{
#ifdef COMPUTE_IMPULSE_DENOM
btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
#else
btVector3 vec;
btScalar denom0 = 0.f;
btScalar denom1 = 0.f;
if (rb0)
{
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
}
if (rb1)
{
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
}
#endif //COMPUTE_IMPULSE_DENOM
btScalar denom = relaxation/(denom0+denom1);
solverConstraint.m_jacDiagABInv = denom;
}
solverConstraint.m_contactNormal = cp.m_normalWorldOnB;
solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB);
solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB);
btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
vel = vel1 - vel2;
rel_vel = cp.m_normalWorldOnB.dot(vel);
solverConstraint.m_penetration = cp.getDistance()+infoGlobal.m_linearSlop;
//solverConstraint.m_penetration = cp.getDistance();
solverConstraint.m_friction = cp.m_combinedFriction;
if (cp.m_lifeTime>infoGlobal.m_restingContactRestitutionThreshold)
{
solverConstraint.m_restitution = 0.f;
} else
{
solverConstraint.m_restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
if (solverConstraint.m_restitution <= btScalar(0.))
{
solverConstraint.m_restitution = 0.f;
};
}
///warm starting (or zero if disabled)
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass(),-solverConstraint.m_angularComponentB,-solverConstraint.m_appliedImpulse);
} else
{
solverConstraint.m_appliedImpulse = 0.f;
}
// solverConstraint.m_appliedPushImpulse = 0.f;
{
btScalar rel_vel;
btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?rb0->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos1CrossNormal.dot(rb0?rb0->getAngularVelocity():btVector3(0,0,0));
btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0))
+ solverConstraint.m_relpos2CrossNormal.dot(rb1?rb1->getAngularVelocity():btVector3(0,0,0));
rel_vel = vel1Dotn+vel2Dotn;
btScalar positionalError = 0.f;
positionalError = -solverConstraint.m_penetration * infoGlobal.m_erp/infoGlobal.m_timeStep;
btScalar velocityError = solverConstraint.m_restitution - rel_vel;// * damping;
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
solverConstraint.m_cfm = 0.f;
solverConstraint.m_lowerLimit = 0;
solverConstraint.m_upperLimit = 1e10f;
}
#ifdef _USE_JACOBIAN
solverConstraint.m_jac = btJacobianEntry (
rel_pos1,rel_pos2,cp.m_normalWorldOnB,
rb0->getInvInertiaDiagLocal(),
rb0->getInvMass(),
rb1->getInvInertiaDiagLocal(),
rb1->getInvMass());
#endif //_USE_JACOBIAN
/////setup the friction constraints
if (1)
{
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
{
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
{
cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
cp.m_lateralFrictionDir2.normalize();//??
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
cp.m_lateralFrictionInitialized = true;
} else
{
//re-calculate friction direction every frame, todo: check if this is really needed
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
cp.m_lateralFrictionInitialized = true;
}
} else
{
addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
}
if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING)
{
{
btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass(),-frictionConstraint1.m_angularComponentB,-frictionConstraint1.m_appliedImpulse);
} else
{
frictionConstraint1.m_appliedImpulse = 0.f;
}
}
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
if (rb0)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA].applyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
if (rb1)
m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB].applyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-frictionConstraint2.m_appliedImpulse);
} else
{
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
} else
{
btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
frictionConstraint1.m_appliedImpulse = 0.f;
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
}
}
}
}
convertContact(manifold,infoGlobal);
}
}
}

View File

@@ -30,6 +30,7 @@ class btIDebugDraw;
///Applies impulses for combined restitution and penetration recovery and to simulate friction
class btSequentialImpulseConstraintSolver : public btConstraintSolver
{
protected:
btAlignedObjectArray<btSolverBody> m_tmpSolverBodyPool;
btConstraintArray m_tmpSolverContactConstraintPool;
@@ -38,7 +39,6 @@ class btSequentialImpulseConstraintSolver : public btConstraintSolver
btAlignedObjectArray<int> m_orderTmpConstraintPool;
btAlignedObjectArray<int> m_orderFrictionConstraintPool;
protected:
btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation);
///m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
@@ -47,6 +47,8 @@ protected:
void initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject);
btScalar restitutionCurve(btScalar rel_vel, btScalar restitution);
void convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
void resolveSplitPenetrationImpulseCacheFriendly(
btSolverBody& body1,
btSolverBody& body2,

View File

@@ -44,10 +44,12 @@ ATTRIBUTE_ALIGNED16 (struct) btSolverConstraint
btScalar m_friction;
btScalar m_restitution;
btScalar m_jacDiagABInv;
btScalar m_penetration;
union
{
int m_numConsecutiveRowsPerKernel;
btScalar m_unusedPadding0;
};
union
{

View File

@@ -665,8 +665,11 @@ void btDiscreteDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
{
if (islandId<0)
{
///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
if (numManifolds + m_numConstraints)
{
///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,m_solverInfo,m_debugDrawer,m_stackAlloc,m_dispatcher);
}
} else
{
//also add all non-contact constraints/joints for this island

View File

@@ -1238,7 +1238,7 @@ void processSolverTask(void* userPtr, void* lsMemory)
vel = vel1 - vel2;
rel_vel = cp.m_normalWorldOnB.dot(vel);
constraint.m_penetration = cp.getDistance();///btScalar(infoGlobal.m_numIterations);
btScalar penetration = cp.getDistance();///btScalar(infoGlobal.m_numIterations);
constraint.m_friction = cp.m_combinedFriction;
float rest = - rel_vel * cp.m_combinedRestitution;
if (rest <= btScalar(0.))
@@ -1251,7 +1251,7 @@ void processSolverTask(void* userPtr, void* lsMemory)
btScalar erp = taskDesc.m_commandData.m_manifoldSetup.m_solverInfo.m_erp;
btScalar timeStep = taskDesc.m_commandData.m_manifoldSetup.m_solverInfo.m_timeStep;
constraint.m_restitution = rest;
btScalar restitution = rest;
constraint.m_appliedImpulse = cp.m_appliedImpulse*taskDesc.m_commandData.m_manifoldSetup.m_solverInfo.m_warmstartingFactor;
if (constraint.m_appliedImpulse!= 0.f)
{
@@ -1271,8 +1271,8 @@ void processSolverTask(void* userPtr, void* lsMemory)
rel_vel = vel1Dotn-vel2Dotn;
btScalar positionalError = 0.f;
positionalError = -constraint.m_penetration * erp/timeStep;
btScalar velocityError = constraint.m_restitution - rel_vel;// * damping;
positionalError = -penetration * erp/timeStep;
btScalar velocityError = restitution - rel_vel;// * damping;
btScalar penetrationImpulse = positionalError*constraint.m_jacDiagABInv;
btScalar velocityImpulse = velocityError *constraint.m_jacDiagABInv;
constraint.m_rhs = penetrationImpulse+velocityImpulse;
@@ -1339,9 +1339,9 @@ void processSolverTask(void* userPtr, void* lsMemory)
btScalar positionalError = 0.f;
positionalError = 0;
constraint.m_restitution=0.f;
btScalar restitution=0.f;
btSimdScalar velocityError = constraint.m_restitution - rel_vel;
btSimdScalar velocityError = restitution - rel_vel;
btSimdScalar velocityImpulse = velocityError * btSimdScalar(constraint.m_jacDiagABInv);
constraint.m_rhs = velocityImpulse;
constraint.m_cfm = 0.f;
@@ -1386,9 +1386,9 @@ void processSolverTask(void* userPtr, void* lsMemory)
btScalar positionalError = 0.f;
positionalError = 0;
constraint.m_restitution=0.f;
btScalar restitution=0.f;
btSimdScalar velocityError = constraint.m_restitution - rel_vel;
btSimdScalar velocityError = restitution - rel_vel;
btSimdScalar velocityImpulse = velocityError * btSimdScalar(constraint.m_jacDiagABInv);
constraint.m_rhs = velocityImpulse;
constraint.m_cfm = 0.f;