Add support for generic 2d convex shapes, through wrapper class btConvex2dShape. See Bullet/Demos/Box2dDemo for example wrapping a btCylinderShape and 2d btConvexHullShape.

Add some extra degeneracy debugging check in btGjkPairDetector
This commit is contained in:
erwin.coumans
2009-09-17 19:45:22 +00:00
parent 3da9c832ae
commit f65e829ca0
14 changed files with 657 additions and 50 deletions

View File

@@ -13,13 +13,18 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
#include "btBox2dShape.h"
#include "BulletCollision/CollisionShapes/btBox2dShape.h"
#include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.h"
#include "btBox2dBox2dCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btBox2dBox2dCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btConvex2dConvex2dAlgorithm.h"
#include "BulletCollision/CollisionShapes/btConvex2dShape.h"
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
///create 125 (5x5x5) dynamic object
#define ARRAY_SIZE_X 17
#define ARRAY_SIZE_Y 17
#define ARRAY_SIZE_X 1
#define ARRAY_SIZE_Y 2
#define ARRAY_SIZE_Z 1
//maximum number of objects (and allow user to shoot additional boxes)
@@ -97,10 +102,19 @@ void Box2dDemo::initPhysics()
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVoronoiSimplexSolver* simplex = new btVoronoiSimplexSolver();
btMinkowskiPenetrationDepthSolver* pdSolver = new btMinkowskiPenetrationDepthSolver();
btConvex2dConvex2dAlgorithm::CreateFunc* convexAlgo2d = new btConvex2dConvex2dAlgorithm::CreateFunc(simplex,pdSolver);
m_dispatcher->registerCollisionCreateFunc(CUSTOM_CONVEX_SHAPE_TYPE,CUSTOM_CONVEX_SHAPE_TYPE,new btBox2dBox2dCollisionAlgorithm::CreateFunc);
m_dispatcher->registerCollisionCreateFunc(CONVEX_2D_SHAPE_PROXYTYPE,CONVEX_2D_SHAPE_PROXYTYPE,convexAlgo2d);
m_dispatcher->registerCollisionCreateFunc(BOX_2D_SHAPE_PROXYTYPE,CONVEX_2D_SHAPE_PROXYTYPE,convexAlgo2d);
m_dispatcher->registerCollisionCreateFunc(CONVEX_2D_SHAPE_PROXYTYPE,BOX_2D_SHAPE_PROXYTYPE,convexAlgo2d);
m_dispatcher->registerCollisionCreateFunc(BOX_2D_SHAPE_PROXYTYPE,BOX_2D_SHAPE_PROXYTYPE,new btBox2dBox2dCollisionAlgorithm::CreateFunc());
m_broadphase = new btDbvtBroadphase();
//m_broadphase = new btSimpleBroadphase();
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
@@ -149,11 +163,24 @@ void Box2dDemo::initPhysics()
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
//btCollisionShape* colShape = new btBoxShape(btVector3(SCALING*1,SCALING*1,SCALING*1));
btCollisionShape* colShape = new btBox2dShape(btVector3(SCALING*1,SCALING*1,0.));
colShape->setMargin(0.);
btScalar u = 1*SCALING-0.04;
btVector3 points[3] = {btVector3(0,u,0),btVector3(-u,-u,0),btVector3(u,-u,0)};
btConvexShape* colShape= new btConvex2dShape(new btBoxShape(btVector3(SCALING*1,SCALING*1,0.04)));
//btCollisionShape* colShape = new btBox2dShape(btVector3(SCALING*1,SCALING*1,0.04));
btConvexShape* colShape2= new btConvex2dShape(new btConvexHullShape(&points[0].getX(),3));
btConvexShape* colShape3= new btConvex2dShape(new btCylinderShapeZ(btVector3(SCALING*1,SCALING*1,0.04)));
//btUniformScalingShape* colShape = new btUniformScalingShape(convexColShape,1.f);
colShape->setMargin(0.03);
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
m_collisionShapes.push_back(colShape2);
/// Create Dynamic Objects
btTransform startTransform;
@@ -183,12 +210,25 @@ void Box2dDemo::initPhysics()
for (int j = i; j < ARRAY_SIZE_Y; ++j)
{
startTransform.setOrigin(y);
startTransform.setOrigin(y-btVector3(-10,0,0));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(0,0,0);
switch (j%3)
{
#if 0
case 0:
rbInfo = btRigidBody::btRigidBodyConstructionInfo(mass,myMotionState,colShape,localInertia);
break;
case 1:
rbInfo = btRigidBody::btRigidBodyConstructionInfo(mass,myMotionState,colShape3,localInertia);
break;
#endif
default:
rbInfo = btRigidBody::btRigidBodyConstructionInfo(mass,myMotionState,colShape3,localInertia);
}
btRigidBody* body = new btRigidBody(rbInfo);
//body->setContactProcessingThreshold(colShape->getContactBreakingThreshold());
body->setActivationState(ISLAND_SLEEPING);
@@ -199,7 +239,8 @@ void Box2dDemo::initPhysics()
body->setActivationState(ISLAND_SLEEPING);
y += deltaY;
y += -0.8*deltaY;
//y += deltaY;
}
x += deltaX;

View File

@@ -46,6 +46,8 @@ IMPLICIT_CONVEX_SHAPES_START_HERE,
UNIFORM_SCALING_SHAPE_PROXYTYPE,
MINKOWSKI_SUM_SHAPE_PROXYTYPE,
MINKOWSKI_DIFFERENCE_SHAPE_PROXYTYPE,
BOX_2D_SHAPE_PROXYTYPE,
CONVEX_2D_SHAPE_PROXYTYPE,
CUSTOM_CONVEX_SHAPE_TYPE,
//concave shapes
CONCAVE_SHAPES_START_HERE,
@@ -152,6 +154,12 @@ BT_DECLARE_ALIGNED_ALLOCATOR();
{
return (proxyType == STATIC_PLANE_PROXYTYPE);
}
static SIMD_FORCE_INLINE bool isConvex2d(int proxyType)
{
return (proxyType == BOX_2D_SHAPE_PROXYTYPE) || (proxyType == CONVEX_2D_SHAPE_PROXYTYPE);
}
}
;

View File

@@ -21,7 +21,7 @@ subject to the following restrictions:
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionDispatch/btBoxBoxDetector.h"
#include "btBox2dShape.h"
#include "BulletCollision/CollisionShapes/btBox2dShape.h"
#define USE_PERSISTENT_CONTACTS 1
@@ -51,7 +51,7 @@ btBox2dBox2dCollisionAlgorithm::~btBox2dBox2dCollisionAlgorithm()
void b2CollidePolygons(btManifoldResult* manifold, const btBox2dShape* polyA, const btTransform& xfA, const btBox2dShape* polyB, const btTransform& xfB);
#include <stdio.h>
//#include <stdio.h>
void btBox2dBox2dCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)

View File

@@ -0,0 +1,247 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvex2dConvex2dAlgorithm.h"
//#include <stdio.h>
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionShapes/btBoxShape.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
btConvex2dConvex2dAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
{
m_numPerturbationIterations = 0;
m_minimumPointsPerturbationThreshold = 3;
m_simplexSolver = simplexSolver;
m_pdSolver = pdSolver;
}
btConvex2dConvex2dAlgorithm::CreateFunc::~CreateFunc()
{
}
btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
: btActivatingCollisionAlgorithm(ci,body0,body1),
m_simplexSolver(simplexSolver),
m_pdSolver(pdSolver),
m_ownManifold (false),
m_manifoldPtr(mf),
m_lowLevelOfDetail(false),
m_numPerturbationIterations(numPerturbationIterations),
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
{
(void)body0;
(void)body1;
}
btConvex2dConvex2dAlgorithm::~btConvex2dConvex2dAlgorithm()
{
if (m_ownManifold)
{
if (m_manifoldPtr)
m_dispatcher->releaseManifold(m_manifoldPtr);
}
}
void btConvex2dConvex2dAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
{
m_lowLevelOfDetail = useLowLevel;
}
extern btScalar gContactBreakingThreshold;
//
// Convex-Convex collision algorithm
//
void btConvex2dConvex2dAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
if (!m_manifoldPtr)
{
//swapped?
m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1);
m_ownManifold = true;
}
resultOut->setPersistentManifold(m_manifoldPtr);
//comment-out next line to test multi-contact generation
//resultOut->getPersistentManifold()->clearManifold();
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
btVector3 normalOnB;
btVector3 pointOnBWorld;
{
btGjkPairDetector::ClosestPointInput input;
btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
//TODO: if (dispatchInfo.m_useContinuous)
gjkPairDetector.setMinkowskiA(min0);
gjkPairDetector.setMinkowskiB(min1);
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
}
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
input.m_transformA = body0->getWorldTransform();
input.m_transformB = body1->getWorldTransform();
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
btVector3 v0,v1;
btVector3 sepNormalWorldSpace;
}
if (m_ownManifold)
{
resultOut->refreshContactPoints();
}
}
btScalar btConvex2dConvex2dAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
(void)resultOut;
(void)dispatchInfo;
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
///col0->m_worldTransform,
btScalar resultFraction = btScalar(1.);
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
squareMot1 < col1->getCcdSquareMotionThreshold())
return resultFraction;
//An adhoc way of testing the Continuous Collision Detection algorithms
//One object is approximated as a sphere, to simplify things
//Starting in penetration should report no time of impact
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
/// Convex0 against sphere for Convex1
{
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
{
//store result.m_fraction in both bodies
if (col0->getHitFraction()> result.m_fraction)
col0->setHitFraction( result.m_fraction );
if (col1->getHitFraction() > result.m_fraction)
col1->setHitFraction( result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
}
}
/// Sphere (for convex0) against Convex1
{
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
btConvexCast::CastResult result;
btVoronoiSimplexSolver voronoiSimplex;
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
///Simplification, one object is simplified as a sphere
btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
{
//store result.m_fraction in both bodies
if (col0->getHitFraction() > result.m_fraction)
col0->setHitFraction( result.m_fraction);
if (col1->getHitFraction() > result.m_fraction)
col1->setHitFraction( result.m_fraction);
if (resultFraction > result.m_fraction)
resultFraction = result.m_fraction;
}
}
return resultFraction;
}

View File

@@ -0,0 +1,95 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CONVEX_2D_CONVEX_2D_ALGORITHM_H
#define CONVEX_2D_CONVEX_2D_ALGORITHM_H
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "LinearMath/btTransformUtil.h" //for btConvexSeparatingDistanceUtil
class btConvexPenetrationDepthSolver;
///The convex2dConvex2dAlgorithm collision algorithm support 2d collision detection for btConvex2dShape
///Currently it requires the btMinkowskiPenetrationDepthSolver, it has support for 2d penetration depth computation
class btConvex2dConvex2dAlgorithm : public btActivatingCollisionAlgorithm
{
btSimplexSolverInterface* m_simplexSolver;
btConvexPenetrationDepthSolver* m_pdSolver;
bool m_ownManifold;
btPersistentManifold* m_manifoldPtr;
bool m_lowLevelOfDetail;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
public:
btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold);
virtual ~btConvex2dConvex2dAlgorithm();
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
{
///should we use m_ownManifold to avoid adding duplicates?
if (m_manifoldPtr && m_ownManifold)
manifoldArray.push_back(m_manifoldPtr);
}
void setLowLevelOfDetail(bool useLowLevel);
const btPersistentManifold* getManifold()
{
return m_manifoldPtr;
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
btConvexPenetrationDepthSolver* m_pdSolver;
btSimplexSolverInterface* m_simplexSolver;
int m_numPerturbationIterations;
int m_minimumPointsPerturbationThreshold;
CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver);
virtual ~CreateFunc();
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvex2dConvex2dAlgorithm));
return new(mem) btConvex2dConvex2dAlgorithm(ci.m_manifold,ci,body0,body1,m_simplexSolver,m_pdSolver,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
}
};
};
#endif //CONVEX_2D_CONVEX_2D_ALGORITHM_H

View File

@@ -97,7 +97,7 @@ public:
m_normals[2].setValue(0,1,0);
m_normals[3].setValue(-1,0,0);
m_shapeType = CUSTOM_CONVEX_SHAPE_TYPE;
m_shapeType = BOX_2D_SHAPE_PROXYTYPE;
btVector3 margin(getMargin(),getMargin(),getMargin());
m_implicitShapeDimensions = (boxHalfExtents * m_localScaling) - margin;
};

View File

@@ -60,6 +60,11 @@ public:
return btBroadphaseProxy::isPolyhedral(getShapeType());
}
SIMD_FORCE_INLINE bool isConvex2d() const
{
return btBroadphaseProxy::isConvex2d(getShapeType());
}
SIMD_FORCE_INLINE bool isConvex() const
{
return btBroadphaseProxy::isConvex(getShapeType());

View File

@@ -0,0 +1,92 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btConvex2dShape.h"
btConvex2dShape::btConvex2dShape( btConvexShape* convexChildShape):
btConvexShape (), m_childConvexShape(convexChildShape)
{
m_shapeType = CONVEX_2D_SHAPE_PROXYTYPE;
}
btConvex2dShape::~btConvex2dShape()
{
}
btVector3 btConvex2dShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
{
return m_childConvexShape->localGetSupportingVertexWithoutMargin(vec);
}
void btConvex2dShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
{
m_childConvexShape->batchedUnitVectorGetSupportingVertexWithoutMargin(vectors,supportVerticesOut,numVectors);
}
btVector3 btConvex2dShape::localGetSupportingVertex(const btVector3& vec)const
{
return m_childConvexShape->localGetSupportingVertex(vec);
}
void btConvex2dShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
{
///this linear upscaling is not realistic, but we don't deal with large mass ratios...
m_childConvexShape->calculateLocalInertia(mass,inertia);
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void btConvex2dShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
m_childConvexShape->getAabb(t,aabbMin,aabbMax);
}
void btConvex2dShape::getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
m_childConvexShape->getAabbSlow(t,aabbMin,aabbMax);
}
void btConvex2dShape::setLocalScaling(const btVector3& scaling)
{
m_childConvexShape->setLocalScaling(scaling);
}
const btVector3& btConvex2dShape::getLocalScaling() const
{
return m_childConvexShape->getLocalScaling();
}
void btConvex2dShape::setMargin(btScalar margin)
{
m_childConvexShape->setMargin(margin);
}
btScalar btConvex2dShape::getMargin() const
{
return m_childConvexShape->getMargin();
}
int btConvex2dShape::getNumPreferredPenetrationDirections() const
{
return m_childConvexShape->getNumPreferredPenetrationDirections();
}
void btConvex2dShape::getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
{
m_childConvexShape->getPreferredPenetrationDirection(index,penetrationVector);
}

View File

@@ -0,0 +1,80 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_CONVEX_2D_SHAPE_H
#define BT_CONVEX_2D_SHAPE_H
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
///The btConvex2dShape allows to use arbitrary convex shapes are 2d convex shapes, with the Z component assumed to be 0.
///For 2d boxes, the btBox2dShape is recommended.
class btConvex2dShape : public btConvexShape
{
btConvexShape* m_childConvexShape;
public:
btConvex2dShape( btConvexShape* convexChildShape);
virtual ~btConvex2dShape();
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const;
btConvexShape* getChildShape()
{
return m_childConvexShape;
}
const btConvexShape* getChildShape() const
{
return m_childConvexShape;
}
virtual const char* getName()const
{
return "Convex2dShape";
}
///////////////////////////
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
virtual void setLocalScaling(const btVector3& scaling) ;
virtual const btVector3& getLocalScaling() const ;
virtual void setMargin(btScalar margin);
virtual btScalar getMargin() const;
virtual int getNumPreferredPenetrationDirections() const;
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const;
};
#endif //BT_CONVEX_2D_SHAPE_H

View File

@@ -39,7 +39,8 @@ int gNumGjkChecks = 0;
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_penetrationDepthSolver(penetrationDepthSolver),
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
m_minkowskiB(objectB),
@@ -53,7 +54,7 @@ m_catchDegeneracies(1)
{
}
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
:m_cachedSeparatingAxis(btScalar(0.),btScalar(0.),btScalar(1.)),
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
m_penetrationDepthSolver(penetrationDepthSolver),
m_simplexSolver(simplexSolver),
m_minkowskiA(objectA),
@@ -92,6 +93,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
localTransA.getOrigin() -= positionOffset;
localTransB.getOrigin() -= positionOffset;
bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
btScalar marginA = m_marginA;
btScalar marginB = m_marginB;
@@ -171,12 +173,19 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
spu_printf("got local supporting vertices\n");
#endif
if (check2d)
{
pWorld[2] = 0.f;
qWorld[2] = 0.f;
}
btVector3 w = pWorld - qWorld;
delta = m_cachedSeparatingAxis.dot(w);
// potential exit, they don't overlap
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
{
m_degenerateSimplex = 10;
checkSimplex=true;
//checkPenetration = false;
break;
@@ -198,6 +207,9 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
if (f0 <= btScalar(0.))
{
m_degenerateSimplex = 2;
} else
{
m_degenerateSimplex = 11;
}
checkSimplex = true;
break;
@@ -231,6 +243,8 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
btScalar previousSquaredDistance = squaredDistance;
squaredDistance = newCachedSeparatingAxis.length2();
#if 0
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
if (squaredDistance>previousSquaredDistance)
{
m_degenerateSimplex = 7;
@@ -238,6 +252,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
checkSimplex = false;
break;
}
#endif //
m_cachedSeparatingAxis = newCachedSeparatingAxis;
@@ -248,6 +263,8 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
{
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
checkSimplex = true;
m_degenerateSimplex = 12;
break;
}
@@ -278,6 +295,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
{
//do we need this backup_closest here ?
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
m_degenerateSimplex = 13;
break;
}
}
@@ -286,7 +304,8 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
{
m_simplexSolver->compute_points(pointOnA, pointOnB);
normalInB = pointOnA-pointOnB;
btScalar lenSqr = m_cachedSeparatingAxis.length2();
btScalar lenSqr =m_cachedSeparatingAxis.length2();
//valid normal
if (lenSqr < 0.0001)
{
@@ -390,6 +409,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
pointOnA -= m_cachedSeparatingAxis * marginA ;
pointOnB += m_cachedSeparatingAxis * marginB ;
normalInB = m_cachedSeparatingAxis;
normalInB.normalize();
isValid = true;
m_lastUsedMethod = 6;
} else
@@ -404,16 +424,19 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
}
}
if (isValid)
if (isValid && ((distance < 0) || (distance*distance < input.m_maximumDistanceSquared)))
{
#ifdef __SPU__
//spu_printf("distance\n");
#endif //__CELLOS_LV2__
#if 0
///some debugging
// if (check2d)
{
printf("n = %2.3f,%2.3f,%2.3f. ",normalInB[0],normalInB[1],normalInB[2]);
printf("distance = %2.3f exit=%d deg=%d\n",distance,m_lastUsedMethod,m_degenerateSimplex);
}
#endif
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("output 1\n");
#endif
m_cachedSeparatingAxis = normalInB;
m_cachedSeparatingDistance = distance;
@@ -422,10 +445,6 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
pointOnB+positionOffset,
distance);
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("output 2\n");
#endif
//printf("gjk add:%f",distance);
}

View File

@@ -78,6 +78,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
(void)stackAlloc;
(void)v;
bool check2d= convexA->isConvex2d() && convexB->isConvex2d();
struct btIntermediateResult : public btDiscreteCollisionDetectorInterface::Result
{
@@ -132,7 +133,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
for (i=0;i<numSampleDirections;i++)
{
const btVector3& norm = sPenetrationDirections[i];
btVector3 norm = sPenetrationDirections[i];
seperatingAxisInABatch[i] = (-norm) * transA.getBasis() ;
seperatingAxisInBBatch[i] = norm * transB.getBasis() ;
}
@@ -173,29 +174,44 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
convexA->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch,supportVerticesABatch,numSampleDirections);
convexB->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch,supportVerticesBBatch,numSampleDirections);
for (i=0;i<numSampleDirections;i++)
{
const btVector3& norm = sPenetrationDirections[i];
seperatingAxisInA = seperatingAxisInABatch[i];
seperatingAxisInB = seperatingAxisInBBatch[i];
pInA = supportVerticesABatch[i];
qInB = supportVerticesBBatch[i];
pWorld = transA(pInA);
qWorld = transB(qInB);
w = qWorld - pWorld;
btScalar delta = norm.dot(w);
//find smallest delta
if (delta < minProj)
btVector3 norm = sPenetrationDirections[i];
if (check2d)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
norm[2] = 0.f;
}
if (norm.length2()>0.01)
{
seperatingAxisInA = seperatingAxisInABatch[i];
seperatingAxisInB = seperatingAxisInBBatch[i];
pInA = supportVerticesABatch[i];
qInB = supportVerticesBBatch[i];
pWorld = transA(pInA);
qWorld = transB(qInB);
if (check2d)
{
pWorld[2] = 0.f;
qWorld[2] = 0.f;
}
w = qWorld - pWorld;
btScalar delta = norm.dot(w);
//find smallest delta
if (delta < minProj)
{
minProj = delta;
minNorm = norm;
minA = pWorld;
minB = qWorld;
}
}
}
#else
@@ -264,7 +280,8 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
if (minProj < btScalar(0.))
return false;
minProj += (convexA->getMarginNonVirtual() + convexB->getMarginNonVirtual());
btScalar extraSeparation = 0.5f;///scale dependent
minProj += extraSeparation+(convexA->getMarginNonVirtual() + convexB->getMarginNonVirtual());
@@ -305,6 +322,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
input.m_maximumDistanceSquared = btScalar(BT_LARGE_FLOAT);//minProj;
btIntermediateResult res;
gjkdet.setCachedSeperatingAxis(-minNorm);
gjkdet.getClosestPoints(input,res,debugDraw);
btScalar correctedMinNorm = minProj - res.m_depth;
@@ -313,12 +331,14 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
//the penetration depth is over-estimated, relax it
btScalar penetration_relaxation= btScalar(1.);
minNorm*=penetration_relaxation;
if (res.m_hasResult)
{
pa = res.m_pointInWorld - minNorm * correctedMinNorm;
pb = res.m_pointInWorld;
v = minNorm;
#ifdef DEBUG_DRAW
if (debugDraw)

View File

@@ -171,8 +171,8 @@ class btHashMap
for(i=0;i<curHashtableSize;i++)
{
const Value& value = m_valueArray[i];
const Key& key = m_keyArray[i];
//const Value& value = m_valueArray[i];
//const Key& key = m_keyArray[i];
int hashValue = m_keyArray[i].getHash() & (m_valueArray.capacity()-1); // New hash value with new mask
m_next[i] = m_hashTable[hashValue];