move pybullet examples to Bullet/examples/pybullet/examples

This commit is contained in:
Erwin Coumans
2017-03-29 09:40:56 -07:00
parent 0750d502a8
commit eb8c31ae82
29 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,24 @@
import pybullet as p
import time
import math
p.connect(p.GUI)
p.loadURDF("plane.urdf")
cubeId = p.loadURDF("cube_small.urdf",0,0,1)
p.setGravity(0,0,-10)
p.setRealTimeSimulation(1)
cid = p.createConstraint(cubeId,-1,-1,-1,p.JOINT_FIXED,[0,0,0],[0,0,0],[0,0,1])
prev=[0,0,1]
a=-math.pi
while 1:
a=a+0.01
if (a>math.pi):
a=-math.pi
time.sleep(.01)
p.setGravity(0,0,-10)
pivot=[a,0,1]
orn = p.getQuaternionFromEuler([a,0,0])
p.changeConstraint(cid,pivot,jointChildFrameOrientation=orn, maxForce=50)
p.removeConstraint(cid)

View File

@@ -0,0 +1,26 @@
import pybullet as p
p.connect(p.DIRECT)
hinge = p.loadURDF("hinge.urdf")
print("mass of linkA = 1kg, linkB = 1kg, total mass = 2kg")
hingeJointIndex = 0
#by default, joint motors are enabled, maintaining zero velocity
p.setJointMotorControl2(hinge,hingeJointIndex,p.VELOCITY_CONTROL,0,0,0)
p.setGravity(0,0,-10)
p.stepSimulation()
print("joint state without sensor")
print(p.getJointState(0,0))
p.enableJointForceTorqueSensor(hinge,hingeJointIndex)
p.stepSimulation()
print("joint state with force/torque sensor, gravity [0,0,-10]")
print(p.getJointState(0,0))
p.setGravity(0,0,0)
p.stepSimulation()
print("joint state with force/torque sensor, no gravity")
print(p.getJointState(0,0))
p.disconnect()

View File

@@ -0,0 +1,32 @@
//arduino script for vr glove, sending analogue 'finger' readings
//to be used with pybullet and hand.py
int sensorPin0 = A0;
int sensorPin1 = A1;
int sensorPin2 = A2;
int sensorPin3 = A3;
void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
}
void loop() {
// put your main code here, to run repeatedly:
int sensorValue0 = analogRead(sensorPin0);
int sensorValue1 = analogRead(sensorPin1);
int sensorValue2 = analogRead(sensorPin2);
int sensorValue3 = analogRead(sensorPin3);
Serial.print(",");
Serial.print(sensorValue0);
Serial.print(",");
Serial.print(sensorValue1);
Serial.print(",");
Serial.print(sensorValue2);
Serial.print(",");
Serial.print(sensorValue3);
Serial.println(",");
delay(10);
}

View File

@@ -0,0 +1,78 @@
#script to control a simulated robot hand using a VR glove
#see https://twitter.com/erwincoumans/status/821953216271106048
#and https://www.youtube.com/watch?v=I6s37aBXbV8
#vr glove was custom build using Spectra Symbolflex sensors (4.5")
#inside a Under Armour Batting Glove, using DFRobot Bluno BLE/Beetle
#with BLE Link to receive serial (for wireless bluetooth serial)
import serial
import time
import pybullet as p
#first try to connect to shared memory (VR), if it fails use local GUI
c = p.connect(p.SHARED_MEMORY)
print(c)
if (c<0):
p.connect(p.GUI)
#load the MuJoCo MJCF hand
objects = p.loadMJCF("MPL/MPL.xml")
hand=objects[0]
#clamp in range 400-600
minV = 400
maxV = 600
p.setRealTimeSimulation(1)
def convertSensor(x):
v = minV
try:
v = float(x)
except ValueError:
v = minV
if (v<minV):
v=minV
if (v>maxV):
v=maxV
b = (v-minV)/float(maxV-minV)
return (1.0-b)
ser = serial.Serial(port='COM13',baudrate=115200,parity=serial.PARITY_ODD,stopbits=serial.STOPBITS_TWO,bytesize=serial.SEVENBITS)
if (ser.isOpen()):
while True:
while ser.inWaiting() > 0:
line = str(ser.readline())
words = line.split(",")
if (len(words)==6):
middle = convertSensor(words[1])
pink = convertSensor(words[2])
index = convertSensor(words[3])
thumb = convertSensor(words[4])
p.setJointMotorControl2(hand,7,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,9,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,11,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,13,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,17,p.POSITION_CONTROL,index)
p.setJointMotorControl2(hand,19,p.POSITION_CONTROL,index)
p.setJointMotorControl2(hand,21,p.POSITION_CONTROL,index)
p.setJointMotorControl2(hand,24,p.POSITION_CONTROL,middle)
p.setJointMotorControl2(hand,26,p.POSITION_CONTROL,middle)
p.setJointMotorControl2(hand,28,p.POSITION_CONTROL,middle)
p.setJointMotorControl2(hand,40,p.POSITION_CONTROL,pink)
p.setJointMotorControl2(hand,42,p.POSITION_CONTROL,pink)
p.setJointMotorControl2(hand,44,p.POSITION_CONTROL,pink)
ringpos = 0.5*(pink+middle)
p.setJointMotorControl2(hand,32,p.POSITION_CONTROL,ringpos)
p.setJointMotorControl2(hand,34,p.POSITION_CONTROL,ringpos)
p.setJointMotorControl2(hand,36,p.POSITION_CONTROL,ringpos)
#print(middle)
#print(pink)
#print(index)
#print(thumb)

View File

@@ -0,0 +1,23 @@
import pybullet as p
from time import sleep
physicsClient = p.connect(p.GUI)
p.setGravity(0,0,-10)
planeId = p.loadURDF("plane.urdf")
cubeStartPos = [0,0,1]
cubeStartOrientation = p.getQuaternionFromEuler([0,0,0])
boxId = p.loadURDF("r2d2.urdf",cubeStartPos, cubeStartOrientation)
cubePos, cubeOrn = p.getBasePositionAndOrientation(boxId)
useRealTimeSimulation = 0
if (useRealTimeSimulation):
p.setRealTimeSimulation(1)
while 1:
if (useRealTimeSimulation):
p.setGravity(0,0,-10)
sleep(0.01) # Time in seconds.
else:
p.stepSimulation()

View File

@@ -0,0 +1,87 @@
import pybullet as p
import time
import math
from datetime import datetime
#clid = p.connect(p.SHARED_MEMORY)
p.connect(p.GUI)
p.loadURDF("plane.urdf",[0,0,-0.3])
kukaId = p.loadURDF("kuka_iiwa/model.urdf",[0,0,0])
p.resetBasePositionAndOrientation(kukaId,[0,0,0],[0,0,0,1])
kukaEndEffectorIndex = 6
numJoints = p.getNumJoints(kukaId)
if (numJoints!=7):
exit()
#lower limits for null space
ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05]
#upper limits for null space
ul=[.967,2 ,2.96,2.29,2.96,2.09,3.05]
#joint ranges for null space
jr=[5.8,4,5.8,4,5.8,4,6]
#restposes for null space
rp=[0,0,0,0.5*math.pi,0,-math.pi*0.5*0.66,0]
#joint damping coefficents
jd=[0.1,0.1,0.1,0.1,0.1,0.1,0.1]
for i in range (numJoints):
p.resetJointState(kukaId,i,rp[i])
p.setGravity(0,0,0)
t=0.
prevPose=[0,0,0]
prevPose1=[0,0,0]
hasPrevPose = 0
useNullSpace = 0
useOrientation = 1
useSimulation = 1
useRealTimeSimulation = 1
p.setRealTimeSimulation(useRealTimeSimulation)
#trailDuration is duration (in seconds) after debug lines will be removed automatically
#use 0 for no-removal
trailDuration = 15
while 1:
if (useRealTimeSimulation):
dt = datetime.now()
t = (dt.second/60.)*2.*math.pi
else:
t=t+0.1
if (useSimulation and useRealTimeSimulation==0):
p.stepSimulation()
for i in range (1):
pos = [-0.4,0.2*math.cos(t),0.+0.2*math.sin(t)]
#end effector points down, not up (in case useOrientation==1)
orn = p.getQuaternionFromEuler([0,-math.pi,0])
if (useNullSpace==1):
if (useOrientation==1):
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos,orn,ll,ul,jr,rp)
else:
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos,lowerLimits=ll, upperLimits=ul, jointRanges=jr, restPoses=rp)
else:
if (useOrientation==1):
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos,orn,jointDamping=jd)
else:
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos)
if (useSimulation):
for i in range (numJoints):
p.setJointMotorControl2(bodyIndex=kukaId,jointIndex=i,controlMode=p.POSITION_CONTROL,targetPosition=jointPoses[i],targetVelocity=0,force=500,positionGain=0.03,velocityGain=1)
else:
#reset the joint state (ignoring all dynamics, not recommended to use during simulation)
for i in range (numJoints):
p.resetJointState(kukaId,i,jointPoses[i])
ls = p.getLinkState(kukaId,kukaEndEffectorIndex)
if (hasPrevPose):
p.addUserDebugLine(prevPose,pos,[0,0,0.3],1,trailDuration)
p.addUserDebugLine(prevPose1,ls[4],[1,0,0],1,trailDuration)
prevPose=pos
prevPose1=ls[4]
hasPrevPose = 1

View File

@@ -0,0 +1,92 @@
import pybullet as p
import time
import math
from datetime import datetime
#clid = p.connect(p.SHARED_MEMORY)
p.connect(p.GUI)
p.loadURDF("plane.urdf",[0,0,-0.3],useFixedBase=True)
kukaId = p.loadURDF("kuka_iiwa/model.urdf",[0,0,0],useFixedBase=True)
p.resetBasePositionAndOrientation(kukaId,[0,0,0],[0,0,0,1])
kukaEndEffectorIndex = 6
numJoints = p.getNumJoints(kukaId)
if (numJoints!=7):
exit()
p.loadURDF("cube.urdf",[2,2,5])
p.loadURDF("cube.urdf",[-2,-2,5])
p.loadURDF("cube.urdf",[2,-2,5])
#lower limits for null space
ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05]
#upper limits for null space
ul=[.967,2 ,2.96,2.29,2.96,2.09,3.05]
#joint ranges for null space
jr=[5.8,4,5.8,4,5.8,4,6]
#restposes for null space
rp=[0,0,0,0.5*math.pi,0,-math.pi*0.5*0.66,0]
#joint damping coefficents
jd=[0.1,0.1,0.1,0.1,0.1,0.1,0.1]
for i in range (numJoints):
p.resetJointState(kukaId,i,rp[i])
p.setGravity(0,0,-10)
t=0.
prevPose=[0,0,0]
prevPose1=[0,0,0]
hasPrevPose = 0
useNullSpace = 0
count = 0
useOrientation = 1
useSimulation = 1
useRealTimeSimulation = 1
p.setRealTimeSimulation(useRealTimeSimulation)
#trailDuration is duration (in seconds) after debug lines will be removed automatically
#use 0 for no-removal
trailDuration = 15
logId = p.startStateLogging(p.STATE_LOGGING_GENERIC_ROBOT,"LOG0001.txt",[0,1,2])
while 1:
if (useRealTimeSimulation):
dt = datetime.now()
t = (dt.second/60.)*2.*math.pi
else:
t=t+0.1
if (useSimulation and useRealTimeSimulation==0):
p.stepSimulation()
for i in range (1):
pos = [-0.4,0.2*math.cos(t),0.+0.2*math.sin(t)]
#end effector points down, not up (in case useOrientation==1)
orn = p.getQuaternionFromEuler([0,-math.pi,0])
if (useNullSpace==1):
if (useOrientation==1):
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos,orn,ll,ul,jr,rp)
else:
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos,lowerLimits=ll, upperLimits=ul, jointRanges=jr, restPoses=rp)
else:
if (useOrientation==1):
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos,orn,jointDamping=jd)
else:
jointPoses = p.calculateInverseKinematics(kukaId,kukaEndEffectorIndex,pos)
if (useSimulation):
for i in range (numJoints):
p.setJointMotorControl2(bodyIndex=kukaId,jointIndex=i,controlMode=p.POSITION_CONTROL,targetPosition=jointPoses[i],targetVelocity=0,force=500,positionGain=0.03,velocityGain=1)
else:
#reset the joint state (ignoring all dynamics, not recommended to use during simulation)
for i in range (numJoints):
p.resetJointState(kukaId,i,jointPoses[i])
ls = p.getLinkState(kukaId,kukaEndEffectorIndex)
if (hasPrevPose):
p.addUserDebugLine(prevPose,pos,[0,0,0.3],1,trailDuration)
p.addUserDebugLine(prevPose1,ls[4],[1,0,0],1,trailDuration)
prevPose=pos
prevPose1=ls[4]
hasPrevPose = 1

View File

@@ -0,0 +1,80 @@
import pybullet as p
import time
import math
from datetime import datetime
from numpy import *
from pylab import *
import struct
import sys
import os, fnmatch
import argparse
from time import sleep
def readLogFile(filename, verbose = True):
f = open(filename, 'rb')
print('Opened'),
print(filename)
keys = f.readline().decode('utf8').rstrip('\n').split(',')
fmt = f.readline().decode('utf8').rstrip('\n')
# The byte number of one record
sz = struct.calcsize(fmt)
# The type number of one record
ncols = len(fmt)
if verbose:
print('Keys:'),
print(keys)
print('Format:'),
print(fmt)
print('Size:'),
print(sz)
print('Columns:'),
print(ncols)
# Read data
wholeFile = f.read()
# split by alignment word
chunks = wholeFile.split(b'\xaa\xbb')
log = list()
for chunk in chunks:
if len(chunk) == sz:
values = struct.unpack(fmt, chunk)
record = list()
for i in range(ncols):
record.append(values[i])
log.append(record)
return log
#clid = p.connect(p.SHARED_MEMORY)
p.connect(p.GUI)
p.loadURDF("plane.urdf",[0,0,-0.3])
p.loadURDF("kuka_iiwa/model.urdf",[0,0,0])
p.loadURDF("cube.urdf",[2,2,5])
p.loadURDF("cube.urdf",[-2,-2,5])
p.loadURDF("cube.urdf",[2,-2,5])
log = readLogFile("LOG0001.txt")
recordNum = len(log)
itemNum = len(log[0])
print('record num:'),
print(recordNum)
print('item num:'),
print(itemNum)
for record in log:
Id = record[2]
pos = [record[3],record[4],record[5]]
orn = [record[6],record[7],record[8],record[9]]
p.resetBasePositionAndOrientation(Id,pos,orn)
numJoints = p.getNumJoints(Id)
for i in range (numJoints):
jointInfo = p.getJointInfo(Id,i)
qIndex = jointInfo[3]
if qIndex > -1:
p.resetJointState(Id,i,record[qIndex-7+17])
sleep(0.0005)

View File

@@ -0,0 +1,15 @@
import pybullet as p
cid = p.connect(p.SHARED_MEMORY)
if (cid < 0) :
p.connect(p.GUI)
p.loadURDF("plane.urdf")
quadruped = p.loadURDF("quadruped/quadruped.urdf")
logId = p.startStateLogging(p.STATE_LOGGING_MINITAUR,"LOG00048.TXT",[quadruped])
p.stepSimulation()
p.stepSimulation()
p.stepSimulation()
p.stepSimulation()
p.stepSimulation()
p.stopStateLogging(logId)

View File

@@ -0,0 +1,25 @@
import pybullet as p
import time
p.connect(p.GUI)
p.loadURDF("plane.urdf",useMaximalCoordinates=True)
p.loadURDF("tray/traybox.urdf",useMaximalCoordinates=True)
gravXid = p.addUserDebugParameter("gravityX",-10,10,0)
gravYid = p.addUserDebugParameter("gravityY",-10,10,0)
gravZid = p.addUserDebugParameter("gravityZ",-10,10,-10)
p.setPhysicsEngineParameter(numSolverIterations=10)
p.setPhysicsEngineParameter(contactBreakingThreshold=0.001)
for i in range (10):
for j in range (10):
for k in range (5):
ob = p.loadURDF("sphere_1cm.urdf",[0.02*i,0.02*j,0.2+0.02*k],useMaximalCoordinates=True)
p.setGravity(0,0,-10)
p.setRealTimeSimulation(1)
while True:
gravX = p.readUserDebugParameter(gravXid)
gravY = p.readUserDebugParameter(gravYid)
gravZ = p.readUserDebugParameter(gravZid)
p.setGravity(gravX,gravY,gravZ)
time.sleep(0.01)

View File

@@ -0,0 +1,135 @@
import pybullet as p
import numpy as np
class Minitaur:
def __init__(self, urdfRootPath=''):
self.urdfRootPath = urdfRootPath
self.reset()
def buildJointNameToIdDict(self):
nJoints = p.getNumJoints(self.quadruped)
self.jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(self.quadruped, i)
self.jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
self.resetPose()
for i in range(100):
p.stepSimulation()
def buildMotorIdList(self):
self.motorIdList.append(self.jointNameToId['motor_front_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_leftR_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_front_rightR_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightL_joint'])
self.motorIdList.append(self.jointNameToId['motor_back_rightR_joint'])
def reset(self):
self.quadruped = p.loadURDF("%s/quadruped/minitaur.urdf" % self.urdfRootPath,0,0,.2)
self.kp = 1
self.kd = 0.1
self.maxForce = 3.5
self.nMotors = 8
self.motorIdList = []
self.motorDir = [1, 1, 1, 1, 1, 1, 1, 1]
self.buildJointNameToIdDict()
self.buildMotorIdList()
def setMotorAngleById(self, motorId, desiredAngle):
p.setJointMotorControl2(bodyIndex=self.quadruped, jointIndex=motorId, controlMode=p.POSITION_CONTROL, targetPosition=desiredAngle, positionGain=self.kp, velocityGain=self.kd, force=self.maxForce)
def setMotorAngleByName(self, motorName, desiredAngle):
self.setMotorAngleById(self.jointNameToId[motorName], desiredAngle)
def resetPose(self):
kneeFrictionForce = 0
halfpi = 1.57079632679
kneeangle = -2.1834 #halfpi - acos(upper_leg_length / lower_leg_length)
#left front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftL_joint'],self.motorDir[0]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftL_link'],self.motorDir[0]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_leftR_joint'],self.motorDir[1]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.motorDir[1]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_leftR_link'],self.quadruped,self.jointNameToId['knee_front_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_front_leftL_joint', self.motorDir[0]*halfpi)
self.setMotorAngleByName('motor_front_leftR_joint', self.motorDir[1]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#left back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftL_joint'],self.motorDir[2]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftL_link'],self.motorDir[2]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_leftR_joint'],self.motorDir[3]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.motorDir[3]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_leftR_link'],self.quadruped,self.jointNameToId['knee_back_leftL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_back_leftL_joint',self.motorDir[2]*halfpi)
self.setMotorAngleByName('motor_back_leftR_joint',self.motorDir[3]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_leftR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#right front leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightL_joint'],self.motorDir[4]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightL_link'],self.motorDir[4]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_front_rightR_joint'],self.motorDir[5]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.motorDir[5]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_front_rightR_link'],self.quadruped,self.jointNameToId['knee_front_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_front_rightL_joint',self.motorDir[4]*halfpi)
self.setMotorAngleByName('motor_front_rightR_joint',self.motorDir[5]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_front_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
#right back leg
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightL_joint'],self.motorDir[6]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightL_link'],self.motorDir[6]*kneeangle)
p.resetJointState(self.quadruped,self.jointNameToId['motor_back_rightR_joint'],self.motorDir[7]*halfpi)
p.resetJointState(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.motorDir[7]*kneeangle)
p.createConstraint(self.quadruped,self.jointNameToId['knee_back_rightR_link'],self.quadruped,self.jointNameToId['knee_back_rightL_link'],p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
self.setMotorAngleByName('motor_back_rightL_joint',self.motorDir[6]*halfpi)
self.setMotorAngleByName('motor_back_rightR_joint',self.motorDir[7]*halfpi)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightL_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
p.setJointMotorControl2(bodyIndex=self.quadruped,jointIndex=self.jointNameToId['knee_back_rightR_link'],controlMode=p.VELOCITY_CONTROL,targetVelocity=0,force=kneeFrictionForce)
def getBasePosition(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return position
def getBaseOrientation(self):
position, orientation = p.getBasePositionAndOrientation(self.quadruped)
return orientation
def applyAction(self, motorCommands):
motorCommandsWithDir = np.multiply(motorCommands, self.motorDir)
for i in range(self.nMotors):
self.setMotorAngleById(self.motorIdList[i], motorCommandsWithDir[i])
def getMotorAngles(self):
motorAngles = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorAngles.append(jointState[0])
motorAngles = np.multiply(motorAngles, self.motorDir)
return motorAngles
def getMotorVelocities(self):
motorVelocities = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorVelocities.append(jointState[1])
motorVelocities = np.multiply(motorVelocities, self.motorDir)
return motorVelocities
def getMotorTorques(self):
motorTorques = []
for i in range(self.nMotors):
jointState = p.getJointState(self.quadruped, self.motorIdList[i])
motorTorques.append(jointState[3])
motorTorques = np.multiply(motorTorques, self.motorDir)
return motorTorques

View File

@@ -0,0 +1,99 @@
from minitaur import Minitaur
import pybullet as p
import numpy as np
import time
import sys
import math
minitaur = None
evaluate_func_map = dict()
def current_position():
global minitaur
position = minitaur.getBasePosition()
return np.asarray(position)
def is_fallen():
global minitaur
orientation = minitaur.getBaseOrientation()
rotMat = p.getMatrixFromQuaternion(orientation)
localUp = rotMat[6:]
return np.dot(np.asarray([0, 0, 1]), np.asarray(localUp)) < 0
def evaluate_desired_motorAngle_8Amplitude8Phase(i, params):
nMotors = 8
speed = 0.35
for jthMotor in range(nMotors):
joint_values[jthMotor] = math.sin(i*speed + params[nMotors + jthMotor])*params[jthMotor]*+1.57
return joint_values
def evaluate_desired_motorAngle_2Amplitude4Phase(i, params):
speed = 0.35
phaseDiff = params[2]
a0 = math.sin(i * speed) * params[0] + 1.57
a1 = math.sin(i * speed + phaseDiff) * params[1] + 1.57
a2 = math.sin(i * speed + params[3]) * params[0] + 1.57
a3 = math.sin(i * speed + params[3] + phaseDiff) * params[1] + 1.57
a4 = math.sin(i * speed + params[4] + phaseDiff) * params[1] + 1.57
a5 = math.sin(i * speed + params[4]) * params[0] + 1.57
a6 = math.sin(i * speed + params[5] + phaseDiff) * params[1] + 1.57
a7 = math.sin(i * speed + params[5]) * params[0] + 1.57
joint_values = [a0, a1, a2, a3, a4, a5, a6, a7]
return joint_values
def evaluate_desired_motorAngle_hop(i, params):
amplitude = params[0]
speed = params[1]
a1 = math.sin(i*speed)*amplitude+1.57
a2 = math.sin(i*speed+3.14)*amplitude+1.57
joint_values = [a1, 1.57, a2, 1.57, 1.57, a1, 1.57, a2]
return joint_values
evaluate_func_map['evaluate_desired_motorAngle_8Amplitude8Phase'] = evaluate_desired_motorAngle_8Amplitude8Phase
evaluate_func_map['evaluate_desired_motorAngle_2Amplitude4Phase'] = evaluate_desired_motorAngle_2Amplitude4Phase
evaluate_func_map['evaluate_desired_motorAngle_hop'] = evaluate_desired_motorAngle_hop
def evaluate_params(evaluateFunc, params, objectiveParams, urdfRoot='', timeStep=0.01, maxNumSteps=10000, sleepTime=0):
print('start evaluation')
beforeTime = time.time()
p.resetSimulation()
p.setTimeStep(timeStep)
p.loadURDF("%s/plane.urdf" % urdfRoot)
p.setGravity(0,0,-10)
global minitaur
minitaur = Minitaur(urdfRoot)
start_position = current_position()
last_position = None # for tracing line
total_energy = 0
for i in range(maxNumSteps):
torques = minitaur.getMotorTorques()
velocities = minitaur.getMotorVelocities()
total_energy += np.dot(np.fabs(torques), np.fabs(velocities)) * timeStep
joint_values = evaluate_func_map[evaluateFunc](i, params)
minitaur.applyAction(joint_values)
p.stepSimulation()
if (is_fallen()):
break
if i % 100 == 0:
sys.stdout.write('.')
sys.stdout.flush()
time.sleep(sleepTime)
print(' ')
alpha = objectiveParams[0]
final_distance = np.linalg.norm(start_position - current_position())
finalReturn = final_distance - alpha * total_energy
elapsedTime = time.time() - beforeTime
print ("trial for ", params, " final_distance", final_distance, "total_energy", total_energy, "finalReturn", finalReturn, "elapsed_time", elapsedTime)
return finalReturn

View File

@@ -0,0 +1,27 @@
import sys
#some python interpreters need '.' added
sys.path.append(".")
import pybullet as p
from minitaur import Minitaur
from minitaur_evaluate import *
import time
import math
import numpy as np
def main(unused_args):
timeStep = 0.01
c = p.connect(p.SHARED_MEMORY)
if (c<0):
c = p.connect(p.GUI)
params = [0.1903581461951056, 0.0006732219568880068, 0.05018085615283363, 3.219916795483583, 6.2406418167980595, 4.189869754607539]
evaluate_func = 'evaluate_desired_motorAngle_2Amplitude4Phase'
energy_weight = 0.01
finalReturn = evaluate_params(evaluateFunc = evaluate_func, params=params, objectiveParams=[energy_weight], timeStep=timeStep, sleepTime=timeStep)
print(finalReturn)
main(0)

View File

@@ -0,0 +1,21 @@
import pybullet as p
import time
import math
import sys
sys.path.append(".")
from minitaur import Minitaur
p.connect(p.GUI)
p.setTimeOut(5)
#p.setPhysicsEngineParameter(numSolverIterations=50)
p.setGravity(0,0,-10)
p.setTimeStep(0.01)
urdfRoot = ''
p.loadURDF("%s/plane.urdf" % urdfRoot)
minitaur = Minitaur(urdfRoot)
while (True):
p.stepSimulation()
time.sleep(0.01)

View File

@@ -0,0 +1,179 @@
import pybullet as p
import time
import math
useRealTime = 0
fixedTimeStep = 0.01
speed = 10
amplitude = 0.8
jump_amp = 0.5
maxForce = 3.5
kneeFrictionForce = 0.00
kp = 1
kd = .1
physId = p.connect(p.SHARED_MEMORY)
if (physId<0):
p.connect(p.GUI)
#p.resetSimulation()
p.loadURDF("plane.urdf",0,0,0)
p.setPhysicsEngineParameter(numSolverIterations=50)
p.setTimeOut(4)
p.setGravity(0,0,0)
p.setTimeStep(fixedTimeStep)
orn = p.getQuaternionFromEuler([0,0,0.4])
p.setRealTimeSimulation(0)
quadruped = p.loadURDF("quadruped/minitaur.urdf",[1,0,0.2],orn,useFixedBase=False)
nJoints = p.getNumJoints(quadruped)
jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(quadruped, i)
jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
motor_front_rightR_joint = jointNameToId['motor_front_rightR_joint']
hip_front_rightR_link = jointNameToId['hip_front_rightR_link']
knee_front_rightR_link = jointNameToId['knee_front_rightR_link']
motor_front_rightL_joint = jointNameToId['motor_front_rightL_joint']
motor_front_rightL_link = jointNameToId['motor_front_rightL_link']
knee_front_rightL_link = jointNameToId['knee_front_rightL_link']
motor_front_leftR_joint = jointNameToId['motor_front_leftR_joint']
hip_front_leftR_link = jointNameToId['hip_front_leftR_link']
knee_front_leftR_link = jointNameToId['knee_front_leftR_link']
motor_front_leftL_joint = jointNameToId['motor_front_leftL_joint']
motor_front_leftL_link = jointNameToId['motor_front_leftL_link']
knee_front_leftL_link = jointNameToId['knee_front_leftL_link']
motor_back_rightR_joint = jointNameToId['motor_back_rightR_joint']
hip_rightR_link = jointNameToId['hip_rightR_link']
knee_back_rightR_link = jointNameToId['knee_back_rightR_link']
motor_back_rightL_joint = jointNameToId['motor_back_rightL_joint']
motor_back_rightL_link = jointNameToId['motor_back_rightL_link']
knee_back_rightL_link = jointNameToId['knee_back_rightL_link']
motor_back_leftR_joint = jointNameToId['motor_back_leftR_joint']
hip_leftR_link = jointNameToId['hip_leftR_link']
knee_back_leftR_link = jointNameToId['knee_back_leftR_link']
motor_back_leftL_joint = jointNameToId['motor_back_leftL_joint']
motor_back_leftL_link = jointNameToId['motor_back_leftL_link']
knee_back_leftL_link = jointNameToId['knee_back_leftL_link']
motordir=[-1,-1,-1,-1,1,1,1,1]
halfpi = 1.57079632679
kneeangle = -2.1834
p.resetJointState(quadruped,motor_front_leftL_joint,motordir[0]*halfpi)
p.resetJointState(quadruped,knee_front_leftL_link,motordir[0]*kneeangle)
p.resetJointState(quadruped,motor_front_leftR_joint,motordir[1]*halfpi)
p.resetJointState(quadruped,knee_front_leftR_link,motordir[1]*kneeangle)
cid = p.createConstraint(quadruped,knee_front_leftR_link,quadruped,knee_front_leftL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_front_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.resetJointState(quadruped,motor_back_leftL_joint,motordir[2]*halfpi)
p.resetJointState(quadruped,knee_back_leftL_link,motordir[2]*kneeangle)
p.resetJointState(quadruped,motor_back_leftR_joint,motordir[3]*halfpi)
p.resetJointState(quadruped,knee_back_leftR_link,motordir[3]*kneeangle)
cid = p.createConstraint(quadruped,knee_back_leftR_link,quadruped,knee_back_leftL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_back_leftL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_leftR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
#p.getNumJoints(1)
p.resetJointState(quadruped,motor_front_rightL_joint,motordir[4]*halfpi)
p.resetJointState(quadruped,knee_front_rightL_link,motordir[4]*kneeangle)
p.resetJointState(quadruped,motor_front_rightR_joint,motordir[5]*halfpi)
p.resetJointState(quadruped,knee_front_rightR_link,motordir[5]*kneeangle)
cid = p.createConstraint(quadruped,knee_front_rightR_link,quadruped,knee_front_rightL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_front_rightL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_front_rightR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.resetJointState(quadruped,motor_back_rightL_joint,motordir[6]*halfpi)
p.resetJointState(quadruped,knee_back_rightL_link,motordir[6]*kneeangle)
p.resetJointState(quadruped,motor_back_rightR_joint,motordir[7]*halfpi)
p.resetJointState(quadruped,knee_back_rightR_link,motordir[7]*kneeangle)
cid = p.createConstraint(quadruped,knee_back_rightR_link,quadruped,knee_back_rightL_link,p.JOINT_POINT2POINT,[0,0,0],[0,0.005,0.2],[0,0.01,0.2])
p.changeConstraint(cid,maxForce=10000)
p.setJointMotorControl(quadruped,knee_back_rightL_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setJointMotorControl(quadruped,knee_back_rightR_link,p.VELOCITY_CONTROL,0,kneeFrictionForce)
p.setGravity(0,0,-10)
legnumbering=[
motor_front_leftL_joint,
motor_front_leftR_joint,
motor_back_leftL_joint,
motor_back_leftR_joint,
motor_front_rightL_joint,
motor_front_rightR_joint,
motor_back_rightL_joint,
motor_back_rightR_joint]
for i in range (8):
print (legnumbering[i])
#use the Minitaur leg numbering
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[0],controlMode=p.POSITION_CONTROL,targetPosition=motordir[0]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[1],controlMode=p.POSITION_CONTROL,targetPosition=motordir[1]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[2],controlMode=p.POSITION_CONTROL,targetPosition=motordir[2]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[3],controlMode=p.POSITION_CONTROL,targetPosition=motordir[3]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[4],controlMode=p.POSITION_CONTROL,targetPosition=motordir[4]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[5],controlMode=p.POSITION_CONTROL,targetPosition=motordir[5]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[6],controlMode=p.POSITION_CONTROL,targetPosition=motordir[6]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[7],controlMode=p.POSITION_CONTROL,targetPosition=motordir[7]*1.57,positionGain=kp, velocityGain=kd, force=maxForce)
#stand still
p.setRealTimeSimulation(useRealTime)
#while (True):
# time.sleep(0.01)
#p.stepSimulation()
print("quadruped Id = ")
print(quadruped)
p.saveWorld("quadru.py")
logId = p.startStateLogging(p.STATE_LOGGING_MINITAUR,"quadrupedLog.txt",[quadruped])
#jump
t = 0.0
t_end = t + 100
i=0
ref_time = time.time()
while t < t_end:
if (useRealTime):
t = time.time()-ref_time
else:
t = t+fixedTimeStep
if (True):
target = math.sin(t*speed)*jump_amp+1.57;
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[0],controlMode=p.POSITION_CONTROL,targetPosition=motordir[0]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[1],controlMode=p.POSITION_CONTROL,targetPosition=motordir[1]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[2],controlMode=p.POSITION_CONTROL,targetPosition=motordir[2]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[3],controlMode=p.POSITION_CONTROL,targetPosition=motordir[3]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[4],controlMode=p.POSITION_CONTROL,targetPosition=motordir[4]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[5],controlMode=p.POSITION_CONTROL,targetPosition=motordir[5]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[6],controlMode=p.POSITION_CONTROL,targetPosition=motordir[6]*target,positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped,jointIndex=legnumbering[7],controlMode=p.POSITION_CONTROL,targetPosition=motordir[7]*target,positionGain=kp, velocityGain=kd, force=maxForce)
if (useRealTime==0):
p.stepSimulation()
time.sleep(fixedTimeStep)

View File

@@ -0,0 +1,126 @@
import pybullet as p
import time
import math
from datetime import datetime
from numpy import *
from pylab import *
import struct
import sys
import os, fnmatch
import argparse
from time import sleep
def readLogFile(filename, verbose = True):
f = open(filename, 'rb')
print('Opened'),
print(filename)
keys = f.readline().decode('utf8').rstrip('\n').split(',')
fmt = f.readline().decode('utf8').rstrip('\n')
# The byte number of one record
sz = struct.calcsize(fmt)
# The type number of one record
ncols = len(fmt)
if verbose:
print('Keys:'),
print(keys)
print('Format:'),
print(fmt)
print('Size:'),
print(sz)
print('Columns:'),
print(ncols)
# Read data
wholeFile = f.read()
# split by alignment word
chunks = wholeFile.split(b'\xaa\xbb')
print ("num chunks")
print (len(chunks))
log = list()
for chunk in chunks:
if len(chunk) == sz:
values = struct.unpack(fmt, chunk)
record = list()
for i in range(ncols):
record.append(values[i])
log.append(record)
return log
clid = p.connect(p.SHARED_MEMORY)
log = readLogFile("LOG00076.TXT");
recordNum = len(log)
print('record num:'),
print(recordNum)
itemNum = len(log[0])
print('item num:'),
print(itemNum)
useRealTime = 0
fixedTimeStep = 0.001
speed = 10
amplitude = 0.8
jump_amp = 0.5
maxForce = 3.5
kp = .05
kd = .5
quadruped = 1
nJoints = p.getNumJoints(quadruped)
jointNameToId = {}
for i in range(nJoints):
jointInfo = p.getJointInfo(quadruped, i)
jointNameToId[jointInfo[1].decode('UTF-8')] = jointInfo[0]
motor_front_rightR_joint = jointNameToId['motor_front_rightR_joint']
hip_front_rightR_link = jointNameToId['hip_front_rightR_link']
knee_front_rightR_link = jointNameToId['knee_front_rightR_link']
motor_front_rightL_joint = jointNameToId['motor_front_rightL_joint']
motor_front_rightL_link = jointNameToId['motor_front_rightL_link']
knee_front_rightL_link = jointNameToId['knee_front_rightL_link']
motor_front_leftR_joint = jointNameToId['motor_front_leftR_joint']
hip_front_leftR_link = jointNameToId['hip_front_leftR_link']
knee_front_leftR_link = jointNameToId['knee_front_leftR_link']
motor_front_leftL_joint = jointNameToId['motor_front_leftL_joint']
motor_front_leftL_link = jointNameToId['motor_front_leftL_link']
knee_front_leftL_link = jointNameToId['knee_front_leftL_link']
motor_back_rightR_joint = jointNameToId['motor_back_rightR_joint']
hip_rightR_link = jointNameToId['hip_rightR_link']
knee_back_rightR_link = jointNameToId['knee_back_rightR_link']
motor_back_rightL_joint = jointNameToId['motor_back_rightL_joint']
motor_back_rightL_link = jointNameToId['motor_back_rightL_link']
knee_back_rightL_link = jointNameToId['knee_back_rightL_link']
motor_back_leftR_joint = jointNameToId['motor_back_leftR_joint']
hip_leftR_link = jointNameToId['hip_leftR_link']
knee_back_leftR_link = jointNameToId['knee_back_leftR_link']
motor_back_leftL_joint = jointNameToId['motor_back_leftL_joint']
motor_back_leftL_link = jointNameToId['motor_back_leftL_link']
knee_back_leftL_link = jointNameToId['knee_back_leftL_link']
motorDir = [1, 1, 1, 1, 1, 1, 1, 1];
legnumbering=[motor_front_leftR_joint,motor_front_leftL_joint,motor_back_leftR_joint,motor_back_leftL_joint,motor_front_rightR_joint,motor_front_rightL_joint,motor_back_rightR_joint,motor_back_rightL_joint]
for record in log:
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[0], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[0]*record[7], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[1], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[1]*record[8], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[2], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[2]*record[9], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[3], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[3]*record[10], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[4], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[4]*record[11], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[5], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[5]*record[12], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[6], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[6]*record[13], positionGain=kp, velocityGain=kd, force=maxForce)
p.setJointMotorControl2(bodyIndex=quadruped, jointIndex=legnumbering[7], controlMode=p.POSITION_CONTROL, targetPosition=motorDir[7]*record[14], positionGain=kp, velocityGain=kd, force=maxForce)
p.setGravity(0.000000,0.000000,-10.000000)
p.stepSimulation()
p.stepSimulation()
sleep(0.01)

View File

@@ -0,0 +1,21 @@
import pybullet as p
p.connect(p.SHARED_MEMORY)
objects = [p.loadURDF("plane.urdf", 0.000000,0.000000,-.300000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("quadruped/minitaur.urdf", [-0.000046,-0.000068,0.200774],[-0.000701,0.000387,-0.000252,1.000000],useFixedBase=False)]
ob = objects[0]
jointPositions=[ 0.000000, 1.531256, 0.000000, -2.240112, 1.527979, 0.000000, -2.240646, 1.533105, 0.000000, -2.238254, 1.530335, 0.000000, -2.238298, 0.000000, -1.528038, 0.000000, 2.242656, -1.525193, 0.000000, 2.244008, -1.530011, 0.000000, 2.240683, -1.528687, 0.000000, 2.240517 ]
for ji in range (p.getNumJoints(ob)):
p.resetJointState(ob,ji,jointPositions[ji])
p.setJointMotorControl2(bodyIndex=ob, jointIndex=ji, controlMode=p.VELOCITY_CONTROL, force=0)
cid0 = p.createConstraint(1,3,1,6,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.200000],[0.000000,0.010000,0.200000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid0,maxForce=500.000000)
cid1 = p.createConstraint(1,16,1,19,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.200000],[0.000000,0.010000,0.200000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid1,maxForce=500.000000)
cid2 = p.createConstraint(1,9,1,12,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.200000],[0.000000,0.010000,0.200000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid2,maxForce=500.000000)
cid3 = p.createConstraint(1,22,1,25,p.JOINT_POINT2POINT,[0.000000,0.000000,0.000000],[0.000000,0.005000,0.200000],[0.000000,0.010000,0.200000],[0.000000,0.000000,0.000000,1.000000],[0.000000,0.000000,0.000000,1.000000])
p.changeConstraint(cid3,maxForce=500.000000)
p.setGravity(0.000000,0.000000,0.000000)
p.stepSimulation()
p.disconnect()

View File

@@ -0,0 +1,30 @@
import pybullet as p
p.connect(p.GUI) #or p.SHARED_MEMORY or p.DIRECT
p.loadURDF("plane.urdf")
p.setGravity(0,0,-10)
huskypos = [0,0,0.1]
husky = p.loadURDF("husky/husky.urdf",huskypos[0],huskypos[1],huskypos[2])
numJoints = p.getNumJoints(husky)
for joint in range (numJoints) :
print (p.getJointInfo(husky,joint))
targetVel = 10 #rad/s
maxForce = 100 #Newton
for joint in range (2,6) :
p.setJointMotorControl(husky,joint,p.VELOCITY_CONTROL,targetVel,maxForce)
for step in range (300):
p.stepSimulation()
targetVel=-10
for joint in range (2,6) :
p.setJointMotorControl(husky,joint,p.VELOCITY_CONTROL,targetVel,maxForce)
for step in range (400):
p.stepSimulation()
p.getContactPoints(husky)
p.disconnect()

View File

@@ -0,0 +1,26 @@
import pybullet as p
import time
cid = p.connect(p.SHARED_MEMORY)
if (cid<0):
p.connect(p.GUI)
q = p.loadURDF("quadruped/quadruped.urdf",useFixedBase=True)
rollId = p.addUserDebugParameter("roll",-1.5,1.5,0)
pitchId = p.addUserDebugParameter("pitch",-1.5,1.5,0)
yawId = p.addUserDebugParameter("yaw",-1.5,1.5,0)
fwdxId = p.addUserDebugParameter("fwd_x",-1,1,0)
fwdyId = p.addUserDebugParameter("fwd_y",-1,1,0)
fwdzId = p.addUserDebugParameter("fwd_z",-1,1,0)
while True:
roll = p.readUserDebugParameter(rollId)
pitch = p.readUserDebugParameter(pitchId)
yaw = p.readUserDebugParameter(yawId)
x = p.readUserDebugParameter(fwdxId)
y = p.readUserDebugParameter(fwdyId)
z = p.readUserDebugParameter(fwdzId)
orn = p.getQuaternionFromEuler([roll,pitch,yaw])
p.resetBasePositionAndOrientation(q,[x,y,z],orn)
#p.stepSimulation()#not really necessary for this demo, no physics used

View File

@@ -0,0 +1,8 @@
import pybullet as p
import time
p.connect(p.SHARED_MEMORY)
timestr = time.strftime("%Y%m%d-%H%M%S")
filename = "saveWorld" + timestr + ".py"
p.saveWorld(filename)
p.disconnect()

View File

@@ -0,0 +1,36 @@
import pybullet
import time
#choose connection method: GUI, DIRECT, SHARED_MEMORY
pybullet.connect(pybullet.GUI)
pybullet.loadURDF("plane.urdf",0,0,-1)
#load URDF, given a relative or absolute file+path
obj = pybullet.loadURDF("r2d2.urdf")
posX=0
posY=3
posZ=2
obj2 = pybullet.loadURDF("kuka_lwr/kuka.urdf",posX,posY,posZ)
#query the number of joints of the object
numJoints = pybullet.getNumJoints(obj)
print (numJoints)
#set the gravity acceleration
pybullet.setGravity(0,0,-9.8)
#step the simulation for 5 seconds
t_end = time.time() + 5
while time.time() < t_end:
pybullet.stepSimulation()
posAndOrn = pybullet.getBasePositionAndOrientation(obj)
print (posAndOrn)
print ("finished")
#remove all objects
pybullet.resetSimulation()
#disconnect from the physics server
pybullet.disconnect()

View File

@@ -0,0 +1,47 @@
import numpy as np
import matplotlib.pyplot as plt
import pybullet
pybullet.connect(pybullet.GUI)
pybullet.loadURDF("r2d2.urdf")
camTargetPos = [0.,0.,0.]
cameraUp = [0,0,1]
cameraPos = [1,1,1]
yaw = 40
pitch = 10.0
roll=0
upAxisIndex = 2
camDistance = 4
pixelWidth = 320
pixelHeight = 240
nearPlane = 0.01
farPlane = 1000
lightDirection = [0,1,0]
lightColor = [1,1,1]#optional argument
fov = 60
#img_arr = pybullet.renderImage(pixelWidth, pixelHeight)
#renderImage(w, h, view[16], projection[16])
#img_arr = pybullet.renderImage(pixelWidth, pixelHeight, cameraPos, camTargetPos, cameraUp, nearPlane, farPlane)
for pitch in range (0,360,10) :
viewMatrix = pybullet.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex)
aspect = pixelWidth / pixelHeight;
projectionMatrix = pybullet.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane);
#getCameraImage can also use renderer=pybullet.ER_BULLET_HARDWARE_OPENGL
img_arr = pybullet.getCameraImage(pixelWidth, pixelHeight, viewMatrix,projectionMatrix, lightDirection,lightColor,renderer=pybullet.ER_TINY_RENDERER)
w=img_arr[0]
h=img_arr[1]
rgb=img_arr[2]
dep=img_arr[3]
#print 'width = %d height = %d' % (w,h)
# reshape creates np array
np_img_arr = np.reshape(rgb, (h, w, 4))
np_img_arr = np_img_arr*(1./255.)
#show
plt.imshow(np_img_arr,interpolation='none')
plt.pause(0.01)
pybullet.resetSimulation()

View File

@@ -0,0 +1,54 @@
#make sure to compile pybullet with PYBULLET_USE_NUMPY enabled, otherwise use testrender.py (slower but compatible without numpy)
import numpy as np
import matplotlib.pyplot as plt
import pybullet
import time
pybullet.connect(pybullet.GUI)
pybullet.loadURDF("r2d2.urdf")
camTargetPos = [0,0,0]
cameraUp = [0,0,1]
cameraPos = [1,1,1]
yaw = 40
pitch = 10.0
roll=0
upAxisIndex = 2
camDistance = 4
pixelWidth = 1024
pixelHeight = 768
nearPlane = 0.01
farPlane = 1000
fov = 60
main_start = time.time()
for pitch in range (0,360,10) :
start = time.time()
viewMatrix = pybullet.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex)
aspect = pixelWidth / pixelHeight;
projectionMatrix = pybullet.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane);
img_arr = pybullet.getCameraImage(pixelWidth, pixelHeight, viewMatrix,projectionMatrix, [0,1,0],renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
stop = time.time()
print ("renderImage %f" % (stop - start))
w=img_arr[0] #width of the image, in pixels
h=img_arr[1] #height of the image, in pixels
rgb=img_arr[2] #color data RGB
dep=img_arr[3] #depth data
print ('width = %d height = %d' % (w,h))
#note that sending the data to matplotlib is really slow
plt.imshow(rgb,interpolation='none')
plt.pause(0.001)
main_stop = time.time()
print ("Total time %f" % (main_stop - main_start))
pybullet.resetSimulation()

View File

@@ -0,0 +1,62 @@
# See pybullet quickstart guide here:
# https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#
# Create a Tiltbrush-like app, drawing lines using any controller
# Line width can be changed
import pybullet as p
CONTROLLER_ID = 0
POSITION=1
ORIENTATION=2
BUTTONS=6
#assume that the VR physics server is already started before
c = p.connect(p.SHARED_MEMORY)
print(c)
if (c<0):
p.connect(p.GUI)
p.setInternalSimFlags(0)#don't load default robot assets etc
p.resetSimulation()
p.loadURDF("plane.urdf")
prevPosition=[None]*p.VR_MAX_CONTROLLERS
colors=[0.,0.5,0.5]*p.VR_MAX_CONTROLLERS
widths = [3]*p.VR_MAX_CONTROLLERS
#use a few default colors
colors[0] = [0,0,0]
colors[1] = [0.5,0,0]
colors[2] = [0,0.5,0]
colors[3] = [0,0,0.5]
colors[4] = [0.5,0.5,0.]
colors[5] = [.5,.5,.5]
while True:
events = p.getVREvents()
for e in (events):
if (e[BUTTONS][33]&p.VR_BUTTON_WAS_TRIGGERED):
prevPosition[e[CONTROLLER_ID]] = e[POSITION]
if (e[BUTTONS][32]&p.VR_BUTTON_WAS_TRIGGERED):
widths[e[CONTROLLER_ID]]=widths[e[0]]+1
if (widths[e[CONTROLLER_ID]]>20):
widths[e[CONTROLLER_ID]] = 1
if (e[BUTTONS][1]&p.VR_BUTTON_WAS_TRIGGERED):
p.resetSimulation()
#p.setGravity(0,0,-10)
p.removeAllUserDebugItems()
p.loadURDF("plane.urdf")
if (e[BUTTONS][33]==p.VR_BUTTON_IS_DOWN):
pt = prevPosition[e[CONTROLLER_ID]]
#print(prevPosition[e[0]])
#print(e[1])
diff = [pt[0]-e[POSITION][0],pt[1]-e[POSITION][1],pt[2]-e[POSITION][2]]
lenSqr = diff[0]*diff[0]+diff[1]*diff[1]+diff[2]*diff[2]
ptDistThreshold = 0.01
if (lenSqr>(ptDistThreshold*ptDistThreshold)):
p.addUserDebugLine(e[POSITION],prevPosition[e[CONTROLLER_ID]],colors[e[CONTROLLER_ID]],widths[e[CONTROLLER_ID]])
#p.loadURDF("cube_small.urdf",e[1])
colors[e[CONTROLLER_ID]] = [1-colors[e[CONTROLLER_ID]][0],1-colors[e[CONTROLLER_ID]][1],1-colors[e[CONTROLLER_ID]][2]]
prevPosition[e[CONTROLLER_ID]] = e[POSITION]

View File

@@ -0,0 +1,99 @@
## Assume you have run vr_kuka_setup and have default scene set up
# Require p.setInternalSimFlags(0) in kuka_setup
import pybullet as p
import math
# import numpy as np
p.connect(p.SHARED_MEMORY)
kuka = 3
kuka_gripper = 7
POSITION = 1
ORIENTATION = 2
BUTTONS = 6
THRESHOLD = 1.3
LOWER_LIMITS = [-.967, -2.0, -2.96, 0.19, -2.96, -2.09, -3.05]
UPPER_LIMITS = [.96, 2.0, 2.96, 2.29, 2.96, 2.09, 3.05]
JOINT_RANGE = [5.8, 4, 5.8, 4, 5.8, 4, 6]
REST_POSE = [0, 0, 0, math.pi / 2, 0, -math.pi * 0.66, 0]
JOINT_DAMP = [.1, .1, .1, .1, .1, .1, .1]
REST_JOINT_POS = [-0., -0., 0., 1.570793, 0., -1.036725, 0.000001]
MAX_FORCE = 500
KUKA_GRIPPER_REST_POS = [0., -0.011130, -0.206421, 0.205143, -0.009999, 0., -0.010055, 0.]
KUKA_GRIPPER_CLOZ_POS = [0.0, -0.047564246423083795, 0.6855956234759611, -0.7479294372303137, 0.05054599996976922, 0.0, 0.049838105678835724, 0.0]
def euc_dist(posA, posB):
dist = 0.
for i in range(len(posA)):
dist += (posA[i] - posB[i]) ** 2
return dist
p.setRealTimeSimulation(1)
controllers = [e[0] for e in p.getVREvents()]
while True:
events = p.getVREvents()
for e in (events):
# Only use one controller
###########################################
# This is important: make sure there's only one VR Controller!
if e[0] == controllers[0]:
break
sq_len = euc_dist(p.getLinkState(kuka, 6)[0], e[POSITION])
# A simplistic version of gripper control
#@TO-DO: Add slider for the gripper
if e[BUTTONS][33] & p.VR_BUTTON_WAS_TRIGGERED:
# avg = 0.
for i in range(p.getNumJoints(kuka_gripper)):
p.setJointMotorControl2(kuka_gripper, i, p.POSITION_CONTROL, targetPosition=KUKA_GRIPPER_CLOZ_POS[i], force=50)
if e[BUTTONS][33] & p.VR_BUTTON_WAS_RELEASED:
for i in range(p.getNumJoints(kuka_gripper)):
p.setJointMotorControl2(kuka_gripper, i, p.POSITION_CONTROL, targetPosition=KUKA_GRIPPER_REST_POS[i], force=50)
if sq_len < THRESHOLD * THRESHOLD:
eef_pos = e[POSITION]
joint_pos = p.calculateInverseKinematics(kuka, 6, eef_pos,
lowerLimits=LOWER_LIMITS, upperLimits=UPPER_LIMITS,
jointRanges=JOINT_RANGE, restPoses=REST_POSE, jointDamping=JOINT_DAMP)
# Only need links 1- 4, no need for joint 5-6 with pure position IK
for i in range(len(joint_pos) - 2):
p.setJointMotorControl2(kuka, i, p.POSITION_CONTROL,
targetPosition=joint_pos[i], targetVelocity=0, positionGain=0.05,
velocityGain=1.0, force=MAX_FORCE)
# Rotate the end effector
targetOrn = e[ORIENTATION]
_, _, z = p.getEulerFromQuaternion(targetOrn)
# End effector needs protection, done by using triangular tricks
if LOWER_LIMITS[6] < z < UPPER_LIMITS[6]:
p.setJointMotorControl2(kuka, 6, p.POSITION_CONTROL,
targetPosition=z, targetVelocity=0, positionGain=0.03, velocityGain=1.0, force=MAX_FORCE)
else:
p.setJointMotorControl2(kuka, 6, p.POSITION_CONTROL,
targetPosition=joint_pos[6], targetVelocity=0, positionGain=0.05,
velocityGain=1.0, force=MAX_FORCE)
p.setJointMotorControl2(kuka, 5, p.POSITION_CONTROL,
targetPosition=-1.57, targetVelocity=0,
positionGain=0.03, velocityGain=1.0, force=MAX_FORCE)
else:
# Set back to original rest pose
for jointIndex in range(p.getNumJoints(kuka)):
p.setJointMotorControl2(kuka, jointIndex, p.POSITION_CONTROL,
REST_JOINT_POS[jointIndex], 0)

View File

@@ -0,0 +1,22 @@
#python script with hardcoded values, assumes that you run the vr_kuka_setup.py first
import pybullet as p
p.connect(p.SHARED_MEMORY)
pr2_gripper = 2
pr2_cid = 1
CONTROLLER_ID = 0
POSITION=1
ORIENTATION=2
ANALOG=3
BUTTONS=6
gripper_max_joint = 0.550569
while True:
events = p.getVREvents()
for e in (events):
if e[CONTROLLER_ID] == 3: # To make sure we only get the value for one of the remotes
p.changeConstraint(pr2_cid, e[POSITION], e[ORIENTATION], maxForce=500)
p.setJointMotorControl2(pr2_gripper, 0, controlMode=p.POSITION_CONTROL,targetPosition=gripper_max_joint - e[ANALOG] * gripper_max_joint,force=1.0)
p.setJointMotorControl2(pr2_gripper, 2, controlMode=p.POSITION_CONTROL,targetPosition=gripper_max_joint - e[ANALOG] * gripper_max_joint,force=1.1)

View File

@@ -0,0 +1,79 @@
import pybullet as p
#p.connect(p.UDP,"192.168.86.100")
p.connect(p.SHARED_MEMORY)
p.resetSimulation()
objects = [p.loadURDF("plane.urdf", 0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("samurai.urdf", 0.000000,0.000000,0.000000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("pr2_gripper.urdf", 0.500000,0.300006,0.700000,-0.000000,-0.000000,-0.000031,1.000000)]
pr2_gripper = objects[0]
print ("pr2_gripper=")
print (pr2_gripper)
jointPositions=[ 0.550569, 0.000000, 0.549657, 0.000000 ]
for jointIndex in range (p.getNumJoints(pr2_gripper)):
p.resetJointState(pr2_gripper,jointIndex,jointPositions[jointIndex])
pr2_cid = p.createConstraint(pr2_gripper,-1,-1,-1,p.JOINT_FIXED,[0,0,0],[0.2,0,0],[0.500000,0.300006,0.700000])
print ("pr2_cid")
print (pr2_cid)
objects = [p.loadURDF("kuka_iiwa/model_vr_limits.urdf", 1.400000,-0.200000,0.600000,0.000000,0.000000,0.000000,1.000000)]
kuka = objects[0]
jointPositions=[ -0.000000, -0.000000, 0.000000, 1.570793, 0.000000, -1.036725, 0.000001 ]
for jointIndex in range (p.getNumJoints(kuka)):
p.resetJointState(kuka,jointIndex,jointPositions[jointIndex])
p.setJointMotorControl2(kuka,jointIndex,p.POSITION_CONTROL,jointPositions[jointIndex],0)
objects = [p.loadURDF("lego/lego.urdf", 1.000000,-0.200000,0.700000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("lego/lego.urdf", 1.000000,-0.200000,0.800000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("lego/lego.urdf", 1.000000,-0.200000,0.900000,0.000000,0.000000,0.000000,1.000000)]
objects = p.loadSDF("gripper/wsg50_one_motor_gripper_new_free_base.sdf")
kuka_gripper = objects[0]
print ("kuka gripper=")
print(kuka_gripper)
p.resetBasePositionAndOrientation(kuka_gripper,[0.923103,-0.200000,1.250036],[-0.000000,0.964531,-0.000002,-0.263970])
jointPositions=[ 0.000000, -0.011130, -0.206421, 0.205143, -0.009999, 0.000000, -0.010055, 0.000000 ]
for jointIndex in range (p.getNumJoints(kuka_gripper)):
p.resetJointState(kuka_gripper,jointIndex,jointPositions[jointIndex])
p.setJointMotorControl2(kuka_gripper,jointIndex,p.POSITION_CONTROL,jointPositions[jointIndex],0)
kuka_cid = p.createConstraint(kuka, 6, kuka_gripper,0,p.JOINT_FIXED, [0,0,0], [0,0,0.05],[0,0,0])
objects = [p.loadURDF("jenga/jenga.urdf", 1.300000,-0.700000,0.750000,0.000000,0.707107,0.000000,0.707107)]
objects = [p.loadURDF("jenga/jenga.urdf", 1.200000,-0.700000,0.750000,0.000000,0.707107,0.000000,0.707107)]
objects = [p.loadURDF("jenga/jenga.urdf", 1.100000,-0.700000,0.750000,0.000000,0.707107,0.000000,0.707107)]
objects = [p.loadURDF("jenga/jenga.urdf", 1.000000,-0.700000,0.750000,0.000000,0.707107,0.000000,0.707107)]
objects = [p.loadURDF("jenga/jenga.urdf", 0.900000,-0.700000,0.750000,0.000000,0.707107,0.000000,0.707107)]
objects = [p.loadURDF("jenga/jenga.urdf", 0.800000,-0.700000,0.750000,0.000000,0.707107,0.000000,0.707107)]
objects = [p.loadURDF("table/table.urdf", 1.000000,-0.200000,0.000000,0.000000,0.000000,0.707107,0.707107)]
objects = [p.loadURDF("teddy_vhacd.urdf", 1.050000,-0.500000,0.700000,0.000000,0.000000,0.707107,0.707107)]
objects = [p.loadURDF("cube_small.urdf", 0.950000,-0.100000,0.700000,0.000000,0.000000,0.707107,0.707107)]
objects = [p.loadURDF("sphere_small.urdf", 0.850000,-0.400000,0.700000,0.000000,0.000000,0.707107,0.707107)]
objects = [p.loadURDF("duck_vhacd.urdf", 0.850000,-0.400000,0.900000,0.000000,0.000000,0.707107,0.707107)]
objects = p.loadSDF("kiva_shelf/model.sdf")
ob = objects[0]
p.resetBasePositionAndOrientation(ob,[0.000000,1.000000,1.204500],[0.000000,0.000000,0.000000,1.000000])
objects = [p.loadURDF("teddy_vhacd.urdf", -0.100000,0.600000,0.850000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("sphere_small.urdf", -0.100000,0.955006,1.169706,0.633232,-0.000000,-0.000000,0.773962)]
objects = [p.loadURDF("cube_small.urdf", 0.300000,0.600000,0.850000,0.000000,0.000000,0.000000,1.000000)]
objects = [p.loadURDF("table_square/table_square.urdf", -1.000000,0.000000,0.000000,0.000000,0.000000,0.000000,1.000000)]
ob = objects[0]
jointPositions=[ 0.000000 ]
for jointIndex in range (p.getNumJoints(ob)):
p.resetJointState(ob,jointIndex,jointPositions[jointIndex])
objects = [p.loadURDF("husky/husky.urdf", 2.000000,-5.000000,1.000000,0.000000,0.000000,0.000000,1.000000)]
ob = objects[0]
jointPositions=[ 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000 ]
for jointIndex in range (p.getNumJoints(ob)):
p.resetJointState(ob,jointIndex,jointPositions[jointIndex])
p.setGravity(0.000000,0.000000,0.000000)
p.setGravity(0,0,-10)
p.stepSimulation()
p.disconnect()

View File

@@ -0,0 +1,111 @@
#script to control a simulated robot hand using a VR glove
#see https://twitter.com/erwincoumans/status/821953216271106048
#and https://www.youtube.com/watch?v=I6s37aBXbV8
#vr glove was custom build using Spectra Symbolflex sensors (4.5")
#inside a Under Armour Batting Glove, using DFRobot Bluno BLE/Beetle
#with BLE Link to receive serial (for wireless bluetooth serial)
import serial
import time
import pybullet as p
#first try to connect to shared memory (VR), if it fails use local GUI
c = p.connect(p.SHARED_MEMORY)
if (c<0):
c = p.connect(p.GUI)
#p.resetSimulation()
p.setGravity(0,0,-10)
print(c)
if (c<0):
p.connect(p.GUI)
#load the MuJoCo MJCF hand
objects = p.loadMJCF("MPL/mpl2.xml")
hand=objects[0]
ho = p.getQuaternionFromEuler([0,3.14,0])
hand_cid = p.createConstraint(hand,-1,-1,-1,p.JOINT_FIXED,[0,0,0],[0.1,0,0],[0.500000,0.300006,0.700000],ho)
print ("hand_cid")
print (hand_cid)
for i in range (p.getNumJoints(hand)):
p.setJointMotorControl2(hand,i,p.POSITION_CONTROL,0,0)
#clamp in range 400-600
minV = 400
maxV = 600
POSITION=1
ORIENTATION=2
BUTTONS=6
p.setRealTimeSimulation(1)
def convertSensor(x):
v = minV
try:
v = float(x)
except ValueError:
v = minV
if (v<minV):
v=minV
if (v>maxV):
v=maxV
b = (v-minV)/float(maxV-minV)
return (1.0-b)
controllerId = -1
serialSteps = 0
serialStepsUntilCheckVREvents = 3
ser = serial.Serial(port='COM9',baudrate=115200,parity=serial.PARITY_ODD,stopbits=serial.STOPBITS_TWO,bytesize=serial.SEVENBITS)
if (ser.isOpen()):
while True:
events = p.getVREvents()
for e in (events):
if (e[BUTTONS][33]&p.VR_BUTTON_IS_DOWN):
controllerId = e[0]
if (e[0] == controllerId):
p.changeConstraint(hand_cid,e[POSITION],e[ORIENTATION], maxForce=50)
serialSteps = 0
while ser.inWaiting() > 0:
serialSteps=serialSteps+1
if (serialSteps>serialStepsUntilCheckVREvents):
ser.flushInput()
break
line = str(ser.readline())
words = line.split(",")
if (len(words)==6):
middle = convertSensor(words[1])
pink = convertSensor(words[2])
index = convertSensor(words[3])
thumb = convertSensor(words[4])+0.2
p.setJointMotorControl2(hand,5,p.POSITION_CONTROL,1.3)
p.setJointMotorControl2(hand,7,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,9,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,11,p.POSITION_CONTROL,thumb)
p.setJointMotorControl2(hand,15,p.POSITION_CONTROL,index)
p.setJointMotorControl2(hand,17,p.POSITION_CONTROL,index)
p.setJointMotorControl2(hand,19,p.POSITION_CONTROL,index)
p.setJointMotorControl2(hand,22,p.POSITION_CONTROL,middle)
p.setJointMotorControl2(hand,24,p.POSITION_CONTROL,middle)
p.setJointMotorControl2(hand,26,p.POSITION_CONTROL,middle)
p.setJointMotorControl2(hand,38,p.POSITION_CONTROL,pink)
p.setJointMotorControl2(hand,40,p.POSITION_CONTROL,pink)
p.setJointMotorControl2(hand,42,p.POSITION_CONTROL,pink)
ringpos = 0.5*(pink+middle)
p.setJointMotorControl2(hand,30,p.POSITION_CONTROL,ringpos)
p.setJointMotorControl2(hand,32,p.POSITION_CONTROL,ringpos)
p.setJointMotorControl2(hand,34,p.POSITION_CONTROL,ringpos)
#print(middle)
#print(pink)
#print(index)
#print(thumb)

View File

@@ -0,0 +1,49 @@
#script to track a robot with a VR controller attached to it.
import time
import pybullet as p
#first try to connect to shared memory (VR), if it fails use local GUI
c = p.connect(p.SHARED_MEMORY)
if (c<0):
c = p.connect(p.GUI)
p.resetSimulation()
p.setGravity(0,0,0)
print(c)
if (c<0):
p.connect(p.GUI)
#load the MuJoCo MJCF hand
minitaur = p.loadURDF("quadruped/minitaur.urdf")
robot_cid = -1
POSITION=1
ORIENTATION=2
BUTTONS=6
p.setRealTimeSimulation(1)
controllerId = -1
while True:
events = p.getVREvents()
for e in (events):
#print (e[BUTTONS])
if (e[BUTTONS][33]&p.VR_BUTTON_WAS_TRIGGERED ):
if (controllerId >= 0):
controllerId = -1
else:
controllerId = e[0]
if (e[0] == controllerId):
if (robot_cid>=0):
p.changeConstraint(robot_cid,e[POSITION],e[ORIENTATION], maxForce=5000)
if (e[BUTTONS][32]&p.VR_BUTTON_WAS_TRIGGERED ):
if (robot_cid>=0):
p.removeConstraint(robot_cid)
#q = [0,0,0,1]
euler = p.getEulerFromQuaternion(e[ORIENTATION])
q = p.getQuaternionFromEuler([euler[0],euler[1],0]) #-euler[0],-euler[1],-euler[2]])
robot_cid = p.createConstraint(minitaur,-1,-1,-1,p.JOINT_FIXED,[0,0,0],[0.1,0,0],e[POSITION],q,e[ORIENTATION])