add missing files

only report fail if there are actual failures
This commit is contained in:
erwin coumans
2013-03-12 14:51:43 -07:00
parent 477a7f9e39
commit ecdb0e52ca
26 changed files with 11854 additions and 4 deletions

View File

@@ -5,7 +5,6 @@
#include "parallel_primitives/host/btQuickprof.h"
#include "../basic_initialize/btOpenCLUtils.h"
#include "../kernels/integrateKernel.h"
#include "../kernels/sapKernels.h"
#include "../kernels/sapFastKernels.h"

View File

@@ -81,8 +81,9 @@ inline void broadphaseTest()
int usrPtr = 1;
sap->createProxy(aabbMin,aabbMax,usrPtr,group,mask);
// aabbMin.setValue(2,2,2);
// aabbMax.setValue(3,3,3);
aabbMin.setValue(1,1,1);
aabbMax.setValue(2,2,2);
usrPtr = 2;
sap->createProxy(aabbMin,aabbMax,usrPtr,group,mask);
sap->writeAabbsToGpu();
@@ -113,8 +114,13 @@ int main(int argc, char** argv)
broadphaseTest();
printf("%d tests passed, %d tests failed\n",g_nPassed, g_nFailed);
printf("%d tests passed\n",g_nPassed, g_nFailed);
if (g_nFailed)
{
printf("%d tests failed\n",g_nFailed);
}
printf("End, press <enter>\n");
getchar();
exitCL();

View File

@@ -0,0 +1,232 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_AABB_UTIL2
#define BT_AABB_UTIL2
#include "btTransform.h"
#include "btVector3.h"
#include "btMinMax.h"
SIMD_FORCE_INLINE void AabbExpand (btVector3& aabbMin,
btVector3& aabbMax,
const btVector3& expansionMin,
const btVector3& expansionMax)
{
aabbMin = aabbMin + expansionMin;
aabbMax = aabbMax + expansionMax;
}
/// conservative test for overlap between two aabbs
SIMD_FORCE_INLINE bool TestPointAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
const btVector3 &point)
{
bool overlap = true;
overlap = (aabbMin1.getX() > point.getX() || aabbMax1.getX() < point.getX()) ? false : overlap;
overlap = (aabbMin1.getZ() > point.getZ() || aabbMax1.getZ() < point.getZ()) ? false : overlap;
overlap = (aabbMin1.getY() > point.getY() || aabbMax1.getY() < point.getY()) ? false : overlap;
return overlap;
}
/// conservative test for overlap between two aabbs
SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3 &aabbMin1, const btVector3 &aabbMax1,
const btVector3 &aabbMin2, const btVector3 &aabbMax2)
{
bool overlap = true;
overlap = (aabbMin1.getX() > aabbMax2.getX() || aabbMax1.getX() < aabbMin2.getX()) ? false : overlap;
overlap = (aabbMin1.getZ() > aabbMax2.getZ() || aabbMax1.getZ() < aabbMin2.getZ()) ? false : overlap;
overlap = (aabbMin1.getY() > aabbMax2.getY() || aabbMax1.getY() < aabbMin2.getY()) ? false : overlap;
return overlap;
}
/// conservative test for overlap between triangle and aabb
SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3 *vertices,
const btVector3 &aabbMin, const btVector3 &aabbMax)
{
const btVector3 &p1 = vertices[0];
const btVector3 &p2 = vertices[1];
const btVector3 &p3 = vertices[2];
if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false;
if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false;
if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false;
if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false;
if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false;
if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false;
return true;
}
SIMD_FORCE_INLINE int btOutcode(const btVector3& p,const btVector3& halfExtent)
{
return (p.getX() < -halfExtent.getX() ? 0x01 : 0x0) |
(p.getX() > halfExtent.getX() ? 0x08 : 0x0) |
(p.getY() < -halfExtent.getY() ? 0x02 : 0x0) |
(p.getY() > halfExtent.getY() ? 0x10 : 0x0) |
(p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) |
(p.getZ() > halfExtent.getZ() ? 0x20 : 0x0);
}
SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom,
const btVector3& rayInvDirection,
const unsigned int raySign[3],
const btVector3 bounds[2],
btScalar& tmin,
btScalar lambda_min,
btScalar lambda_max)
{
btScalar tmax, tymin, tymax, tzmin, tzmax;
tmin = (bounds[raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
tmax = (bounds[1-raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
tymin = (bounds[raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
tymax = (bounds[1-raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
if ( (tmin > tymax) || (tymin > tmax) )
return false;
if (tymin > tmin)
tmin = tymin;
if (tymax < tmax)
tmax = tymax;
tzmin = (bounds[raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
tzmax = (bounds[1-raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
if ( (tmin > tzmax) || (tzmin > tmax) )
return false;
if (tzmin > tmin)
tmin = tzmin;
if (tzmax < tmax)
tmax = tzmax;
return ( (tmin < lambda_max) && (tmax > lambda_min) );
}
SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom,
const btVector3& rayTo,
const btVector3& aabbMin,
const btVector3& aabbMax,
btScalar& param, btVector3& normal)
{
btVector3 aabbHalfExtent = (aabbMax-aabbMin)* btScalar(0.5);
btVector3 aabbCenter = (aabbMax+aabbMin)* btScalar(0.5);
btVector3 source = rayFrom - aabbCenter;
btVector3 target = rayTo - aabbCenter;
int sourceOutcode = btOutcode(source,aabbHalfExtent);
int targetOutcode = btOutcode(target,aabbHalfExtent);
if ((sourceOutcode & targetOutcode) == 0x0)
{
btScalar lambda_enter = btScalar(0.0);
btScalar lambda_exit = param;
btVector3 r = target - source;
int i;
btScalar normSign = 1;
btVector3 hitNormal(0,0,0);
int bit=1;
for (int j=0;j<2;j++)
{
for (i = 0; i != 3; ++i)
{
if (sourceOutcode & bit)
{
btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
if (lambda_enter <= lambda)
{
lambda_enter = lambda;
hitNormal.setValue(0,0,0);
hitNormal[i] = normSign;
}
}
else if (targetOutcode & bit)
{
btScalar lambda = (-source[i] - aabbHalfExtent[i]*normSign) / r[i];
btSetMin(lambda_exit, lambda);
}
bit<<=1;
}
normSign = btScalar(-1.);
}
if (lambda_enter <= lambda_exit)
{
param = lambda_enter;
normal = hitNormal;
return true;
}
}
return false;
}
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut)
{
btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin);
btMatrix3x3 abs_b = t.getBasis().absolute();
btVector3 center = t.getOrigin();
btVector3 extent = halfExtentsWithMargin.dot3( abs_b[0], abs_b[1], abs_b[2] );
aabbMinOut = center - extent;
aabbMaxOut = center + extent;
}
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut)
{
btAssert(localAabbMin.getX() <= localAabbMax.getX());
btAssert(localAabbMin.getY() <= localAabbMax.getY());
btAssert(localAabbMin.getZ() <= localAabbMax.getZ());
btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin);
localHalfExtents+=btVector3(margin,margin,margin);
btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btVector3 center = trans(localCenter);
btVector3 extent = localHalfExtents.dot3( abs_b[0], abs_b[1], abs_b[2] );
aabbMinOut = center-extent;
aabbMaxOut = center+extent;
}
#define USE_BANCHLESS 1
#ifdef USE_BANCHLESS
//This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360)
SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0])
& (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2])
& (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
1, 0));
}
#else
SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1,const unsigned short int* aabbMax1,const unsigned short int* aabbMin2,const unsigned short int* aabbMax2)
{
bool overlap = true;
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
return overlap;
}
#endif //USE_BANCHLESS
#endif //BT_AABB_UTIL2

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,241 @@
/*
Stan Melax Convex Hull Computation
Copyright (c) 2008 Stan Melax http://www.melax.com/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
///includes modifications/improvements by John Ratcliff, see BringOutYourDead below.
#ifndef BT_CD_HULL_H
#define BT_CD_HULL_H
#include "btVector3.h"
#include "btAlignedObjectArray.h"
typedef btAlignedObjectArray<unsigned int> TUIntArray;
class HullResult
{
public:
HullResult(void)
{
mPolygons = true;
mNumOutputVertices = 0;
mNumFaces = 0;
mNumIndices = 0;
}
bool mPolygons; // true if indices represents polygons, false indices are triangles
unsigned int mNumOutputVertices; // number of vertices in the output hull
btAlignedObjectArray<btVector3> m_OutputVertices; // array of vertices
unsigned int mNumFaces; // the number of faces produced
unsigned int mNumIndices; // the total number of indices
btAlignedObjectArray<unsigned int> m_Indices; // pointer to indices.
// If triangles, then indices are array indexes into the vertex list.
// If polygons, indices are in the form (number of points in face) (p1, p2, p3, ..) etc..
};
enum HullFlag
{
QF_TRIANGLES = (1<<0), // report results as triangles, not polygons.
QF_REVERSE_ORDER = (1<<1), // reverse order of the triangle indices.
QF_DEFAULT = QF_TRIANGLES
};
class HullDesc
{
public:
HullDesc(void)
{
mFlags = QF_DEFAULT;
mVcount = 0;
mVertices = 0;
mVertexStride = sizeof(btVector3);
mNormalEpsilon = 0.001f;
mMaxVertices = 4096; // maximum number of points to be considered for a convex hull.
mMaxFaces = 4096;
};
HullDesc(HullFlag flag,
unsigned int vcount,
const btVector3 *vertices,
unsigned int stride = sizeof(btVector3))
{
mFlags = flag;
mVcount = vcount;
mVertices = vertices;
mVertexStride = stride;
mNormalEpsilon = btScalar(0.001);
mMaxVertices = 4096;
}
bool HasHullFlag(HullFlag flag) const
{
if ( mFlags & flag ) return true;
return false;
}
void SetHullFlag(HullFlag flag)
{
mFlags|=flag;
}
void ClearHullFlag(HullFlag flag)
{
mFlags&=~flag;
}
unsigned int mFlags; // flags to use when generating the convex hull.
unsigned int mVcount; // number of vertices in the input point cloud
const btVector3 *mVertices; // the array of vertices.
unsigned int mVertexStride; // the stride of each vertex, in bytes.
btScalar mNormalEpsilon; // the epsilon for removing duplicates. This is a normalized value, if normalized bit is on.
unsigned int mMaxVertices; // maximum number of vertices to be considered for the hull!
unsigned int mMaxFaces;
};
enum HullError
{
QE_OK, // success!
QE_FAIL // failed.
};
class btPlane
{
public:
btVector3 normal;
btScalar dist; // distance below origin - the D from plane equasion Ax+By+Cz+D=0
btPlane(const btVector3 &n,btScalar d):normal(n),dist(d){}
btPlane():normal(),dist(0){}
};
class ConvexH
{
public:
class HalfEdge
{
public:
short ea; // the other half of the edge (index into edges list)
unsigned char v; // the vertex at the start of this edge (index into vertices list)
unsigned char p; // the facet on which this edge lies (index into facets list)
HalfEdge(){}
HalfEdge(short _ea,unsigned char _v, unsigned char _p):ea(_ea),v(_v),p(_p){}
};
ConvexH()
{
}
~ConvexH()
{
}
btAlignedObjectArray<btVector3> vertices;
btAlignedObjectArray<HalfEdge> edges;
btAlignedObjectArray<btPlane> facets;
ConvexH(int vertices_size,int edges_size,int facets_size);
};
class int4
{
public:
int x,y,z,w;
int4(){};
int4(int _x,int _y, int _z,int _w){x=_x;y=_y;z=_z;w=_w;}
const int& operator[](int i) const {return (&x)[i];}
int& operator[](int i) {return (&x)[i];}
};
class PHullResult
{
public:
PHullResult(void)
{
mVcount = 0;
mIndexCount = 0;
mFaceCount = 0;
mVertices = 0;
}
unsigned int mVcount;
unsigned int mIndexCount;
unsigned int mFaceCount;
btVector3* mVertices;
TUIntArray m_Indices;
};
///The HullLibrary class can create a convex hull from a collection of vertices, using the ComputeHull method.
///The btShapeHull class uses this HullLibrary to create a approximate convex mesh given a general (non-polyhedral) convex shape.
class HullLibrary
{
btAlignedObjectArray<class btHullTriangle*> m_tris;
public:
btAlignedObjectArray<int> m_vertexIndexMapping;
HullError CreateConvexHull(const HullDesc& desc, // describes the input request
HullResult& result); // contains the resulst
HullError ReleaseResult(HullResult &result); // release memory allocated for this result, we are done with it.
private:
bool ComputeHull(unsigned int vcount,const btVector3 *vertices,PHullResult &result,unsigned int vlimit);
class btHullTriangle* allocateTriangle(int a,int b,int c);
void deAllocateTriangle(btHullTriangle*);
void b2bfix(btHullTriangle* s,btHullTriangle*t);
void removeb2b(btHullTriangle* s,btHullTriangle*t);
void checkit(btHullTriangle *t);
btHullTriangle* extrudable(btScalar epsilon);
int calchull(btVector3 *verts,int verts_count, TUIntArray& tris_out, int &tris_count,int vlimit);
int calchullgen(btVector3 *verts,int verts_count, int vlimit);
int4 FindSimplex(btVector3 *verts,int verts_count,btAlignedObjectArray<int> &allow);
class ConvexH* ConvexHCrop(ConvexH& convex,const btPlane& slice);
void extrude(class btHullTriangle* t0,int v);
ConvexH* test_cube();
//BringOutYourDead (John Ratcliff): When you create a convex hull you hand it a large input set of vertices forming a 'point cloud'.
//After the hull is generated it give you back a set of polygon faces which index the *original* point cloud.
//The thing is, often times, there are many 'dead vertices' in the point cloud that are on longer referenced by the hull.
//The routine 'BringOutYourDead' find only the referenced vertices, copies them to an new buffer, and re-indexes the hull so that it is a minimal representation.
void BringOutYourDead(const btVector3* verts,unsigned int vcount, btVector3* overts,unsigned int &ocount,unsigned int* indices,unsigned indexcount);
bool CleanupVertices(unsigned int svcount,
const btVector3* svertices,
unsigned int stride,
unsigned int &vcount, // output number of vertices
btVector3* vertices, // location to store the results.
btScalar normalepsilon,
btVector3& scale);
};
#endif //BT_CD_HULL_H

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,103 @@
/*
Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_CONVEX_HULL_COMPUTER_H
#define BT_CONVEX_HULL_COMPUTER_H
#include "btVector3.h"
#include "btAlignedObjectArray.h"
/// Convex hull implementation based on Preparata and Hong
/// See http://code.google.com/p/bullet/issues/detail?id=275
/// Ole Kniemeyer, MAXON Computer GmbH
class btConvexHullComputer
{
private:
btScalar compute(const void* coords, bool doubleCoords, int stride, int count, btScalar shrink, btScalar shrinkClamp);
public:
class Edge
{
private:
int next;
int reverse;
int targetVertex;
friend class btConvexHullComputer;
public:
int getSourceVertex() const
{
return (this + reverse)->targetVertex;
}
int getTargetVertex() const
{
return targetVertex;
}
const Edge* getNextEdgeOfVertex() const // clockwise list of all edges of a vertex
{
return this + next;
}
const Edge* getNextEdgeOfFace() const // counter-clockwise list of all edges of a face
{
return (this + reverse)->getNextEdgeOfVertex();
}
const Edge* getReverseEdge() const
{
return this + reverse;
}
};
// Vertices of the output hull
btAlignedObjectArray<btVector3> vertices;
// Edges of the output hull
btAlignedObjectArray<Edge> edges;
// Faces of the convex hull. Each entry is an index into the "edges" array pointing to an edge of the face. Faces are planar n-gons
btAlignedObjectArray<int> faces;
/*
Compute convex hull of "count" vertices stored in "coords". "stride" is the difference in bytes
between the addresses of consecutive vertices. If "shrink" is positive, the convex hull is shrunken
by that amount (each face is moved by "shrink" length units towards the center along its normal).
If "shrinkClamp" is positive, "shrink" is clamped to not exceed "shrinkClamp * innerRadius", where "innerRadius"
is the minimum distance of a face to the center of the convex hull.
The returned value is the amount by which the hull has been shrunken. If it is negative, the amount was so large
that the resulting convex hull is empty.
The output convex hull can be found in the member variables "vertices", "edges", "faces".
*/
btScalar compute(const float* coords, int stride, int count, btScalar shrink, btScalar shrinkClamp)
{
return compute(coords, false, stride, count, shrink, shrinkClamp);
}
// same as above, but double precision
btScalar compute(const double* coords, int stride, int count, btScalar shrink, btScalar shrinkClamp)
{
return compute(coords, true, stride, count, shrink, shrinkClamp);
}
};
#endif //BT_CONVEX_HULL_COMPUTER_H

View File

@@ -0,0 +1,42 @@
#ifndef BT_DEFAULT_MOTION_STATE_H
#define BT_DEFAULT_MOTION_STATE_H
#include "btMotionState.h"
///The btDefaultMotionState provides a common implementation to synchronize world transforms with offsets.
ATTRIBUTE_ALIGNED16(struct) btDefaultMotionState : public btMotionState
{
btTransform m_graphicsWorldTrans;
btTransform m_centerOfMassOffset;
btTransform m_startWorldTrans;
void* m_userPointer;
BT_DECLARE_ALIGNED_ALLOCATOR();
btDefaultMotionState(const btTransform& startTrans = btTransform::getIdentity(),const btTransform& centerOfMassOffset = btTransform::getIdentity())
: m_graphicsWorldTrans(startTrans),
m_centerOfMassOffset(centerOfMassOffset),
m_startWorldTrans(startTrans),
m_userPointer(0)
{
}
///synchronizes world transform from user to physics
virtual void getWorldTransform(btTransform& centerOfMassWorldTrans ) const
{
centerOfMassWorldTrans = m_centerOfMassOffset.inverse() * m_graphicsWorldTrans ;
}
///synchronizes world transform from physics to user
///Bullet only calls the update of worldtransform for active objects
virtual void setWorldTransform(const btTransform& centerOfMassWorldTrans)
{
m_graphicsWorldTrans = centerOfMassWorldTrans * m_centerOfMassOffset ;
}
};
#endif //BT_DEFAULT_MOTION_STATE_H

View File

@@ -0,0 +1,185 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btGeometryUtil.h"
/*
Make sure this dummy function never changes so that it
can be used by probes that are checking whether the
library is actually installed.
*/
extern "C"
{
void btBulletMathProbe ();
void btBulletMathProbe () {}
}
bool btGeometryUtil::isPointInsidePlanes(const btAlignedObjectArray<btVector3>& planeEquations, const btVector3& point, btScalar margin)
{
int numbrushes = planeEquations.size();
for (int i=0;i<numbrushes;i++)
{
const btVector3& N1 = planeEquations[i];
btScalar dist = btScalar(N1.dot(point))+btScalar(N1[3])-margin;
if (dist>btScalar(0.))
{
return false;
}
}
return true;
}
bool btGeometryUtil::areVerticesBehindPlane(const btVector3& planeNormal, const btAlignedObjectArray<btVector3>& vertices, btScalar margin)
{
int numvertices = vertices.size();
for (int i=0;i<numvertices;i++)
{
const btVector3& N1 = vertices[i];
btScalar dist = btScalar(planeNormal.dot(N1))+btScalar(planeNormal[3])-margin;
if (dist>btScalar(0.))
{
return false;
}
}
return true;
}
bool notExist(const btVector3& planeEquation,const btAlignedObjectArray<btVector3>& planeEquations);
bool notExist(const btVector3& planeEquation,const btAlignedObjectArray<btVector3>& planeEquations)
{
int numbrushes = planeEquations.size();
for (int i=0;i<numbrushes;i++)
{
const btVector3& N1 = planeEquations[i];
if (planeEquation.dot(N1) > btScalar(0.999))
{
return false;
}
}
return true;
}
void btGeometryUtil::getPlaneEquationsFromVertices(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& planeEquationsOut )
{
const int numvertices = vertices.size();
// brute force:
for (int i=0;i<numvertices;i++)
{
const btVector3& N1 = vertices[i];
for (int j=i+1;j<numvertices;j++)
{
const btVector3& N2 = vertices[j];
for (int k=j+1;k<numvertices;k++)
{
const btVector3& N3 = vertices[k];
btVector3 planeEquation,edge0,edge1;
edge0 = N2-N1;
edge1 = N3-N1;
btScalar normalSign = btScalar(1.);
for (int ww=0;ww<2;ww++)
{
planeEquation = normalSign * edge0.cross(edge1);
if (planeEquation.length2() > btScalar(0.0001))
{
planeEquation.normalize();
if (notExist(planeEquation,planeEquationsOut))
{
planeEquation[3] = -planeEquation.dot(N1);
//check if inside, and replace supportingVertexOut if needed
if (areVerticesBehindPlane(planeEquation,vertices,btScalar(0.01)))
{
planeEquationsOut.push_back(planeEquation);
}
}
}
normalSign = btScalar(-1.);
}
}
}
}
}
void btGeometryUtil::getVerticesFromPlaneEquations(const btAlignedObjectArray<btVector3>& planeEquations , btAlignedObjectArray<btVector3>& verticesOut )
{
const int numbrushes = planeEquations.size();
// brute force:
for (int i=0;i<numbrushes;i++)
{
const btVector3& N1 = planeEquations[i];
for (int j=i+1;j<numbrushes;j++)
{
const btVector3& N2 = planeEquations[j];
for (int k=j+1;k<numbrushes;k++)
{
const btVector3& N3 = planeEquations[k];
btVector3 n2n3; n2n3 = N2.cross(N3);
btVector3 n3n1; n3n1 = N3.cross(N1);
btVector3 n1n2; n1n2 = N1.cross(N2);
if ( ( n2n3.length2() > btScalar(0.0001) ) &&
( n3n1.length2() > btScalar(0.0001) ) &&
( n1n2.length2() > btScalar(0.0001) ) )
{
//point P out of 3 plane equations:
// d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
//P = -------------------------------------------------------------------------
// N1 . ( N2 * N3 )
btScalar quotient = (N1.dot(n2n3));
if (btFabs(quotient) > btScalar(0.000001))
{
quotient = btScalar(-1.) / quotient;
n2n3 *= N1[3];
n3n1 *= N2[3];
n1n2 *= N3[3];
btVector3 potentialVertex = n2n3;
potentialVertex += n3n1;
potentialVertex += n1n2;
potentialVertex *= quotient;
//check if inside, and replace supportingVertexOut if needed
if (isPointInsidePlanes(planeEquations,potentialVertex,btScalar(0.01)))
{
verticesOut.push_back(potentialVertex);
}
}
}
}
}
}
}

View File

@@ -0,0 +1,42 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GEOMETRY_UTIL_H
#define BT_GEOMETRY_UTIL_H
#include "btVector3.h"
#include "btAlignedObjectArray.h"
///The btGeometryUtil helper class provides a few methods to convert between plane equations and vertices.
class btGeometryUtil
{
public:
static void getPlaneEquationsFromVertices(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& planeEquationsOut );
static void getVerticesFromPlaneEquations(const btAlignedObjectArray<btVector3>& planeEquations , btAlignedObjectArray<btVector3>& verticesOut );
static bool isInside(const btAlignedObjectArray<btVector3>& vertices, const btVector3& planeNormal, btScalar margin);
static bool isPointInsidePlanes(const btAlignedObjectArray<btVector3>& planeEquations, const btVector3& point, btScalar margin);
static bool areVerticesBehindPlane(const btVector3& planeNormal, const btAlignedObjectArray<btVector3>& vertices, btScalar margin);
};
#endif //BT_GEOMETRY_UTIL_H

View File

@@ -0,0 +1,117 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef GRAHAM_SCAN_2D_CONVEX_HULL_H
#define GRAHAM_SCAN_2D_CONVEX_HULL_H
#include "btVector3.h"
#include "btAlignedObjectArray.h"
struct GrahamVector3 : public btVector3
{
GrahamVector3(const btVector3& org, int orgIndex)
:btVector3(org),
m_orgIndex(orgIndex)
{
}
btScalar m_angle;
int m_orgIndex;
};
struct btAngleCompareFunc {
btVector3 m_anchor;
btAngleCompareFunc(const btVector3& anchor)
: m_anchor(anchor)
{
}
bool operator()(const GrahamVector3& a, const GrahamVector3& b) const {
if (a.m_angle != b.m_angle)
return a.m_angle < b.m_angle;
else
{
btScalar al = (a-m_anchor).length2();
btScalar bl = (b-m_anchor).length2();
if (al != bl)
return al < bl;
else
{
return a.m_orgIndex < b.m_orgIndex;
}
}
}
};
inline void GrahamScanConvexHull2D(btAlignedObjectArray<GrahamVector3>& originalPoints, btAlignedObjectArray<GrahamVector3>& hull, const btVector3& normalAxis)
{
btVector3 axis0,axis1;
btPlaneSpace1(normalAxis,axis0,axis1);
if (originalPoints.size()<=1)
{
for (int i=0;i<originalPoints.size();i++)
hull.push_back(originalPoints[0]);
return;
}
//step1 : find anchor point with smallest projection on axis0 and move it to first location
for (int i=0;i<originalPoints.size();i++)
{
// const btVector3& left = originalPoints[i];
// const btVector3& right = originalPoints[0];
btScalar projL = originalPoints[i].dot(axis0);
btScalar projR = originalPoints[0].dot(axis0);
if (projL < projR)
{
originalPoints.swap(0,i);
}
}
//also precompute angles
originalPoints[0].m_angle = -1e30f;
for (int i=1;i<originalPoints.size();i++)
{
btVector3 xvec = axis0;
btVector3 ar = originalPoints[i]-originalPoints[0];
originalPoints[i].m_angle = btCross(xvec, ar).dot(normalAxis) / ar.length();
}
//step 2: sort all points, based on 'angle' with this anchor
btAngleCompareFunc comp(originalPoints[0]);
originalPoints.quickSortInternal(comp,1,originalPoints.size()-1);
int i;
for (i = 0; i<2; i++)
hull.push_back(originalPoints[i]);
//step 3: keep all 'convex' points and discard concave points (using back tracking)
for (; i != originalPoints.size(); i++)
{
bool isConvex = false;
while (!isConvex&& hull.size()>1) {
btVector3& a = hull[hull.size()-2];
btVector3& b = hull[hull.size()-1];
isConvex = btCross(a-b,a-originalPoints[i]).dot(normalAxis)> 0;
if (!isConvex)
hull.pop_back();
else
hull.push_back(originalPoints[i]);
}
}
}
#endif //GRAHAM_SCAN_2D_CONVEX_HULL_H

View File

@@ -0,0 +1,411 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_IDEBUG_DRAW__H
#define BT_IDEBUG_DRAW__H
#include "btVector3.h"
#include "btTransform.h"
///The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations.
///Typical use case: create a debug drawer object, and assign it to a btCollisionWorld or btDynamicsWorld using setDebugDrawer and call debugDrawWorld.
///A class that implements the btIDebugDraw interface has to implement the drawLine method at a minimum.
///For color arguments the X,Y,Z components refer to Red, Green and Blue each in the range [0..1]
class btIDebugDraw
{
public:
enum DebugDrawModes
{
DBG_NoDebug=0,
DBG_DrawWireframe = 1,
DBG_DrawAabb=2,
DBG_DrawFeaturesText=4,
DBG_DrawContactPoints=8,
DBG_NoDeactivation=16,
DBG_NoHelpText = 32,
DBG_DrawText=64,
DBG_ProfileTimings = 128,
DBG_EnableSatComparison = 256,
DBG_DisableBulletLCP = 512,
DBG_EnableCCD = 1024,
DBG_DrawConstraints = (1 << 11),
DBG_DrawConstraintLimits = (1 << 12),
DBG_FastWireframe = (1<<13),
DBG_DrawNormals = (1<<14),
DBG_DrawBroadphasePairs= (1<<15),
DBG_MAX_DEBUG_DRAW_MODE
};
virtual ~btIDebugDraw() {};
virtual void drawLine(const btVector3& from,const btVector3& to,const btVector3& color)=0;
virtual void drawLine(const btVector3& from,const btVector3& to, const btVector3& fromColor, const btVector3& toColor)
{
(void) toColor;
drawLine (from, to, fromColor);
}
virtual void drawSphere(btScalar radius, const btTransform& transform, const btVector3& color)
{
btVector3 start = transform.getOrigin();
const btVector3 xoffs = transform.getBasis() * btVector3(1,0,0);
const btVector3 yoffs = transform.getBasis() * btVector3(0,1,0);
const btVector3 zoffs = transform.getBasis() * btVector3(0,0,1);
drawArc(start,xoffs,yoffs,radius,radius,0,SIMD_2_PI,color,true,btScalar(10.0));
drawArc(start,yoffs,zoffs,radius,radius,0,SIMD_2_PI,color,true,btScalar(10.0));
drawArc(start,zoffs,xoffs,radius,radius,0,SIMD_2_PI,color,true,btScalar(10.0));
// drawArc(start,zoffs,yoffs,radius,radius,0,SIMD_2_PI,color,false,btScalar(10.0));
}
virtual void drawSphere (const btVector3& p, btScalar radius, const btVector3& color)
{
btTransform tr;
tr.setIdentity();
tr.setOrigin(p);
drawSphere(radius,tr,color);
}
virtual void drawTriangle(const btVector3& v0,const btVector3& v1,const btVector3& v2,const btVector3& /*n0*/,const btVector3& /*n1*/,const btVector3& /*n2*/,const btVector3& color, btScalar alpha)
{
drawTriangle(v0,v1,v2,color,alpha);
}
virtual void drawTriangle(const btVector3& v0,const btVector3& v1,const btVector3& v2,const btVector3& color, btScalar /*alpha*/)
{
drawLine(v0,v1,color);
drawLine(v1,v2,color);
drawLine(v2,v0,color);
}
virtual void drawContactPoint(const btVector3& PointOnB,const btVector3& normalOnB,btScalar distance,int lifeTime,const btVector3& color)=0;
virtual void reportErrorWarning(const char* warningString) = 0;
virtual void draw3dText(const btVector3& location,const char* textString) = 0;
virtual void setDebugMode(int debugMode) =0;
virtual int getDebugMode() const = 0;
virtual void drawAabb(const btVector3& from,const btVector3& to,const btVector3& color)
{
btVector3 halfExtents = (to-from)* 0.5f;
btVector3 center = (to+from) *0.5f;
int i,j;
btVector3 edgecoord(1.f,1.f,1.f),pa,pb;
for (i=0;i<4;i++)
{
for (j=0;j<3;j++)
{
pa = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1],
edgecoord[2]*halfExtents[2]);
pa+=center;
int othercoord = j%3;
edgecoord[othercoord]*=-1.f;
pb = btVector3(edgecoord[0]*halfExtents[0], edgecoord[1]*halfExtents[1],
edgecoord[2]*halfExtents[2]);
pb+=center;
drawLine(pa,pb,color);
}
edgecoord = btVector3(-1.f,-1.f,-1.f);
if (i<3)
edgecoord[i]*=-1.f;
}
}
virtual void drawTransform(const btTransform& transform, btScalar orthoLen)
{
btVector3 start = transform.getOrigin();
drawLine(start, start+transform.getBasis() * btVector3(orthoLen, 0, 0), btVector3(0.7f,0,0));
drawLine(start, start+transform.getBasis() * btVector3(0, orthoLen, 0), btVector3(0,0.7f,0));
drawLine(start, start+transform.getBasis() * btVector3(0, 0, orthoLen), btVector3(0,0,0.7f));
}
virtual void drawArc(const btVector3& center, const btVector3& normal, const btVector3& axis, btScalar radiusA, btScalar radiusB, btScalar minAngle, btScalar maxAngle,
const btVector3& color, bool drawSect, btScalar stepDegrees = btScalar(10.f))
{
const btVector3& vx = axis;
btVector3 vy = normal.cross(axis);
btScalar step = stepDegrees * SIMD_RADS_PER_DEG;
int nSteps = (int)((maxAngle - minAngle) / step);
if(!nSteps) nSteps = 1;
btVector3 prev = center + radiusA * vx * btCos(minAngle) + radiusB * vy * btSin(minAngle);
if(drawSect)
{
drawLine(center, prev, color);
}
for(int i = 1; i <= nSteps; i++)
{
btScalar angle = minAngle + (maxAngle - minAngle) * btScalar(i) / btScalar(nSteps);
btVector3 next = center + radiusA * vx * btCos(angle) + radiusB * vy * btSin(angle);
drawLine(prev, next, color);
prev = next;
}
if(drawSect)
{
drawLine(center, prev, color);
}
}
virtual void drawSpherePatch(const btVector3& center, const btVector3& up, const btVector3& axis, btScalar radius,
btScalar minTh, btScalar maxTh, btScalar minPs, btScalar maxPs, const btVector3& color, btScalar stepDegrees = btScalar(10.f))
{
btVector3 vA[74];
btVector3 vB[74];
btVector3 *pvA = vA, *pvB = vB, *pT;
btVector3 npole = center + up * radius;
btVector3 spole = center - up * radius;
btVector3 arcStart;
btScalar step = stepDegrees * SIMD_RADS_PER_DEG;
const btVector3& kv = up;
const btVector3& iv = axis;
btVector3 jv = kv.cross(iv);
bool drawN = false;
bool drawS = false;
if(minTh <= -SIMD_HALF_PI)
{
minTh = -SIMD_HALF_PI + step;
drawN = true;
}
if(maxTh >= SIMD_HALF_PI)
{
maxTh = SIMD_HALF_PI - step;
drawS = true;
}
if(minTh > maxTh)
{
minTh = -SIMD_HALF_PI + step;
maxTh = SIMD_HALF_PI - step;
drawN = drawS = true;
}
int n_hor = (int)((maxTh - minTh) / step) + 1;
if(n_hor < 2) n_hor = 2;
btScalar step_h = (maxTh - minTh) / btScalar(n_hor - 1);
bool isClosed = false;
if(minPs > maxPs)
{
minPs = -SIMD_PI + step;
maxPs = SIMD_PI;
isClosed = true;
}
else if((maxPs - minPs) >= SIMD_PI * btScalar(2.f))
{
isClosed = true;
}
else
{
isClosed = false;
}
int n_vert = (int)((maxPs - minPs) / step) + 1;
if(n_vert < 2) n_vert = 2;
btScalar step_v = (maxPs - minPs) / btScalar(n_vert - 1);
for(int i = 0; i < n_hor; i++)
{
btScalar th = minTh + btScalar(i) * step_h;
btScalar sth = radius * btSin(th);
btScalar cth = radius * btCos(th);
for(int j = 0; j < n_vert; j++)
{
btScalar psi = minPs + btScalar(j) * step_v;
btScalar sps = btSin(psi);
btScalar cps = btCos(psi);
pvB[j] = center + cth * cps * iv + cth * sps * jv + sth * kv;
if(i)
{
drawLine(pvA[j], pvB[j], color);
}
else if(drawS)
{
drawLine(spole, pvB[j], color);
}
if(j)
{
drawLine(pvB[j-1], pvB[j], color);
}
else
{
arcStart = pvB[j];
}
if((i == (n_hor - 1)) && drawN)
{
drawLine(npole, pvB[j], color);
}
if(isClosed)
{
if(j == (n_vert-1))
{
drawLine(arcStart, pvB[j], color);
}
}
else
{
if(((!i) || (i == (n_hor-1))) && ((!j) || (j == (n_vert-1))))
{
drawLine(center, pvB[j], color);
}
}
}
pT = pvA; pvA = pvB; pvB = pT;
}
}
virtual void drawBox(const btVector3& bbMin, const btVector3& bbMax, const btVector3& color)
{
drawLine(btVector3(bbMin[0], bbMin[1], bbMin[2]), btVector3(bbMax[0], bbMin[1], bbMin[2]), color);
drawLine(btVector3(bbMax[0], bbMin[1], bbMin[2]), btVector3(bbMax[0], bbMax[1], bbMin[2]), color);
drawLine(btVector3(bbMax[0], bbMax[1], bbMin[2]), btVector3(bbMin[0], bbMax[1], bbMin[2]), color);
drawLine(btVector3(bbMin[0], bbMax[1], bbMin[2]), btVector3(bbMin[0], bbMin[1], bbMin[2]), color);
drawLine(btVector3(bbMin[0], bbMin[1], bbMin[2]), btVector3(bbMin[0], bbMin[1], bbMax[2]), color);
drawLine(btVector3(bbMax[0], bbMin[1], bbMin[2]), btVector3(bbMax[0], bbMin[1], bbMax[2]), color);
drawLine(btVector3(bbMax[0], bbMax[1], bbMin[2]), btVector3(bbMax[0], bbMax[1], bbMax[2]), color);
drawLine(btVector3(bbMin[0], bbMax[1], bbMin[2]), btVector3(bbMin[0], bbMax[1], bbMax[2]), color);
drawLine(btVector3(bbMin[0], bbMin[1], bbMax[2]), btVector3(bbMax[0], bbMin[1], bbMax[2]), color);
drawLine(btVector3(bbMax[0], bbMin[1], bbMax[2]), btVector3(bbMax[0], bbMax[1], bbMax[2]), color);
drawLine(btVector3(bbMax[0], bbMax[1], bbMax[2]), btVector3(bbMin[0], bbMax[1], bbMax[2]), color);
drawLine(btVector3(bbMin[0], bbMax[1], bbMax[2]), btVector3(bbMin[0], bbMin[1], bbMax[2]), color);
}
virtual void drawBox(const btVector3& bbMin, const btVector3& bbMax, const btTransform& trans, const btVector3& color)
{
drawLine(trans * btVector3(bbMin[0], bbMin[1], bbMin[2]), trans * btVector3(bbMax[0], bbMin[1], bbMin[2]), color);
drawLine(trans * btVector3(bbMax[0], bbMin[1], bbMin[2]), trans * btVector3(bbMax[0], bbMax[1], bbMin[2]), color);
drawLine(trans * btVector3(bbMax[0], bbMax[1], bbMin[2]), trans * btVector3(bbMin[0], bbMax[1], bbMin[2]), color);
drawLine(trans * btVector3(bbMin[0], bbMax[1], bbMin[2]), trans * btVector3(bbMin[0], bbMin[1], bbMin[2]), color);
drawLine(trans * btVector3(bbMin[0], bbMin[1], bbMin[2]), trans * btVector3(bbMin[0], bbMin[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMax[0], bbMin[1], bbMin[2]), trans * btVector3(bbMax[0], bbMin[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMax[0], bbMax[1], bbMin[2]), trans * btVector3(bbMax[0], bbMax[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMin[0], bbMax[1], bbMin[2]), trans * btVector3(bbMin[0], bbMax[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMin[0], bbMin[1], bbMax[2]), trans * btVector3(bbMax[0], bbMin[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMax[0], bbMin[1], bbMax[2]), trans * btVector3(bbMax[0], bbMax[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMax[0], bbMax[1], bbMax[2]), trans * btVector3(bbMin[0], bbMax[1], bbMax[2]), color);
drawLine(trans * btVector3(bbMin[0], bbMax[1], bbMax[2]), trans * btVector3(bbMin[0], bbMin[1], bbMax[2]), color);
}
virtual void drawCapsule(btScalar radius, btScalar halfHeight, int upAxis, const btTransform& transform, const btVector3& color)
{
btVector3 capStart(0.f,0.f,0.f);
capStart[upAxis] = -halfHeight;
btVector3 capEnd(0.f,0.f,0.f);
capEnd[upAxis] = halfHeight;
// Draw the ends
{
btTransform childTransform = transform;
childTransform.getOrigin() = transform * capStart;
drawSphere(radius, childTransform, color);
}
{
btTransform childTransform = transform;
childTransform.getOrigin() = transform * capEnd;
drawSphere(radius, childTransform, color);
}
// Draw some additional lines
btVector3 start = transform.getOrigin();
capStart[(upAxis+1)%3] = radius;
capEnd[(upAxis+1)%3] = radius;
drawLine(start+transform.getBasis() * capStart,start+transform.getBasis() * capEnd, color);
capStart[(upAxis+1)%3] = -radius;
capEnd[(upAxis+1)%3] = -radius;
drawLine(start+transform.getBasis() * capStart,start+transform.getBasis() * capEnd, color);
capStart[(upAxis+1)%3] = 0.f;
capEnd[(upAxis+1)%3] = 0.f;
capStart[(upAxis+2)%3] = radius;
capEnd[(upAxis+2)%3] = radius;
drawLine(start+transform.getBasis() * capStart,start+transform.getBasis() * capEnd, color);
capStart[(upAxis+2)%3] = -radius;
capEnd[(upAxis+2)%3] = -radius;
drawLine(start+transform.getBasis() * capStart,start+transform.getBasis() * capEnd, color);
}
virtual void drawCylinder(btScalar radius, btScalar halfHeight, int upAxis, const btTransform& transform, const btVector3& color)
{
btVector3 start = transform.getOrigin();
btVector3 offsetHeight(0,0,0);
offsetHeight[upAxis] = halfHeight;
btVector3 offsetRadius(0,0,0);
offsetRadius[(upAxis+1)%3] = radius;
drawLine(start+transform.getBasis() * (offsetHeight+offsetRadius),start+transform.getBasis() * (-offsetHeight+offsetRadius),color);
drawLine(start+transform.getBasis() * (offsetHeight-offsetRadius),start+transform.getBasis() * (-offsetHeight-offsetRadius),color);
// Drawing top and bottom caps of the cylinder
btVector3 yaxis(0,0,0);
yaxis[upAxis] = btScalar(1.0);
btVector3 xaxis(0,0,0);
xaxis[(upAxis+1)%3] = btScalar(1.0);
drawArc(start-transform.getBasis()*(offsetHeight),transform.getBasis()*yaxis,transform.getBasis()*xaxis,radius,radius,0,SIMD_2_PI,color,false,btScalar(10.0));
drawArc(start+transform.getBasis()*(offsetHeight),transform.getBasis()*yaxis,transform.getBasis()*xaxis,radius,radius,0,SIMD_2_PI,color,false,btScalar(10.0));
}
virtual void drawCone(btScalar radius, btScalar height, int upAxis, const btTransform& transform, const btVector3& color)
{
btVector3 start = transform.getOrigin();
btVector3 offsetHeight(0,0,0);
offsetHeight[upAxis] = height * btScalar(0.5);
btVector3 offsetRadius(0,0,0);
offsetRadius[(upAxis+1)%3] = radius;
btVector3 offset2Radius(0,0,0);
offset2Radius[(upAxis+2)%3] = radius;
drawLine(start+transform.getBasis() * (offsetHeight),start+transform.getBasis() * (-offsetHeight+offsetRadius),color);
drawLine(start+transform.getBasis() * (offsetHeight),start+transform.getBasis() * (-offsetHeight-offsetRadius),color);
drawLine(start+transform.getBasis() * (offsetHeight),start+transform.getBasis() * (-offsetHeight+offset2Radius),color);
drawLine(start+transform.getBasis() * (offsetHeight),start+transform.getBasis() * (-offsetHeight-offset2Radius),color);
// Drawing the base of the cone
btVector3 yaxis(0,0,0);
yaxis[upAxis] = btScalar(1.0);
btVector3 xaxis(0,0,0);
xaxis[(upAxis+1)%3] = btScalar(1.0);
drawArc(start-transform.getBasis()*(offsetHeight),transform.getBasis()*yaxis,transform.getBasis()*xaxis,radius,radius,0,SIMD_2_PI,color,false,10.0);
}
virtual void drawPlane(const btVector3& planeNormal, btScalar planeConst, const btTransform& transform, const btVector3& color)
{
btVector3 planeOrigin = planeNormal * planeConst;
btVector3 vec0,vec1;
btPlaneSpace1(planeNormal,vec0,vec1);
btScalar vecLen = 100.f;
btVector3 pt0 = planeOrigin + vec0*vecLen;
btVector3 pt1 = planeOrigin - vec0*vecLen;
btVector3 pt2 = planeOrigin + vec1*vecLen;
btVector3 pt3 = planeOrigin - vec1*vecLen;
drawLine(transform*pt0,transform*pt1,color);
drawLine(transform*pt2,transform*pt3,color);
}
};
#endif //BT_IDEBUG_DRAW__H

View File

@@ -0,0 +1,73 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GEN_LIST_H
#define BT_GEN_LIST_H
class btGEN_Link {
public:
btGEN_Link() : m_next(0), m_prev(0) {}
btGEN_Link(btGEN_Link *next, btGEN_Link *prev) : m_next(next), m_prev(prev) {}
btGEN_Link *getNext() const { return m_next; }
btGEN_Link *getPrev() const { return m_prev; }
bool isHead() const { return m_prev == 0; }
bool isTail() const { return m_next == 0; }
void insertBefore(btGEN_Link *link) {
m_next = link;
m_prev = link->m_prev;
m_next->m_prev = this;
m_prev->m_next = this;
}
void insertAfter(btGEN_Link *link) {
m_next = link->m_next;
m_prev = link;
m_next->m_prev = this;
m_prev->m_next = this;
}
void remove() {
m_next->m_prev = m_prev;
m_prev->m_next = m_next;
}
private:
btGEN_Link *m_next;
btGEN_Link *m_prev;
};
class btGEN_List {
public:
btGEN_List() : m_head(&m_tail, 0), m_tail(0, &m_head) {}
btGEN_Link *getHead() const { return m_head.getNext(); }
btGEN_Link *getTail() const { return m_tail.getPrev(); }
void addHead(btGEN_Link *link) { link->insertAfter(&m_head); }
void addTail(btGEN_Link *link) { link->insertBefore(&m_tail); }
private:
btGEN_Link m_head;
btGEN_Link m_tail;
};
#endif //BT_GEN_LIST_H

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,40 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_MOTIONSTATE_H
#define BT_MOTIONSTATE_H
#include "btTransform.h"
///The btMotionState interface class allows the dynamics world to synchronize and interpolate the updated world transforms with graphics
///For optimizations, potentially only moving objects get synchronized (using setWorldPosition/setWorldOrientation)
class btMotionState
{
public:
virtual ~btMotionState()
{
}
virtual void getWorldTransform(btTransform& worldTrans ) const =0;
//Bullet only calls the update of worldtransform for active objects
virtual void setWorldTransform(const btTransform& worldTrans)=0;
};
#endif //BT_MOTIONSTATE_H

View File

@@ -0,0 +1,99 @@
#include "btPolarDecomposition.h"
#include "btMinMax.h"
namespace
{
btScalar abs_column_sum(const btMatrix3x3& a, int i)
{
return btFabs(a[0][i]) + btFabs(a[1][i]) + btFabs(a[2][i]);
}
btScalar abs_row_sum(const btMatrix3x3& a, int i)
{
return btFabs(a[i][0]) + btFabs(a[i][1]) + btFabs(a[i][2]);
}
btScalar p1_norm(const btMatrix3x3& a)
{
const btScalar sum0 = abs_column_sum(a,0);
const btScalar sum1 = abs_column_sum(a,1);
const btScalar sum2 = abs_column_sum(a,2);
return btMax(btMax(sum0, sum1), sum2);
}
btScalar pinf_norm(const btMatrix3x3& a)
{
const btScalar sum0 = abs_row_sum(a,0);
const btScalar sum1 = abs_row_sum(a,1);
const btScalar sum2 = abs_row_sum(a,2);
return btMax(btMax(sum0, sum1), sum2);
}
}
const btScalar btPolarDecomposition::DEFAULT_TOLERANCE = btScalar(0.0001);
const unsigned int btPolarDecomposition::DEFAULT_MAX_ITERATIONS = 16;
btPolarDecomposition::btPolarDecomposition(btScalar tolerance, unsigned int maxIterations)
: m_tolerance(tolerance)
, m_maxIterations(maxIterations)
{
}
unsigned int btPolarDecomposition::decompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h) const
{
// Use the 'u' and 'h' matrices for intermediate calculations
u = a;
h = a.inverse();
for (unsigned int i = 0; i < m_maxIterations; ++i)
{
const btScalar h_1 = p1_norm(h);
const btScalar h_inf = pinf_norm(h);
const btScalar u_1 = p1_norm(u);
const btScalar u_inf = pinf_norm(u);
const btScalar h_norm = h_1 * h_inf;
const btScalar u_norm = u_1 * u_inf;
// The matrix is effectively singular so we cannot invert it
if (btFuzzyZero(h_norm) || btFuzzyZero(u_norm))
break;
const btScalar gamma = btPow(h_norm / u_norm, 0.25f);
const btScalar inv_gamma = 1.0 / gamma;
// Determine the delta to 'u'
const btMatrix3x3 delta = (u * (gamma - 2.0) + h.transpose() * inv_gamma) * 0.5;
// Update the matrices
u += delta;
h = u.inverse();
// Check for convergence
if (p1_norm(delta) <= m_tolerance * u_1)
{
h = u.transpose() * a;
h = (h + h.transpose()) * 0.5;
return i;
}
}
// The algorithm has failed to converge to the specified tolerance, but we
// want to make sure that the matrices returned are in the right form.
h = u.transpose() * a;
h = (h + h.transpose()) * 0.5;
return m_maxIterations;
}
unsigned int btPolarDecomposition::maxIterations() const
{
return m_maxIterations;
}
unsigned int polarDecompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h)
{
static btPolarDecomposition polar;
return polar.decompose(a, u, h);
}

View File

@@ -0,0 +1,73 @@
#ifndef POLARDECOMPOSITION_H
#define POLARDECOMPOSITION_H
#include "btMatrix3x3.h"
/**
* This class is used to compute the polar decomposition of a matrix. In
* general, the polar decomposition factorizes a matrix, A, into two parts: a
* unitary matrix (U) and a positive, semi-definite Hermitian matrix (H).
* However, in this particular implementation the original matrix, A, is
* required to be a square 3x3 matrix with real elements. This means that U will
* be an orthogonal matrix and H with be a positive-definite, symmetric matrix.
*/
class btPolarDecomposition
{
public:
static const btScalar DEFAULT_TOLERANCE;
static const unsigned int DEFAULT_MAX_ITERATIONS;
/**
* Creates an instance with optional parameters.
*
* @param tolerance - the tolerance used to determine convergence of the
* algorithm
* @param maxIterations - the maximum number of iterations used to achieve
* convergence
*/
btPolarDecomposition(btScalar tolerance = DEFAULT_TOLERANCE,
unsigned int maxIterations = DEFAULT_MAX_ITERATIONS);
/**
* Decomposes a matrix into orthogonal and symmetric, positive-definite
* parts. If the number of iterations returned by this function is equal to
* the maximum number of iterations, the algorithm has failed to converge.
*
* @param a - the original matrix
* @param u - the resulting orthogonal matrix
* @param h - the resulting symmetric matrix
*
* @return the number of iterations performed by the algorithm.
*/
unsigned int decompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h) const;
/**
* Returns the maximum number of iterations that this algorithm will perform
* to achieve convergence.
*
* @return maximum number of iterations
*/
unsigned int maxIterations() const;
private:
btScalar m_tolerance;
unsigned int m_maxIterations;
};
/**
* This functions decomposes the matrix 'a' into two parts: an orthogonal matrix
* 'u' and a symmetric, positive-definite matrix 'h'. If the number of
* iterations returned by this function is equal to
* btPolarDecomposition::DEFAULT_MAX_ITERATIONS, the algorithm has failed to
* converge.
*
* @param a - the original matrix
* @param u - the resulting orthogonal matrix
* @param h - the resulting symmetric matrix
*
* @return the number of iterations performed by the algorithm.
*/
unsigned int polarDecompose(const btMatrix3x3& a, btMatrix3x3& u, btMatrix3x3& h);
#endif // POLARDECOMPOSITION_H

View File

@@ -0,0 +1,121 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef _BT_POOL_ALLOCATOR_H
#define _BT_POOL_ALLOCATOR_H
#include "btScalar.h"
#include "btAlignedAllocator.h"
///The btPoolAllocator class allows to efficiently allocate a large pool of objects, instead of dynamically allocating them separately.
class btPoolAllocator
{
int m_elemSize;
int m_maxElements;
int m_freeCount;
void* m_firstFree;
unsigned char* m_pool;
public:
btPoolAllocator(int elemSize, int maxElements)
:m_elemSize(elemSize),
m_maxElements(maxElements)
{
m_pool = (unsigned char*) btAlignedAlloc( static_cast<unsigned int>(m_elemSize*m_maxElements),16);
unsigned char* p = m_pool;
m_firstFree = p;
m_freeCount = m_maxElements;
int count = m_maxElements;
while (--count) {
*(void**)p = (p + m_elemSize);
p += m_elemSize;
}
*(void**)p = 0;
}
~btPoolAllocator()
{
btAlignedFree( m_pool);
}
int getFreeCount() const
{
return m_freeCount;
}
int getUsedCount() const
{
return m_maxElements - m_freeCount;
}
int getMaxCount() const
{
return m_maxElements;
}
void* allocate(int size)
{
// release mode fix
(void)size;
btAssert(!size || size<=m_elemSize);
btAssert(m_freeCount>0);
void* result = m_firstFree;
m_firstFree = *(void**)m_firstFree;
--m_freeCount;
return result;
}
bool validPtr(void* ptr)
{
if (ptr) {
if (((unsigned char*)ptr >= m_pool && (unsigned char*)ptr < m_pool + m_maxElements * m_elemSize))
{
return true;
}
}
return false;
}
void freeMemory(void* ptr)
{
if (ptr) {
btAssert((unsigned char*)ptr >= m_pool && (unsigned char*)ptr < m_pool + m_maxElements * m_elemSize);
*(void**)ptr = m_firstFree;
m_firstFree = ptr;
++m_freeCount;
}
}
int getElementSize() const
{
return m_elemSize;
}
unsigned char* getPoolAddress()
{
return m_pool;
}
const unsigned char* getPoolAddress() const
{
return m_pool;
}
};
#endif //_BT_POOL_ALLOCATOR_H

View File

@@ -0,0 +1,244 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_SIMD_QUADWORD_H
#define BT_SIMD_QUADWORD_H
#include "btScalar.h"
#include "btMinMax.h"
#if defined (__CELLOS_LV2) && defined (__SPU__)
#include <altivec.h>
#endif
/**@brief The btQuadWord class is base class for btVector3 and btQuaternion.
* Some issues under PS3 Linux with IBM 2.1 SDK, gcc compiler prevent from using aligned quadword.
*/
#ifndef USE_LIBSPE2
ATTRIBUTE_ALIGNED16(class) btQuadWord
#else
class btQuadWord
#endif
{
protected:
#if defined (__SPU__) && defined (__CELLOS_LV2__)
union {
vec_float4 mVec128;
btScalar m_floats[4];
};
public:
vec_float4 get128() const
{
return mVec128;
}
protected:
#else //__CELLOS_LV2__ __SPU__
#if defined(BT_USE_SSE) || defined(BT_USE_NEON)
union {
btSimdFloat4 mVec128;
btScalar m_floats[4];
};
public:
SIMD_FORCE_INLINE btSimdFloat4 get128() const
{
return mVec128;
}
SIMD_FORCE_INLINE void set128(btSimdFloat4 v128)
{
mVec128 = v128;
}
#else
btScalar m_floats[4];
#endif // BT_USE_SSE
#endif //__CELLOS_LV2__ __SPU__
public:
#if defined(BT_USE_SSE) || defined(BT_USE_NEON)
// Set Vector
SIMD_FORCE_INLINE btQuadWord(const btSimdFloat4 vec)
{
mVec128 = vec;
}
// Copy constructor
SIMD_FORCE_INLINE btQuadWord(const btQuadWord& rhs)
{
mVec128 = rhs.mVec128;
}
// Assignment Operator
SIMD_FORCE_INLINE btQuadWord&
operator=(const btQuadWord& v)
{
mVec128 = v.mVec128;
return *this;
}
#endif
/**@brief Return the x value */
SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
/**@brief Return the y value */
SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
/**@brief Return the z value */
SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
/**@brief Set the x value */
SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x;};
/**@brief Set the y value */
SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y;};
/**@brief Set the z value */
SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z;};
/**@brief Set the w value */
SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w;};
/**@brief Return the x value */
SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
/**@brief Return the y value */
SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
/**@brief Return the z value */
SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
/**@brief Return the w value */
SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
//SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
SIMD_FORCE_INLINE bool operator==(const btQuadWord& other) const
{
#ifdef BT_USE_SSE
return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
#else
return ((m_floats[3]==other.m_floats[3]) &&
(m_floats[2]==other.m_floats[2]) &&
(m_floats[1]==other.m_floats[1]) &&
(m_floats[0]==other.m_floats[0]));
#endif
}
SIMD_FORCE_INLINE bool operator!=(const btQuadWord& other) const
{
return !(*this == other);
}
/**@brief Set x,y,z and zero w
* @param x Value of x
* @param y Value of y
* @param z Value of z
*/
SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
{
m_floats[0]=_x;
m_floats[1]=_y;
m_floats[2]=_z;
m_floats[3] = 0.f;
}
/* void getValue(btScalar *m) const
{
m[0] = m_floats[0];
m[1] = m_floats[1];
m[2] = m_floats[2];
}
*/
/**@brief Set the values
* @param x Value of x
* @param y Value of y
* @param z Value of z
* @param w Value of w
*/
SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
{
m_floats[0]=_x;
m_floats[1]=_y;
m_floats[2]=_z;
m_floats[3]=_w;
}
/**@brief No initialization constructor */
SIMD_FORCE_INLINE btQuadWord()
// :m_floats[0](btScalar(0.)),m_floats[1](btScalar(0.)),m_floats[2](btScalar(0.)),m_floats[3](btScalar(0.))
{
}
/**@brief Three argument constructor (zeros w)
* @param x Value of x
* @param y Value of y
* @param z Value of z
*/
SIMD_FORCE_INLINE btQuadWord(const btScalar& _x, const btScalar& _y, const btScalar& _z)
{
m_floats[0] = _x, m_floats[1] = _y, m_floats[2] = _z, m_floats[3] = 0.0f;
}
/**@brief Initializing constructor
* @param x Value of x
* @param y Value of y
* @param z Value of z
* @param w Value of w
*/
SIMD_FORCE_INLINE btQuadWord(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
{
m_floats[0] = _x, m_floats[1] = _y, m_floats[2] = _z, m_floats[3] = _w;
}
/**@brief Set each element to the max of the current values and the values of another btQuadWord
* @param other The other btQuadWord to compare with
*/
SIMD_FORCE_INLINE void setMax(const btQuadWord& other)
{
#ifdef BT_USE_SSE
mVec128 = _mm_max_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vmaxq_f32(mVec128, other.mVec128);
#else
btSetMax(m_floats[0], other.m_floats[0]);
btSetMax(m_floats[1], other.m_floats[1]);
btSetMax(m_floats[2], other.m_floats[2]);
btSetMax(m_floats[3], other.m_floats[3]);
#endif
}
/**@brief Set each element to the min of the current values and the values of another btQuadWord
* @param other The other btQuadWord to compare with
*/
SIMD_FORCE_INLINE void setMin(const btQuadWord& other)
{
#ifdef BT_USE_SSE
mVec128 = _mm_min_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vminq_f32(mVec128, other.mVec128);
#else
btSetMin(m_floats[0], other.m_floats[0]);
btSetMin(m_floats[1], other.m_floats[1]);
btSetMin(m_floats[2], other.m_floats[2]);
btSetMin(m_floats[3], other.m_floats[3]);
#endif
}
};
#endif //BT_SIMD_QUADWORD_H

View File

@@ -0,0 +1,877 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_SIMD__QUATERNION_H_
#define BT_SIMD__QUATERNION_H_
#include "btVector3.h"
#include "btQuadWord.h"
#ifdef BT_USE_SSE
const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
#endif
#if defined(BT_USE_SSE) || defined(BT_USE_NEON)
const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
#endif
/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
class btQuaternion : public btQuadWord {
public:
/**@brief No initialization constructor */
btQuaternion() {}
#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON)
// Set Vector
SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
{
mVec128 = vec;
}
// Copy constructor
SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
{
mVec128 = rhs.mVec128;
}
// Assignment Operator
SIMD_FORCE_INLINE btQuaternion&
operator=(const btQuaternion& v)
{
mVec128 = v.mVec128;
return *this;
}
#endif
// template <typename btScalar>
// explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
/**@brief Constructor from scalars */
btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
: btQuadWord(_x, _y, _z, _w)
{}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
btQuaternion(const btVector3& _axis, const btScalar& _angle)
{
setRotation(_axis, _angle);
}
/**@brief Constructor from Euler angles
* @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
* @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
* @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
#ifndef BT_EULER_DEFAULT_ZYX
setEuler(yaw, pitch, roll);
#else
setEulerZYX(yaw, pitch, roll);
#endif
}
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const btVector3& axis, const btScalar& _angle)
{
btScalar d = axis.length();
btAssert(d != btScalar(0.0));
btScalar s = btSin(_angle * btScalar(0.5)) / d;
setValue(axis.x() * s, axis.y() * s, axis.z() * s,
btCos(_angle * btScalar(0.5)));
}
/**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
* @param pitch Angle around X
* @param roll Angle around Z */
void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
btScalar cosYaw = btCos(halfYaw);
btScalar sinYaw = btSin(halfYaw);
btScalar cosPitch = btCos(halfPitch);
btScalar sinPitch = btSin(halfPitch);
btScalar cosRoll = btCos(halfRoll);
btScalar sinRoll = btSin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
/**@brief Set the quaternion using euler angles
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void setEulerZYX(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
btScalar halfRoll = btScalar(roll) * btScalar(0.5);
btScalar cosYaw = btCos(halfYaw);
btScalar sinYaw = btSin(halfYaw);
btScalar cosPitch = btCos(halfPitch);
btScalar sinPitch = btSin(halfPitch);
btScalar cosRoll = btCos(halfRoll);
btScalar sinRoll = btSin(halfRoll);
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
}
/**@brief Add two quaternions
* @param q The quaternion to add to this one */
SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vaddq_f32(mVec128, q.mVec128);
#else
m_floats[0] += q.x();
m_floats[1] += q.y();
m_floats[2] += q.z();
m_floats[3] += q.m_floats[3];
#endif
return *this;
}
/**@brief Subtract out a quaternion
* @param q The quaternion to subtract from this one */
btQuaternion& operator-=(const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vsubq_f32(mVec128, q.mVec128);
#else
m_floats[0] -= q.x();
m_floats[1] -= q.y();
m_floats[2] -= q.z();
m_floats[3] -= q.m_floats[3];
#endif
return *this;
}
/**@brief Scale this quaternion
* @param s The scalar to scale by */
btQuaternion& operator*=(const btScalar& s)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = bt_pshufd_ps(vs, 0); // (S S S S)
mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
mVec128 = vmulq_n_f32(mVec128, s);
#else
m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
m_floats[3] *= s;
#endif
return *this;
}
/**@brief Multiply this quaternion by q on the right
* @param q The other quaternion
* Equivilant to this = this * q */
btQuaternion& operator*=(const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ2 = q.get128();
__m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0));
__m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));
A1 = A1 * B1;
__m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1));
__m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
A2 = A2 * B2;
B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2));
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
B1 = B1 * B2; // A3 *= B3
mVec128 = bt_splat_ps(mVec128, 3); // A0
mVec128 = mVec128 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
mVec128 = mVec128+ A1; // AB03 + AB12
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = mVec128;
float32x4_t vQ2 = q.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
mVec128 = A0;
#else
setValue(
m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
#endif
return *this;
}
/**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
btScalar dot(const btQuaternion& q) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, q.mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
x = vpadd_f32(x, x);
return vget_lane_f32(x, 0);
#else
return m_floats[0] * q.x() +
m_floats[1] * q.y() +
m_floats[2] * q.z() +
m_floats[3] * q.m_floats[3];
#endif
}
/**@brief Return the length squared of the quaternion */
btScalar length2() const
{
return dot(*this);
}
/**@brief Return the length of the quaternion */
btScalar length() const
{
return btSqrt(length2());
}
/**@brief Normalize the quaternion
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
btQuaternion& normalize()
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
vd = _mm_sqrt_ss(vd);
vd = _mm_div_ss(vOnes, vd);
vd = bt_pshufd_ps(vd, 0); // splat
mVec128 = _mm_mul_ps(mVec128, vd);
return *this;
#else
return *this /= length();
#endif
}
/**@brief Return a scaled version of this quaternion
* @param s The scale factor */
SIMD_FORCE_INLINE btQuaternion
operator*(const btScalar& s) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
return btQuaternion(_mm_mul_ps(mVec128, vs));
#elif defined(BT_USE_NEON)
return btQuaternion(vmulq_n_f32(mVec128, s));
#else
return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
#endif
}
/**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
btQuaternion operator/(const btScalar& s) const
{
btAssert(s != btScalar(0.0));
return *this * (btScalar(1.0) / s);
}
/**@brief Inversely scale this quaternion
* @param s The scale factor */
btQuaternion& operator/=(const btScalar& s)
{
btAssert(s != btScalar(0.0));
return *this *= btScalar(1.0) / s;
}
/**@brief Return a normalized version of this quaternion */
btQuaternion normalized() const
{
return *this / length();
}
/**@brief Return the angle between this quaternion and the other
* @param q The other quaternion */
btScalar angle(const btQuaternion& q) const
{
btScalar s = btSqrt(length2() * q.length2());
btAssert(s != btScalar(0.0));
return btAcos(dot(q) / s);
}
/**@brief Return the angle of rotation represented by this quaternion */
btScalar getAngle() const
{
btScalar s = btScalar(2.) * btAcos(m_floats[3]);
return s;
}
/**@brief Return the axis of the rotation represented by this quaternion */
btVector3 getAxis() const
{
btScalar s_squared = 1.f-m_floats[3]*m_floats[3];
if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
return btVector3(1.0, 0.0, 0.0); // Arbitrary
btScalar s = 1.f/btSqrt(s_squared);
return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
}
/**@brief Return the inverse of this quaternion */
btQuaternion inverse() const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_xor_ps(mVec128, vQInv));
#elif defined(BT_USE_NEON)
return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
#else
return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
}
/**@brief Return the sum of this quaternion and the other
* @param q2 The other quaternion */
SIMD_FORCE_INLINE btQuaternion
operator+(const btQuaternion& q2) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
#endif
}
/**@brief Return the difference between this quaternion and the other
* @param q2 The other quaternion */
SIMD_FORCE_INLINE btQuaternion
operator-(const btQuaternion& q2) const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
#endif
}
/**@brief Return the negative of this quaternion
* This simply negates each element */
SIMD_FORCE_INLINE btQuaternion operator-() const
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
#elif defined(BT_USE_NEON)
return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) );
#else
const btQuaternion& q2 = *this;
return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
#endif
}
/**@todo document this and it's use */
SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
{
btQuaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) > sum.dot(sum) )
return qd;
return (-qd);
}
/**@todo document this and it's use */
SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const
{
btQuaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) < sum.dot(sum) )
return qd;
return (-qd);
}
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
* @param q The other quaternion to interpolate with
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
* Slerp interpolates assuming constant velocity. */
btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
{
btScalar magnitude = btSqrt(length2() * q.length2());
btAssert(magnitude > btScalar(0));
btScalar product = dot(q) / magnitude;
if (btFabs(product) < btScalar(1))
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
const btScalar theta = btAcos(sign * product);
const btScalar s1 = btSin(sign * t * theta);
const btScalar d = btScalar(1.0) / btSin(theta);
const btScalar s0 = btSin((btScalar(1.0) - t) * theta);
return btQuaternion(
(m_floats[0] * s0 + q.x() * s1) * d,
(m_floats[1] * s0 + q.y() * s1) * d,
(m_floats[2] * s0 + q.z() * s1) * d,
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
}
else
{
return *this;
}
}
static const btQuaternion& getIdentity()
{
static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
return identityQuat;
}
SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
};
/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q1, const btQuaternion& q2)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ1 = q1.get128();
__m128 vQ2 = q2.get128();
__m128 A0, A1, B1, A2, B2;
A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x // vtrn
B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X // vdup vext
A1 = A1 * B1;
A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z X Y // vext
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup
A2 = A2 * B2;
B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn
B1 = B1 * B2; // A3 *= B3
A0 = bt_splat_ps(vQ1, 3); // A0
A0 = A0 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
A0 = A0 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
A0 = A0 + A1; // AB03 + AB12
return btQuaternion(A0);
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = q1.get128();
float32x4_t vQ2 = q2.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
return btQuaternion(A0);
#else
return btQuaternion(
q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ1 = q.get128();
__m128 vQ2 = w.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0));
B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0));
A1 = A1 * B1;
A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
A2 = A2 * B2;
A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return btQuaternion(A1);
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = q.get128();
float32x4_t vQ2 = w.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
}
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return btQuaternion(A1);
#else
return btQuaternion(
q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
__m128 vQ1 = w.get128();
__m128 vQ2 = q.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x
B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X
A1 = A1 * B1;
A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
A2 = A2 *B2;
A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return btQuaternion(A1);
#elif defined(BT_USE_NEON)
float32x4_t vQ1 = w.get128();
float32x4_t vQ2 = q.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return btQuaternion(A1);
#else
return btQuaternion(
+w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
#endif
}
/**@brief Calculate the dot product between two quaternions */
SIMD_FORCE_INLINE btScalar
dot(const btQuaternion& q1, const btQuaternion& q2)
{
return q1.dot(q2);
}
/**@brief Return the length of a quaternion */
SIMD_FORCE_INLINE btScalar
length(const btQuaternion& q)
{
return q.length();
}
/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
btAngle(const btQuaternion& q1, const btQuaternion& q2)
{
return q1.angle(q2);
}
/**@brief Return the inverse of a quaternion*/
SIMD_FORCE_INLINE btQuaternion
inverse(const btQuaternion& q)
{
return q.inverse();
}
/**@brief Return the result of spherical linear interpolation betwen two quaternions
* @param q1 The first quaternion
* @param q2 The second quaternion
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
* Slerp assumes constant velocity between positions. */
SIMD_FORCE_INLINE btQuaternion
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
{
return q1.slerp(q2, t);
}
SIMD_FORCE_INLINE btVector3
quatRotate(const btQuaternion& rotation, const btVector3& v)
{
btQuaternion q = rotation * v;
q *= rotation.inverse();
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
#elif defined(BT_USE_NEON)
return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
#else
return btVector3(q.getX(),q.getY(),q.getZ());
#endif
}
SIMD_FORCE_INLINE btQuaternion
shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
btVector3 c = v0.cross(v1);
btScalar d = v0.dot(v1);
if (d < -1.0 + SIMD_EPSILON)
{
btVector3 n,unused;
btPlaneSpace1(v0,n,unused);
return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
}
btScalar s = btSqrt((1.0f + d) * 2.0f);
btScalar rs = 1.0f / s;
return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
}
SIMD_FORCE_INLINE btQuaternion
shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
{
v0.normalize();
v1.normalize();
return shortestArcQuat(v0,v1);
}
#endif //BT_SIMD__QUATERNION_H_

View File

@@ -0,0 +1,42 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_GEN_RANDOM_H
#define BT_GEN_RANDOM_H
#ifdef MT19937
#include <limits.h>
#include <mt19937.h>
#define GEN_RAND_MAX UINT_MAX
SIMD_FORCE_INLINE void GEN_srand(unsigned int seed) { init_genrand(seed); }
SIMD_FORCE_INLINE unsigned int GEN_rand() { return genrand_int32(); }
#else
#include <stdlib.h>
#define GEN_RAND_MAX RAND_MAX
SIMD_FORCE_INLINE void GEN_srand(unsigned int seed) { srand(seed); }
SIMD_FORCE_INLINE unsigned int GEN_rand() { return rand(); }
#endif
#endif //BT_GEN_RANDOM_H

View File

@@ -0,0 +1,116 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
/*
StackAlloc extracted from GJK-EPA collision solver by Nathanael Presson
Nov.2006
*/
#ifndef BT_STACK_ALLOC
#define BT_STACK_ALLOC
#include "btScalar.h" //for btAssert
#include "btAlignedAllocator.h"
///The btBlock class is an internal structure for the btStackAlloc memory allocator.
struct btBlock
{
btBlock* previous;
unsigned char* address;
};
///The StackAlloc class provides some fast stack-based memory allocator (LIFO last-in first-out)
class btStackAlloc
{
public:
btStackAlloc(unsigned int size) { ctor();create(size); }
~btStackAlloc() { destroy(); }
inline void create(unsigned int size)
{
destroy();
data = (unsigned char*) btAlignedAlloc(size,16);
totalsize = size;
}
inline void destroy()
{
btAssert(usedsize==0);
//Raise(L"StackAlloc is still in use");
if(usedsize==0)
{
if(!ischild && data)
btAlignedFree(data);
data = 0;
usedsize = 0;
}
}
int getAvailableMemory() const
{
return static_cast<int>(totalsize - usedsize);
}
unsigned char* allocate(unsigned int size)
{
const unsigned int nus(usedsize+size);
if(nus<totalsize)
{
usedsize=nus;
return(data+(usedsize-size));
}
btAssert(0);
//&& (L"Not enough memory"));
return(0);
}
SIMD_FORCE_INLINE btBlock* beginBlock()
{
btBlock* pb = (btBlock*)allocate(sizeof(btBlock));
pb->previous = current;
pb->address = data+usedsize;
current = pb;
return(pb);
}
SIMD_FORCE_INLINE void endBlock(btBlock* block)
{
btAssert(block==current);
//Raise(L"Unmatched blocks");
if(block==current)
{
current = block->previous;
usedsize = (unsigned int)((block->address-data)-sizeof(btBlock));
}
}
private:
void ctor()
{
data = 0;
totalsize = 0;
usedsize = 0;
current = 0;
ischild = false;
}
unsigned char* data;
unsigned int totalsize;
unsigned int usedsize;
btBlock* current;
bool ischild;
};
#endif //BT_STACK_ALLOC

View File

@@ -0,0 +1,305 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_TRANSFORM_H
#define BT_TRANSFORM_H
#include "btMatrix3x3.h"
#ifdef BT_USE_DOUBLE_PRECISION
#define btTransformData btTransformDoubleData
#else
#define btTransformData btTransformFloatData
#endif
/**@brief The btTransform class supports rigid transforms with only translation and rotation and no scaling/shear.
*It can be used in combination with btVector3, btQuaternion and btMatrix3x3 linear algebra classes. */
ATTRIBUTE_ALIGNED16(class) btTransform {
///Storage for the rotation
btMatrix3x3 m_basis;
///Storage for the translation
btVector3 m_origin;
public:
/**@brief No initialization constructor */
btTransform() {}
/**@brief Constructor from btQuaternion (optional btVector3 )
* @param q Rotation from quaternion
* @param c Translation from Vector (default 0,0,0) */
explicit SIMD_FORCE_INLINE btTransform(const btQuaternion& q,
const btVector3& c = btVector3(btScalar(0), btScalar(0), btScalar(0)))
: m_basis(q),
m_origin(c)
{}
/**@brief Constructor from btMatrix3x3 (optional btVector3)
* @param b Rotation from Matrix
* @param c Translation from Vector default (0,0,0)*/
explicit SIMD_FORCE_INLINE btTransform(const btMatrix3x3& b,
const btVector3& c = btVector3(btScalar(0), btScalar(0), btScalar(0)))
: m_basis(b),
m_origin(c)
{}
/**@brief Copy constructor */
SIMD_FORCE_INLINE btTransform (const btTransform& other)
: m_basis(other.m_basis),
m_origin(other.m_origin)
{
}
/**@brief Assignment Operator */
SIMD_FORCE_INLINE btTransform& operator=(const btTransform& other)
{
m_basis = other.m_basis;
m_origin = other.m_origin;
return *this;
}
/**@brief Set the current transform as the value of the product of two transforms
* @param t1 Transform 1
* @param t2 Transform 2
* This = Transform1 * Transform2 */
SIMD_FORCE_INLINE void mult(const btTransform& t1, const btTransform& t2) {
m_basis = t1.m_basis * t2.m_basis;
m_origin = t1(t2.m_origin);
}
/* void multInverseLeft(const btTransform& t1, const btTransform& t2) {
btVector3 v = t2.m_origin - t1.m_origin;
m_basis = btMultTransposeLeft(t1.m_basis, t2.m_basis);
m_origin = v * t1.m_basis;
}
*/
/**@brief Return the transform of the vector */
SIMD_FORCE_INLINE btVector3 operator()(const btVector3& x) const
{
return x.dot3(m_basis[0], m_basis[1], m_basis[2]) + m_origin;
}
/**@brief Return the transform of the vector */
SIMD_FORCE_INLINE btVector3 operator*(const btVector3& x) const
{
return (*this)(x);
}
/**@brief Return the transform of the btQuaternion */
SIMD_FORCE_INLINE btQuaternion operator*(const btQuaternion& q) const
{
return getRotation() * q;
}
/**@brief Return the basis matrix for the rotation */
SIMD_FORCE_INLINE btMatrix3x3& getBasis() { return m_basis; }
/**@brief Return the basis matrix for the rotation */
SIMD_FORCE_INLINE const btMatrix3x3& getBasis() const { return m_basis; }
/**@brief Return the origin vector translation */
SIMD_FORCE_INLINE btVector3& getOrigin() { return m_origin; }
/**@brief Return the origin vector translation */
SIMD_FORCE_INLINE const btVector3& getOrigin() const { return m_origin; }
/**@brief Return a quaternion representing the rotation */
btQuaternion getRotation() const {
btQuaternion q;
m_basis.getRotation(q);
return q;
}
/**@brief Set from an array
* @param m A pointer to a 15 element array (12 rotation(row major padded on the right by 1), and 3 translation */
void setFromOpenGLMatrix(const btScalar *m)
{
m_basis.setFromOpenGLSubMatrix(m);
m_origin.setValue(m[12],m[13],m[14]);
}
/**@brief Fill an array representation
* @param m A pointer to a 15 element array (12 rotation(row major padded on the right by 1), and 3 translation */
void getOpenGLMatrix(btScalar *m) const
{
m_basis.getOpenGLSubMatrix(m);
m[12] = m_origin.x();
m[13] = m_origin.y();
m[14] = m_origin.z();
m[15] = btScalar(1.0);
}
/**@brief Set the translational element
* @param origin The vector to set the translation to */
SIMD_FORCE_INLINE void setOrigin(const btVector3& origin)
{
m_origin = origin;
}
SIMD_FORCE_INLINE btVector3 invXform(const btVector3& inVec) const;
/**@brief Set the rotational element by btMatrix3x3 */
SIMD_FORCE_INLINE void setBasis(const btMatrix3x3& basis)
{
m_basis = basis;
}
/**@brief Set the rotational element by btQuaternion */
SIMD_FORCE_INLINE void setRotation(const btQuaternion& q)
{
m_basis.setRotation(q);
}
/**@brief Set this transformation to the identity */
void setIdentity()
{
m_basis.setIdentity();
m_origin.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
}
/**@brief Multiply this Transform by another(this = this * another)
* @param t The other transform */
btTransform& operator*=(const btTransform& t)
{
m_origin += m_basis * t.m_origin;
m_basis *= t.m_basis;
return *this;
}
/**@brief Return the inverse of this transform */
btTransform inverse() const
{
btMatrix3x3 inv = m_basis.transpose();
return btTransform(inv, inv * -m_origin);
}
/**@brief Return the inverse of this transform times the other transform
* @param t The other transform
* return this.inverse() * the other */
btTransform inverseTimes(const btTransform& t) const;
/**@brief Return the product of this transform and the other */
btTransform operator*(const btTransform& t) const;
/**@brief Return an identity transform */
static const btTransform& getIdentity()
{
static const btTransform identityTransform(btMatrix3x3::getIdentity());
return identityTransform;
}
void serialize(struct btTransformData& dataOut) const;
void serializeFloat(struct btTransformFloatData& dataOut) const;
void deSerialize(const struct btTransformData& dataIn);
void deSerializeDouble(const struct btTransformDoubleData& dataIn);
void deSerializeFloat(const struct btTransformFloatData& dataIn);
};
SIMD_FORCE_INLINE btVector3
btTransform::invXform(const btVector3& inVec) const
{
btVector3 v = inVec - m_origin;
return (m_basis.transpose() * v);
}
SIMD_FORCE_INLINE btTransform
btTransform::inverseTimes(const btTransform& t) const
{
btVector3 v = t.getOrigin() - m_origin;
return btTransform(m_basis.transposeTimes(t.m_basis),
v * m_basis);
}
SIMD_FORCE_INLINE btTransform
btTransform::operator*(const btTransform& t) const
{
return btTransform(m_basis * t.m_basis,
(*this)(t.m_origin));
}
/**@brief Test if two transforms have all elements equal */
SIMD_FORCE_INLINE bool operator==(const btTransform& t1, const btTransform& t2)
{
return ( t1.getBasis() == t2.getBasis() &&
t1.getOrigin() == t2.getOrigin() );
}
///for serialization
struct btTransformFloatData
{
btMatrix3x3FloatData m_basis;
btVector3FloatData m_origin;
};
struct btTransformDoubleData
{
btMatrix3x3DoubleData m_basis;
btVector3DoubleData m_origin;
};
SIMD_FORCE_INLINE void btTransform::serialize(btTransformData& dataOut) const
{
m_basis.serialize(dataOut.m_basis);
m_origin.serialize(dataOut.m_origin);
}
SIMD_FORCE_INLINE void btTransform::serializeFloat(btTransformFloatData& dataOut) const
{
m_basis.serializeFloat(dataOut.m_basis);
m_origin.serializeFloat(dataOut.m_origin);
}
SIMD_FORCE_INLINE void btTransform::deSerialize(const btTransformData& dataIn)
{
m_basis.deSerialize(dataIn.m_basis);
m_origin.deSerialize(dataIn.m_origin);
}
SIMD_FORCE_INLINE void btTransform::deSerializeFloat(const btTransformFloatData& dataIn)
{
m_basis.deSerializeFloat(dataIn.m_basis);
m_origin.deSerializeFloat(dataIn.m_origin);
}
SIMD_FORCE_INLINE void btTransform::deSerializeDouble(const btTransformDoubleData& dataIn)
{
m_basis.deSerializeDouble(dataIn.m_basis);
m_origin.deSerializeDouble(dataIn.m_origin);
}
#endif //BT_TRANSFORM_H

View File

@@ -0,0 +1,228 @@
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_TRANSFORM_UTIL_H
#define BT_TRANSFORM_UTIL_H
#include "btTransform.h"
#define ANGULAR_MOTION_THRESHOLD btScalar(0.5)*SIMD_HALF_PI
SIMD_FORCE_INLINE btVector3 btAabbSupport(const btVector3& halfExtents,const btVector3& supportDir)
{
return btVector3(supportDir.x() < btScalar(0.0) ? -halfExtents.x() : halfExtents.x(),
supportDir.y() < btScalar(0.0) ? -halfExtents.y() : halfExtents.y(),
supportDir.z() < btScalar(0.0) ? -halfExtents.z() : halfExtents.z());
}
/// Utils related to temporal transforms
class btTransformUtil
{
public:
static void integrateTransform(const btTransform& curTrans,const btVector3& linvel,const btVector3& angvel,btScalar timeStep,btTransform& predictedTransform)
{
predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep);
// #define QUATERNION_DERIVATIVE
#ifdef QUATERNION_DERIVATIVE
btQuaternion predictedOrn = curTrans.getRotation();
predictedOrn += (angvel * predictedOrn) * (timeStep * btScalar(0.5));
predictedOrn.normalize();
#else
//Exponential map
//google for "Practical Parameterization of Rotations Using the Exponential Map", F. Sebastian Grassia
btVector3 axis;
btScalar fAngle = angvel.length();
//limit the angular motion
if (fAngle*timeStep > ANGULAR_MOTION_THRESHOLD)
{
fAngle = ANGULAR_MOTION_THRESHOLD / timeStep;
}
if ( fAngle < btScalar(0.001) )
{
// use Taylor's expansions of sync function
axis = angvel*( btScalar(0.5)*timeStep-(timeStep*timeStep*timeStep)*(btScalar(0.020833333333))*fAngle*fAngle );
}
else
{
// sync(fAngle) = sin(c*fAngle)/t
axis = angvel*( btSin(btScalar(0.5)*fAngle*timeStep)/fAngle );
}
btQuaternion dorn (axis.x(),axis.y(),axis.z(),btCos( fAngle*timeStep*btScalar(0.5) ));
btQuaternion orn0 = curTrans.getRotation();
btQuaternion predictedOrn = dorn * orn0;
predictedOrn.normalize();
#endif
predictedTransform.setRotation(predictedOrn);
}
static void calculateVelocityQuaternion(const btVector3& pos0,const btVector3& pos1,const btQuaternion& orn0,const btQuaternion& orn1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
{
linVel = (pos1 - pos0) / timeStep;
btVector3 axis;
btScalar angle;
if (orn0 != orn1)
{
calculateDiffAxisAngleQuaternion(orn0,orn1,axis,angle);
angVel = axis * angle / timeStep;
} else
{
angVel.setValue(0,0,0);
}
}
static void calculateDiffAxisAngleQuaternion(const btQuaternion& orn0,const btQuaternion& orn1a,btVector3& axis,btScalar& angle)
{
btQuaternion orn1 = orn0.nearest(orn1a);
btQuaternion dorn = orn1 * orn0.inverse();
angle = dorn.getAngle();
axis = btVector3(dorn.x(),dorn.y(),dorn.z());
axis[3] = btScalar(0.);
//check for axis length
btScalar len = axis.length2();
if (len < SIMD_EPSILON*SIMD_EPSILON)
axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
else
axis /= btSqrt(len);
}
static void calculateVelocity(const btTransform& transform0,const btTransform& transform1,btScalar timeStep,btVector3& linVel,btVector3& angVel)
{
linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
btVector3 axis;
btScalar angle;
calculateDiffAxisAngle(transform0,transform1,axis,angle);
angVel = axis * angle / timeStep;
}
static void calculateDiffAxisAngle(const btTransform& transform0,const btTransform& transform1,btVector3& axis,btScalar& angle)
{
btMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
btQuaternion dorn;
dmat.getRotation(dorn);
///floating point inaccuracy can lead to w component > 1..., which breaks
dorn.normalize();
angle = dorn.getAngle();
axis = btVector3(dorn.x(),dorn.y(),dorn.z());
axis[3] = btScalar(0.);
//check for axis length
btScalar len = axis.length2();
if (len < SIMD_EPSILON*SIMD_EPSILON)
axis = btVector3(btScalar(1.),btScalar(0.),btScalar(0.));
else
axis /= btSqrt(len);
}
};
///The btConvexSeparatingDistanceUtil can help speed up convex collision detection
///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance
class btConvexSeparatingDistanceUtil
{
btQuaternion m_ornA;
btQuaternion m_ornB;
btVector3 m_posA;
btVector3 m_posB;
btVector3 m_separatingNormal;
btScalar m_boundingRadiusA;
btScalar m_boundingRadiusB;
btScalar m_separatingDistance;
public:
btConvexSeparatingDistanceUtil(btScalar boundingRadiusA,btScalar boundingRadiusB)
:m_boundingRadiusA(boundingRadiusA),
m_boundingRadiusB(boundingRadiusB),
m_separatingDistance(0.f)
{
}
btScalar getConservativeSeparatingDistance()
{
return m_separatingDistance;
}
void updateSeparatingDistance(const btTransform& transA,const btTransform& transB)
{
const btVector3& toPosA = transA.getOrigin();
const btVector3& toPosB = transB.getOrigin();
btQuaternion toOrnA = transA.getRotation();
btQuaternion toOrnB = transB.getRotation();
if (m_separatingDistance>0.f)
{
btVector3 linVelA,angVelA,linVelB,angVelB;
btTransformUtil::calculateVelocityQuaternion(m_posA,toPosA,m_ornA,toOrnA,btScalar(1.),linVelA,angVelA);
btTransformUtil::calculateVelocityQuaternion(m_posB,toPosB,m_ornB,toOrnB,btScalar(1.),linVelB,angVelB);
btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB;
btVector3 relLinVel = (linVelB-linVelA);
btScalar relLinVelocLength = relLinVel.dot(m_separatingNormal);
if (relLinVelocLength<0.f)
{
relLinVelocLength = 0.f;
}
btScalar projectedMotion = maxAngularProjectedVelocity +relLinVelocLength;
m_separatingDistance -= projectedMotion;
}
m_posA = toPosA;
m_posB = toPosB;
m_ornA = toOrnA;
m_ornB = toOrnB;
}
void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB)
{
m_separatingDistance = separatingDistance;
if (m_separatingDistance>0.f)
{
m_separatingNormal = separatingVector;
const btVector3& toPosA = transA.getOrigin();
const btVector3& toPosB = transB.getOrigin();
btQuaternion toOrnA = transA.getRotation();
btQuaternion toOrnB = transB.getRotation();
m_posA = toPosA;
m_posB = toPosB;
m_ornA = toOrnA;
m_ornB = toOrnB;
}
}
};
#endif //BT_TRANSFORM_UTIL_H

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff