fix spelling mistake: pertube -> perturbe
This commit is contained in:
@@ -51,8 +51,8 @@ subject to the following restrictions:
|
||||
|
||||
btConvexConvexAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
|
||||
{
|
||||
m_numPertubationIterations = 3;
|
||||
m_minimumPointsPertubationThreshold = 3;
|
||||
m_numPerturbationIterations = 3;
|
||||
m_minimumPointsPerturbationThreshold = 3;
|
||||
m_simplexSolver = simplexSolver;
|
||||
m_pdSolver = pdSolver;
|
||||
}
|
||||
@@ -61,7 +61,7 @@ btConvexConvexAlgorithm::CreateFunc::~CreateFunc()
|
||||
{
|
||||
}
|
||||
|
||||
btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPertubationIterations, int minimumPointsPertubationThreshold)
|
||||
btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
|
||||
: btActivatingCollisionAlgorithm(ci,body0,body1),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_pdSolver(pdSolver),
|
||||
@@ -72,8 +72,8 @@ m_lowLevelOfDetail(false),
|
||||
,m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
|
||||
(static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc()),
|
||||
#endif
|
||||
m_numPertubationIterations(numPertubationIterations),
|
||||
m_minimumPointsPertubationThreshold(minimumPointsPertubationThreshold)
|
||||
m_numPerturbationIterations(numPerturbationIterations),
|
||||
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
|
||||
{
|
||||
(void)body0;
|
||||
(void)body1;
|
||||
@@ -97,20 +97,20 @@ void btConvexConvexAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
|
||||
}
|
||||
|
||||
|
||||
struct btPertubedContactResult : public btManifoldResult
|
||||
struct btPerturbedContactResult : public btManifoldResult
|
||||
{
|
||||
btManifoldResult* m_originalManifoldResult;
|
||||
btTransform m_transformA;
|
||||
btTransform m_transformB;
|
||||
|
||||
|
||||
btPertubedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB)
|
||||
btPerturbedContactResult(btManifoldResult* originalResult,const btTransform& transformA,const btTransform& transformB)
|
||||
:m_originalManifoldResult(originalResult),
|
||||
m_transformA(transformA),
|
||||
m_transformB(transformB)
|
||||
{
|
||||
}
|
||||
virtual ~ btPertubedContactResult()
|
||||
virtual ~ btPerturbedContactResult()
|
||||
{
|
||||
}
|
||||
|
||||
@@ -181,49 +181,49 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
|
||||
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
|
||||
btScalar sepDist = gjkPairDetector.getCachedSeparatingDistance()+dispatchInfo.m_convexConservativeDistanceThreshold;
|
||||
|
||||
//now pertube directions to get multiple contact points
|
||||
//now perturbe directions to get multiple contact points
|
||||
btVector3 v0,v1;
|
||||
btVector3 sepNormalWorldSpace = gjkPairDetector.getCachedSeparatingAxis().normalized();
|
||||
btPlaneSpace1(sepNormalWorldSpace,v0,v1);
|
||||
//now perform 'm_numPertubationIterations' collision queries with the pertubated collision objects
|
||||
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
|
||||
|
||||
//perform pertubation when more then 'm_minimumPointsPertubationThreshold' points
|
||||
if (resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPertubationThreshold)
|
||||
//perform perturbation when more then 'm_minimumPointsPerturbationThreshold' points
|
||||
if (resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
|
||||
{
|
||||
|
||||
int i;
|
||||
|
||||
bool pertubeA = true;
|
||||
bool perturbeA = true;
|
||||
const btScalar angleLimit = 0.125f * SIMD_PI;
|
||||
btScalar pertubeAngle;
|
||||
btScalar perturbeAngle;
|
||||
btScalar radiusA = min0->getAngularMotionDisc();
|
||||
btScalar radiusB = min1->getAngularMotionDisc();
|
||||
if (radiusA < radiusB)
|
||||
{
|
||||
pertubeAngle = gContactBreakingThreshold /radiusA;
|
||||
pertubeA = true;
|
||||
perturbeAngle = gContactBreakingThreshold /radiusA;
|
||||
perturbeA = true;
|
||||
} else
|
||||
{
|
||||
pertubeAngle = gContactBreakingThreshold / radiusB;
|
||||
pertubeA = false;
|
||||
perturbeAngle = gContactBreakingThreshold / radiusB;
|
||||
perturbeA = false;
|
||||
}
|
||||
if ( pertubeAngle > angleLimit )
|
||||
pertubeAngle = angleLimit;
|
||||
if ( perturbeAngle > angleLimit )
|
||||
perturbeAngle = angleLimit;
|
||||
|
||||
for ( i=0;i<m_numPertubationIterations;i++)
|
||||
for ( i=0;i<m_numPerturbationIterations;i++)
|
||||
{
|
||||
btQuaternion pertubeRot(v0,pertubeAngle);
|
||||
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPertubationIterations));
|
||||
btQuaternion perturbeRot(v0,perturbeAngle);
|
||||
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
|
||||
btQuaternion rotq(sepNormalWorldSpace,iterationAngle);
|
||||
if (pertubeA)
|
||||
if (perturbeA)
|
||||
{
|
||||
input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*pertubeRot*rotq)*body0->getWorldTransform().getBasis());
|
||||
input.m_transformA.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body0->getWorldTransform().getBasis());
|
||||
} else
|
||||
{
|
||||
input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*pertubeRot*rotq)*body1->getWorldTransform().getBasis());
|
||||
input.m_transformB.setBasis( btMatrix3x3(rotq.inverse()*perturbeRot*rotq)*body1->getWorldTransform().getBasis());
|
||||
}
|
||||
btPertubedContactResult pertubedResultOut(resultOut,input.m_transformA,input.m_transformB);
|
||||
gjkPairDetector.getClosestPoints(input,pertubedResultOut,dispatchInfo.m_debugDraw);
|
||||
btPerturbedContactResult perturbedResultOut(resultOut,input.m_transformA,input.m_transformB);
|
||||
gjkPairDetector.getClosestPoints(input,perturbedResultOut,dispatchInfo.m_debugDraw);
|
||||
btScalar curSepDist = gjkPairDetector.getCachedSeparatingDistance()+dispatchInfo.m_convexConservativeDistanceThreshold;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -34,7 +34,7 @@ class btConvexPenetrationDepthSolver;
|
||||
///#define USE_SEPDISTANCE_UTIL2 1
|
||||
|
||||
///The convexConvexAlgorithm collision algorithm implements time of impact, convex closest points and penetration depth calculations between two convex objects.
|
||||
///Multiple contact points are calculated by pertubating the orientation of the smallest object orthogonal to the separating normal.
|
||||
///Multiple contact points are calculated by perturbing the orientation of the smallest object orthogonal to the separating normal.
|
||||
///This idea was described by Gino van den Bergen in this forum topic http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=4&t=288&p=888#p888
|
||||
class btConvexConvexAlgorithm : public btActivatingCollisionAlgorithm
|
||||
{
|
||||
@@ -49,8 +49,8 @@ class btConvexConvexAlgorithm : public btActivatingCollisionAlgorithm
|
||||
btPersistentManifold* m_manifoldPtr;
|
||||
bool m_lowLevelOfDetail;
|
||||
|
||||
int m_numPertubationIterations;
|
||||
int m_minimumPointsPertubationThreshold;
|
||||
int m_numPerturbationIterations;
|
||||
int m_minimumPointsPerturbationThreshold;
|
||||
|
||||
|
||||
///cache separating vector to speedup collision detection
|
||||
@@ -58,7 +58,7 @@ class btConvexConvexAlgorithm : public btActivatingCollisionAlgorithm
|
||||
|
||||
public:
|
||||
|
||||
btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int numPertubationIterations, int minimumPointsPertubationThreshold);
|
||||
btConvexConvexAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold);
|
||||
|
||||
|
||||
virtual ~btConvexConvexAlgorithm();
|
||||
@@ -88,8 +88,8 @@ public:
|
||||
|
||||
btConvexPenetrationDepthSolver* m_pdSolver;
|
||||
btSimplexSolverInterface* m_simplexSolver;
|
||||
int m_numPertubationIterations;
|
||||
int m_minimumPointsPertubationThreshold;
|
||||
int m_numPerturbationIterations;
|
||||
int m_minimumPointsPerturbationThreshold;
|
||||
|
||||
CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver);
|
||||
|
||||
@@ -98,7 +98,7 @@ public:
|
||||
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
|
||||
{
|
||||
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexConvexAlgorithm));
|
||||
return new(mem) btConvexConvexAlgorithm(ci.m_manifold,ci,body0,body1,m_simplexSolver,m_pdSolver,m_numPertubationIterations,m_minimumPointsPertubationThreshold);
|
||||
return new(mem) btConvexConvexAlgorithm(ci.m_manifold,ci,body0,body1,m_simplexSolver,m_pdSolver,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -22,13 +22,13 @@ subject to the following restrictions:
|
||||
|
||||
//#include <stdio.h>
|
||||
|
||||
btConvexPlaneCollisionAlgorithm::btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPertubationIterations,int minimumPointsPertubationThreshold)
|
||||
btConvexPlaneCollisionAlgorithm::btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPerturbationIterations,int minimumPointsPerturbationThreshold)
|
||||
: btCollisionAlgorithm(ci),
|
||||
m_ownManifold(false),
|
||||
m_manifoldPtr(mf),
|
||||
m_isSwapped(isSwapped),
|
||||
m_numPertubationIterations(numPertubationIterations),
|
||||
m_minimumPointsPertubationThreshold(minimumPointsPertubationThreshold)
|
||||
m_numPerturbationIterations(numPerturbationIterations),
|
||||
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
|
||||
{
|
||||
btCollisionObject* convexObj = m_isSwapped? col1 : col0;
|
||||
btCollisionObject* planeObj = m_isSwapped? col0 : col1;
|
||||
@@ -50,7 +50,7 @@ btConvexPlaneCollisionAlgorithm::~btConvexPlaneCollisionAlgorithm()
|
||||
}
|
||||
}
|
||||
|
||||
void btConvexPlaneCollisionAlgorithm::collideSingleContact (const btQuaternion& pertubeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
void btConvexPlaneCollisionAlgorithm::collideSingleContact (const btQuaternion& perturbeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
btCollisionObject* convexObj = m_isSwapped? body1 : body0;
|
||||
btCollisionObject* planeObj = m_isSwapped? body0: body1;
|
||||
@@ -65,8 +65,8 @@ void btConvexPlaneCollisionAlgorithm::collideSingleContact (const btQuaternion&
|
||||
btTransform convexWorldTransform = convexObj->getWorldTransform();
|
||||
btTransform convexInPlaneTrans;
|
||||
convexInPlaneTrans= planeObj->getWorldTransform().inverse() * convexWorldTransform;
|
||||
//now pertube the convex-world transform
|
||||
convexWorldTransform.getBasis()*=btMatrix3x3(pertubeRot);
|
||||
//now perturbe the convex-world transform
|
||||
convexWorldTransform.getBasis()*=btMatrix3x3(perturbeRot);
|
||||
btTransform planeInConvex;
|
||||
planeInConvex= convexWorldTransform.inverse() * planeObj->getWorldTransform();
|
||||
|
||||
@@ -106,31 +106,31 @@ void btConvexPlaneCollisionAlgorithm::processCollision (btCollisionObject* body0
|
||||
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
||||
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
||||
|
||||
//first perform a collision query with the non-pertubated collision objects
|
||||
//first perform a collision query with the non-perturbated collision objects
|
||||
{
|
||||
btQuaternion rotq(0,0,0,1);
|
||||
collideSingleContact(rotq,body0,body1,dispatchInfo,resultOut);
|
||||
}
|
||||
|
||||
if (resultOut->getPersistentManifold()->getNumContacts()<m_minimumPointsPertubationThreshold)
|
||||
if (resultOut->getPersistentManifold()->getNumContacts()<m_minimumPointsPerturbationThreshold)
|
||||
{
|
||||
btVector3 v0,v1;
|
||||
btPlaneSpace1(planeNormal,v0,v1);
|
||||
//now perform 'm_numPertubationIterations' collision queries with the pertubated collision objects
|
||||
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
|
||||
|
||||
const btScalar angleLimit = 0.125f * SIMD_PI;
|
||||
btScalar pertubeAngle;
|
||||
btScalar perturbeAngle;
|
||||
btScalar radius = convexShape->getAngularMotionDisc();
|
||||
pertubeAngle = gContactBreakingThreshold / radius;
|
||||
if ( pertubeAngle > angleLimit )
|
||||
pertubeAngle = angleLimit;
|
||||
perturbeAngle = gContactBreakingThreshold / radius;
|
||||
if ( perturbeAngle > angleLimit )
|
||||
perturbeAngle = angleLimit;
|
||||
|
||||
btQuaternion pertubeRot(v0,pertubeAngle);
|
||||
for (int i=0;i<m_numPertubationIterations;i++)
|
||||
btQuaternion perturbeRot(v0,perturbeAngle);
|
||||
for (int i=0;i<m_numPerturbationIterations;i++)
|
||||
{
|
||||
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPertubationIterations));
|
||||
btScalar iterationAngle = i*(SIMD_2_PI/btScalar(m_numPerturbationIterations));
|
||||
btQuaternion rotq(planeNormal,iterationAngle);
|
||||
collideSingleContact(rotq.inverse()*pertubeRot*rotq,body0,body1,dispatchInfo,resultOut);
|
||||
collideSingleContact(rotq.inverse()*perturbeRot*rotq,body0,body1,dispatchInfo,resultOut);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -31,18 +31,18 @@ class btConvexPlaneCollisionAlgorithm : public btCollisionAlgorithm
|
||||
bool m_ownManifold;
|
||||
btPersistentManifold* m_manifoldPtr;
|
||||
bool m_isSwapped;
|
||||
int m_numPertubationIterations;
|
||||
int m_minimumPointsPertubationThreshold;
|
||||
int m_numPerturbationIterations;
|
||||
int m_minimumPointsPerturbationThreshold;
|
||||
|
||||
public:
|
||||
|
||||
btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPertubationIterations,int minimumPointsPertubationThreshold);
|
||||
btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped, int numPerturbationIterations,int minimumPointsPerturbationThreshold);
|
||||
|
||||
virtual ~btConvexPlaneCollisionAlgorithm();
|
||||
|
||||
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
void collideSingleContact (const btQuaternion& pertubeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
void collideSingleContact (const btQuaternion& perturbeRot, btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
@@ -56,12 +56,12 @@ public:
|
||||
|
||||
struct CreateFunc :public btCollisionAlgorithmCreateFunc
|
||||
{
|
||||
int m_numPertubationIterations;
|
||||
int m_minimumPointsPertubationThreshold;
|
||||
int m_numPerturbationIterations;
|
||||
int m_minimumPointsPerturbationThreshold;
|
||||
|
||||
CreateFunc()
|
||||
: m_numPertubationIterations(3),
|
||||
m_minimumPointsPertubationThreshold(3)
|
||||
: m_numPerturbationIterations(3),
|
||||
m_minimumPointsPerturbationThreshold(3)
|
||||
{
|
||||
}
|
||||
|
||||
@@ -70,10 +70,10 @@ public:
|
||||
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvexPlaneCollisionAlgorithm));
|
||||
if (!m_swapped)
|
||||
{
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,false,m_numPertubationIterations,m_minimumPointsPertubationThreshold);
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,false,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
|
||||
} else
|
||||
{
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,true,m_numPertubationIterations,m_minimumPointsPertubationThreshold);
|
||||
return new(mem) btConvexPlaneCollisionAlgorithm(0,ci,body0,body1,true,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Reference in New Issue
Block a user