Add support for generic 2d convex shapes, through wrapper class btConvex2dShape. See Bullet/Demos/Box2dDemo for example wrapping a btCylinderShape and 2d btConvexHullShape.
Add some extra degeneracy debugging check in btGjkPairDetector
This commit is contained in:
@@ -46,6 +46,8 @@ IMPLICIT_CONVEX_SHAPES_START_HERE,
|
||||
UNIFORM_SCALING_SHAPE_PROXYTYPE,
|
||||
MINKOWSKI_SUM_SHAPE_PROXYTYPE,
|
||||
MINKOWSKI_DIFFERENCE_SHAPE_PROXYTYPE,
|
||||
BOX_2D_SHAPE_PROXYTYPE,
|
||||
CONVEX_2D_SHAPE_PROXYTYPE,
|
||||
CUSTOM_CONVEX_SHAPE_TYPE,
|
||||
//concave shapes
|
||||
CONCAVE_SHAPES_START_HERE,
|
||||
@@ -152,6 +154,12 @@ BT_DECLARE_ALIGNED_ALLOCATOR();
|
||||
{
|
||||
return (proxyType == STATIC_PLANE_PROXYTYPE);
|
||||
}
|
||||
|
||||
static SIMD_FORCE_INLINE bool isConvex2d(int proxyType)
|
||||
{
|
||||
return (proxyType == BOX_2D_SHAPE_PROXYTYPE) || (proxyType == CONVEX_2D_SHAPE_PROXYTYPE);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
;
|
||||
|
||||
@@ -0,0 +1,437 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
* The b2CollidePolygons routines are Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
///btBox2dBox2dCollisionAlgorithm, with modified b2CollidePolygons routines from the Box2D library.
|
||||
///The modifications include: switching from b2Vec to btVector3, redefinition of b2Dot, b2Cross
|
||||
|
||||
#include "btBox2dBox2dCollisionAlgorithm.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
||||
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||||
#include "BulletCollision/CollisionDispatch/btBoxBoxDetector.h"
|
||||
#include "BulletCollision/CollisionShapes/btBox2dShape.h"
|
||||
|
||||
#define USE_PERSISTENT_CONTACTS 1
|
||||
|
||||
btBox2dBox2dCollisionAlgorithm::btBox2dBox2dCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* obj0,btCollisionObject* obj1)
|
||||
: btActivatingCollisionAlgorithm(ci,obj0,obj1),
|
||||
m_ownManifold(false),
|
||||
m_manifoldPtr(mf)
|
||||
{
|
||||
if (!m_manifoldPtr && m_dispatcher->needsCollision(obj0,obj1))
|
||||
{
|
||||
m_manifoldPtr = m_dispatcher->getNewManifold(obj0,obj1);
|
||||
m_ownManifold = true;
|
||||
}
|
||||
}
|
||||
|
||||
btBox2dBox2dCollisionAlgorithm::~btBox2dBox2dCollisionAlgorithm()
|
||||
{
|
||||
|
||||
if (m_ownManifold)
|
||||
{
|
||||
if (m_manifoldPtr)
|
||||
m_dispatcher->releaseManifold(m_manifoldPtr);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void b2CollidePolygons(btManifoldResult* manifold, const btBox2dShape* polyA, const btTransform& xfA, const btBox2dShape* polyB, const btTransform& xfB);
|
||||
|
||||
//#include <stdio.h>
|
||||
void btBox2dBox2dCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
if (!m_manifoldPtr)
|
||||
return;
|
||||
|
||||
btCollisionObject* col0 = body0;
|
||||
btCollisionObject* col1 = body1;
|
||||
btBox2dShape* box0 = (btBox2dShape*)col0->getCollisionShape();
|
||||
btBox2dShape* box1 = (btBox2dShape*)col1->getCollisionShape();
|
||||
|
||||
resultOut->setPersistentManifold(m_manifoldPtr);
|
||||
|
||||
b2CollidePolygons(resultOut,box0,col0->getWorldTransform(),box1,col1->getWorldTransform());
|
||||
|
||||
// refreshContactPoints is only necessary when using persistent contact points. otherwise all points are newly added
|
||||
if (m_ownManifold)
|
||||
{
|
||||
resultOut->refreshContactPoints();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
btScalar btBox2dBox2dCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* /*body0*/,btCollisionObject* /*body1*/,const btDispatcherInfo& /*dispatchInfo*/,btManifoldResult* /*resultOut*/)
|
||||
{
|
||||
//not yet
|
||||
return 1.f;
|
||||
}
|
||||
|
||||
|
||||
struct ClipVertex
|
||||
{
|
||||
btVector3 v;
|
||||
int id;
|
||||
//b2ContactID id;
|
||||
//b2ContactID id;
|
||||
};
|
||||
|
||||
#define b2Dot(a,b) (a).dot(b)
|
||||
#define b2Mul(a,b) (a)*(b)
|
||||
#define b2MulT(a,b) (a).transpose()*(b)
|
||||
#define b2Cross(a,b) (a).cross(b)
|
||||
#define btCrossS(a,s) btVector3(s * a.getY(), -s * a.getX(),0.f)
|
||||
|
||||
int b2_maxManifoldPoints =2;
|
||||
|
||||
static int ClipSegmentToLine(ClipVertex vOut[2], ClipVertex vIn[2],
|
||||
const btVector3& normal, btScalar offset)
|
||||
{
|
||||
// Start with no output points
|
||||
int numOut = 0;
|
||||
|
||||
// Calculate the distance of end points to the line
|
||||
btScalar distance0 = b2Dot(normal, vIn[0].v) - offset;
|
||||
btScalar distance1 = b2Dot(normal, vIn[1].v) - offset;
|
||||
|
||||
// If the points are behind the plane
|
||||
if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
|
||||
if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
|
||||
|
||||
// If the points are on different sides of the plane
|
||||
if (distance0 * distance1 < 0.0f)
|
||||
{
|
||||
// Find intersection point of edge and plane
|
||||
btScalar interp = distance0 / (distance0 - distance1);
|
||||
vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
|
||||
if (distance0 > 0.0f)
|
||||
{
|
||||
vOut[numOut].id = vIn[0].id;
|
||||
}
|
||||
else
|
||||
{
|
||||
vOut[numOut].id = vIn[1].id;
|
||||
}
|
||||
++numOut;
|
||||
}
|
||||
|
||||
return numOut;
|
||||
}
|
||||
|
||||
// Find the separation between poly1 and poly2 for a give edge normal on poly1.
|
||||
static btScalar EdgeSeparation(const btBox2dShape* poly1, const btTransform& xf1, int edge1,
|
||||
const btBox2dShape* poly2, const btTransform& xf2)
|
||||
{
|
||||
int count1 = poly1->getVertexCount();
|
||||
const btVector3* vertices1 = poly1->getVertices();
|
||||
const btVector3* normals1 = poly1->getNormals();
|
||||
|
||||
int count2 = poly2->getVertexCount();
|
||||
const btVector3* vertices2 = poly2->getVertices();
|
||||
|
||||
btAssert(0 <= edge1 && edge1 < count1);
|
||||
|
||||
// Convert normal from poly1's frame into poly2's frame.
|
||||
btVector3 normal1World = b2Mul(xf1.getBasis(), normals1[edge1]);
|
||||
btVector3 normal1 = b2MulT(xf2.getBasis(), normal1World);
|
||||
|
||||
// Find support vertex on poly2 for -normal.
|
||||
int index = 0;
|
||||
btScalar minDot = BT_LARGE_FLOAT;
|
||||
|
||||
for (int i = 0; i < count2; ++i)
|
||||
{
|
||||
btScalar dot = b2Dot(vertices2[i], normal1);
|
||||
if (dot < minDot)
|
||||
{
|
||||
minDot = dot;
|
||||
index = i;
|
||||
}
|
||||
}
|
||||
|
||||
btVector3 v1 = b2Mul(xf1, vertices1[edge1]);
|
||||
btVector3 v2 = b2Mul(xf2, vertices2[index]);
|
||||
btScalar separation = b2Dot(v2 - v1, normal1World);
|
||||
return separation;
|
||||
}
|
||||
|
||||
// Find the max separation between poly1 and poly2 using edge normals from poly1.
|
||||
static btScalar FindMaxSeparation(int* edgeIndex,
|
||||
const btBox2dShape* poly1, const btTransform& xf1,
|
||||
const btBox2dShape* poly2, const btTransform& xf2)
|
||||
{
|
||||
int count1 = poly1->getVertexCount();
|
||||
const btVector3* normals1 = poly1->getNormals();
|
||||
|
||||
// Vector pointing from the centroid of poly1 to the centroid of poly2.
|
||||
btVector3 d = b2Mul(xf2, poly2->getCentroid()) - b2Mul(xf1, poly1->getCentroid());
|
||||
btVector3 dLocal1 = b2MulT(xf1.getBasis(), d);
|
||||
|
||||
// Find edge normal on poly1 that has the largest projection onto d.
|
||||
int edge = 0;
|
||||
btScalar maxDot = -BT_LARGE_FLOAT;
|
||||
for (int i = 0; i < count1; ++i)
|
||||
{
|
||||
btScalar dot = b2Dot(normals1[i], dLocal1);
|
||||
if (dot > maxDot)
|
||||
{
|
||||
maxDot = dot;
|
||||
edge = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Get the separation for the edge normal.
|
||||
btScalar s = EdgeSeparation(poly1, xf1, edge, poly2, xf2);
|
||||
if (s > 0.0f)
|
||||
{
|
||||
return s;
|
||||
}
|
||||
|
||||
// Check the separation for the previous edge normal.
|
||||
int prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
|
||||
btScalar sPrev = EdgeSeparation(poly1, xf1, prevEdge, poly2, xf2);
|
||||
if (sPrev > 0.0f)
|
||||
{
|
||||
return sPrev;
|
||||
}
|
||||
|
||||
// Check the separation for the next edge normal.
|
||||
int nextEdge = edge + 1 < count1 ? edge + 1 : 0;
|
||||
btScalar sNext = EdgeSeparation(poly1, xf1, nextEdge, poly2, xf2);
|
||||
if (sNext > 0.0f)
|
||||
{
|
||||
return sNext;
|
||||
}
|
||||
|
||||
// Find the best edge and the search direction.
|
||||
int bestEdge;
|
||||
btScalar bestSeparation;
|
||||
int increment;
|
||||
if (sPrev > s && sPrev > sNext)
|
||||
{
|
||||
increment = -1;
|
||||
bestEdge = prevEdge;
|
||||
bestSeparation = sPrev;
|
||||
}
|
||||
else if (sNext > s)
|
||||
{
|
||||
increment = 1;
|
||||
bestEdge = nextEdge;
|
||||
bestSeparation = sNext;
|
||||
}
|
||||
else
|
||||
{
|
||||
*edgeIndex = edge;
|
||||
return s;
|
||||
}
|
||||
|
||||
// Perform a local search for the best edge normal.
|
||||
for ( ; ; )
|
||||
{
|
||||
if (increment == -1)
|
||||
edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
|
||||
else
|
||||
edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
|
||||
|
||||
s = EdgeSeparation(poly1, xf1, edge, poly2, xf2);
|
||||
if (s > 0.0f)
|
||||
{
|
||||
return s;
|
||||
}
|
||||
|
||||
if (s > bestSeparation)
|
||||
{
|
||||
bestEdge = edge;
|
||||
bestSeparation = s;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
*edgeIndex = bestEdge;
|
||||
return bestSeparation;
|
||||
}
|
||||
|
||||
static void FindIncidentEdge(ClipVertex c[2],
|
||||
const btBox2dShape* poly1, const btTransform& xf1, int edge1,
|
||||
const btBox2dShape* poly2, const btTransform& xf2)
|
||||
{
|
||||
int count1 = poly1->getVertexCount();
|
||||
const btVector3* normals1 = poly1->getNormals();
|
||||
|
||||
int count2 = poly2->getVertexCount();
|
||||
const btVector3* vertices2 = poly2->getVertices();
|
||||
const btVector3* normals2 = poly2->getNormals();
|
||||
|
||||
btAssert(0 <= edge1 && edge1 < count1);
|
||||
|
||||
// Get the normal of the reference edge in poly2's frame.
|
||||
btVector3 normal1 = b2MulT(xf2.getBasis(), b2Mul(xf1.getBasis(), normals1[edge1]));
|
||||
|
||||
// Find the incident edge on poly2.
|
||||
int index = 0;
|
||||
btScalar minDot = BT_LARGE_FLOAT;
|
||||
for (int i = 0; i < count2; ++i)
|
||||
{
|
||||
btScalar dot = b2Dot(normal1, normals2[i]);
|
||||
if (dot < minDot)
|
||||
{
|
||||
minDot = dot;
|
||||
index = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Build the clip vertices for the incident edge.
|
||||
int i1 = index;
|
||||
int i2 = i1 + 1 < count2 ? i1 + 1 : 0;
|
||||
|
||||
c[0].v = b2Mul(xf2, vertices2[i1]);
|
||||
// c[0].id.features.referenceEdge = (unsigned char)edge1;
|
||||
// c[0].id.features.incidentEdge = (unsigned char)i1;
|
||||
// c[0].id.features.incidentVertex = 0;
|
||||
|
||||
c[1].v = b2Mul(xf2, vertices2[i2]);
|
||||
// c[1].id.features.referenceEdge = (unsigned char)edge1;
|
||||
// c[1].id.features.incidentEdge = (unsigned char)i2;
|
||||
// c[1].id.features.incidentVertex = 1;
|
||||
}
|
||||
|
||||
// Find edge normal of max separation on A - return if separating axis is found
|
||||
// Find edge normal of max separation on B - return if separation axis is found
|
||||
// Choose reference edge as min(minA, minB)
|
||||
// Find incident edge
|
||||
// Clip
|
||||
|
||||
// The normal points from 1 to 2
|
||||
void b2CollidePolygons(btManifoldResult* manifold,
|
||||
const btBox2dShape* polyA, const btTransform& xfA,
|
||||
const btBox2dShape* polyB, const btTransform& xfB)
|
||||
{
|
||||
|
||||
int edgeA = 0;
|
||||
btScalar separationA = FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
|
||||
if (separationA > 0.0f)
|
||||
return;
|
||||
|
||||
int edgeB = 0;
|
||||
btScalar separationB = FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
|
||||
if (separationB > 0.0f)
|
||||
return;
|
||||
|
||||
const btBox2dShape* poly1; // reference poly
|
||||
const btBox2dShape* poly2; // incident poly
|
||||
btTransform xf1, xf2;
|
||||
int edge1; // reference edge
|
||||
unsigned char flip;
|
||||
const btScalar k_relativeTol = 0.98f;
|
||||
const btScalar k_absoluteTol = 0.001f;
|
||||
|
||||
// TODO_ERIN use "radius" of poly for absolute tolerance.
|
||||
if (separationB > k_relativeTol * separationA + k_absoluteTol)
|
||||
{
|
||||
poly1 = polyB;
|
||||
poly2 = polyA;
|
||||
xf1 = xfB;
|
||||
xf2 = xfA;
|
||||
edge1 = edgeB;
|
||||
flip = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
poly1 = polyA;
|
||||
poly2 = polyB;
|
||||
xf1 = xfA;
|
||||
xf2 = xfB;
|
||||
edge1 = edgeA;
|
||||
flip = 0;
|
||||
}
|
||||
|
||||
ClipVertex incidentEdge[2];
|
||||
FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
|
||||
|
||||
int count1 = poly1->getVertexCount();
|
||||
const btVector3* vertices1 = poly1->getVertices();
|
||||
|
||||
btVector3 v11 = vertices1[edge1];
|
||||
btVector3 v12 = edge1 + 1 < count1 ? vertices1[edge1+1] : vertices1[0];
|
||||
|
||||
btVector3 dv = v12 - v11;
|
||||
btVector3 sideNormal = b2Mul(xf1.getBasis(), v12 - v11);
|
||||
sideNormal.normalize();
|
||||
btVector3 frontNormal = btCrossS(sideNormal, 1.0f);
|
||||
|
||||
|
||||
v11 = b2Mul(xf1, v11);
|
||||
v12 = b2Mul(xf1, v12);
|
||||
|
||||
btScalar frontOffset = b2Dot(frontNormal, v11);
|
||||
btScalar sideOffset1 = -b2Dot(sideNormal, v11);
|
||||
btScalar sideOffset2 = b2Dot(sideNormal, v12);
|
||||
|
||||
// Clip incident edge against extruded edge1 side edges.
|
||||
ClipVertex clipPoints1[2];
|
||||
clipPoints1[0].v.setValue(0,0,0);
|
||||
clipPoints1[1].v.setValue(0,0,0);
|
||||
|
||||
ClipVertex clipPoints2[2];
|
||||
clipPoints2[0].v.setValue(0,0,0);
|
||||
clipPoints2[1].v.setValue(0,0,0);
|
||||
|
||||
|
||||
int np;
|
||||
|
||||
// Clip to box side 1
|
||||
np = ClipSegmentToLine(clipPoints1, incidentEdge, -sideNormal, sideOffset1);
|
||||
|
||||
if (np < 2)
|
||||
return;
|
||||
|
||||
// Clip to negative box side 1
|
||||
np = ClipSegmentToLine(clipPoints2, clipPoints1, sideNormal, sideOffset2);
|
||||
|
||||
if (np < 2)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Now clipPoints2 contains the clipped points.
|
||||
btVector3 manifoldNormal = flip ? -frontNormal : frontNormal;
|
||||
|
||||
int pointCount = 0;
|
||||
for (int i = 0; i < b2_maxManifoldPoints; ++i)
|
||||
{
|
||||
btScalar separation = b2Dot(frontNormal, clipPoints2[i].v) - frontOffset;
|
||||
|
||||
if (separation <= 0.0f)
|
||||
{
|
||||
|
||||
//b2ManifoldPoint* cp = manifold->points + pointCount;
|
||||
//btScalar separation = separation;
|
||||
//cp->localPoint1 = b2MulT(xfA, clipPoints2[i].v);
|
||||
//cp->localPoint2 = b2MulT(xfB, clipPoints2[i].v);
|
||||
|
||||
manifold->addContactPoint(-manifoldNormal,clipPoints2[i].v,separation);
|
||||
|
||||
// cp->id = clipPoints2[i].id;
|
||||
// cp->id.features.flip = flip;
|
||||
++pointCount;
|
||||
}
|
||||
}
|
||||
|
||||
// manifold->pointCount = pointCount;}
|
||||
}
|
||||
@@ -0,0 +1,66 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BOX_2D_BOX_2D__COLLISION_ALGORITHM_H
|
||||
#define BOX_2D_BOX_2D__COLLISION_ALGORITHM_H
|
||||
|
||||
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
|
||||
|
||||
class btPersistentManifold;
|
||||
|
||||
///box-box collision detection
|
||||
class btBox2dBox2dCollisionAlgorithm : public btActivatingCollisionAlgorithm
|
||||
{
|
||||
bool m_ownManifold;
|
||||
btPersistentManifold* m_manifoldPtr;
|
||||
|
||||
public:
|
||||
btBox2dBox2dCollisionAlgorithm(const btCollisionAlgorithmConstructionInfo& ci)
|
||||
: btActivatingCollisionAlgorithm(ci) {}
|
||||
|
||||
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
btBox2dBox2dCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1);
|
||||
|
||||
virtual ~btBox2dBox2dCollisionAlgorithm();
|
||||
|
||||
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
|
||||
{
|
||||
if (m_manifoldPtr && m_ownManifold)
|
||||
{
|
||||
manifoldArray.push_back(m_manifoldPtr);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
struct CreateFunc :public btCollisionAlgorithmCreateFunc
|
||||
{
|
||||
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
|
||||
{
|
||||
int bbsize = sizeof(btBox2dBox2dCollisionAlgorithm);
|
||||
void* ptr = ci.m_dispatcher1->allocateCollisionAlgorithm(bbsize);
|
||||
return new(ptr) btBox2dBox2dCollisionAlgorithm(0,ci,body0,body1);
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif //BOX_2D_BOX_2D__COLLISION_ALGORITHM_H
|
||||
|
||||
@@ -0,0 +1,247 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "btConvex2dConvex2dAlgorithm.h"
|
||||
|
||||
//#include <stdio.h>
|
||||
#include "BulletCollision/NarrowPhaseCollision/btDiscreteCollisionDetectorInterface.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
||||
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
#include "BulletCollision/CollisionShapes/btCapsuleShape.h"
|
||||
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
||||
#include "BulletCollision/CollisionShapes/btBoxShape.h"
|
||||
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btConvexPenetrationDepthSolver.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
|
||||
|
||||
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
||||
#include "BulletCollision/CollisionShapes/btSphereShape.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.h"
|
||||
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
|
||||
|
||||
|
||||
btConvex2dConvex2dAlgorithm::CreateFunc::CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver)
|
||||
{
|
||||
m_numPerturbationIterations = 0;
|
||||
m_minimumPointsPerturbationThreshold = 3;
|
||||
m_simplexSolver = simplexSolver;
|
||||
m_pdSolver = pdSolver;
|
||||
}
|
||||
|
||||
btConvex2dConvex2dAlgorithm::CreateFunc::~CreateFunc()
|
||||
{
|
||||
}
|
||||
|
||||
btConvex2dConvex2dAlgorithm::btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver,int numPerturbationIterations, int minimumPointsPerturbationThreshold)
|
||||
: btActivatingCollisionAlgorithm(ci,body0,body1),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_pdSolver(pdSolver),
|
||||
m_ownManifold (false),
|
||||
m_manifoldPtr(mf),
|
||||
m_lowLevelOfDetail(false),
|
||||
m_numPerturbationIterations(numPerturbationIterations),
|
||||
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
|
||||
{
|
||||
(void)body0;
|
||||
(void)body1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
btConvex2dConvex2dAlgorithm::~btConvex2dConvex2dAlgorithm()
|
||||
{
|
||||
if (m_ownManifold)
|
||||
{
|
||||
if (m_manifoldPtr)
|
||||
m_dispatcher->releaseManifold(m_manifoldPtr);
|
||||
}
|
||||
}
|
||||
|
||||
void btConvex2dConvex2dAlgorithm ::setLowLevelOfDetail(bool useLowLevel)
|
||||
{
|
||||
m_lowLevelOfDetail = useLowLevel;
|
||||
}
|
||||
|
||||
|
||||
|
||||
extern btScalar gContactBreakingThreshold;
|
||||
|
||||
|
||||
//
|
||||
// Convex-Convex collision algorithm
|
||||
//
|
||||
void btConvex2dConvex2dAlgorithm ::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
|
||||
if (!m_manifoldPtr)
|
||||
{
|
||||
//swapped?
|
||||
m_manifoldPtr = m_dispatcher->getNewManifold(body0,body1);
|
||||
m_ownManifold = true;
|
||||
}
|
||||
resultOut->setPersistentManifold(m_manifoldPtr);
|
||||
|
||||
//comment-out next line to test multi-contact generation
|
||||
//resultOut->getPersistentManifold()->clearManifold();
|
||||
|
||||
|
||||
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
|
||||
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
|
||||
|
||||
btVector3 normalOnB;
|
||||
btVector3 pointOnBWorld;
|
||||
|
||||
{
|
||||
|
||||
|
||||
btGjkPairDetector::ClosestPointInput input;
|
||||
|
||||
btGjkPairDetector gjkPairDetector(min0,min1,m_simplexSolver,m_pdSolver);
|
||||
//TODO: if (dispatchInfo.m_useContinuous)
|
||||
gjkPairDetector.setMinkowskiA(min0);
|
||||
gjkPairDetector.setMinkowskiB(min1);
|
||||
|
||||
{
|
||||
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
|
||||
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
|
||||
}
|
||||
|
||||
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
|
||||
input.m_transformA = body0->getWorldTransform();
|
||||
input.m_transformB = body1->getWorldTransform();
|
||||
|
||||
gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
|
||||
|
||||
btVector3 v0,v1;
|
||||
btVector3 sepNormalWorldSpace;
|
||||
|
||||
}
|
||||
|
||||
if (m_ownManifold)
|
||||
{
|
||||
resultOut->refreshContactPoints();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
btScalar btConvex2dConvex2dAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
|
||||
{
|
||||
(void)resultOut;
|
||||
(void)dispatchInfo;
|
||||
///Rather then checking ALL pairs, only calculate TOI when motion exceeds threshold
|
||||
|
||||
///Linear motion for one of objects needs to exceed m_ccdSquareMotionThreshold
|
||||
///col0->m_worldTransform,
|
||||
btScalar resultFraction = btScalar(1.);
|
||||
|
||||
|
||||
btScalar squareMot0 = (col0->getInterpolationWorldTransform().getOrigin() - col0->getWorldTransform().getOrigin()).length2();
|
||||
btScalar squareMot1 = (col1->getInterpolationWorldTransform().getOrigin() - col1->getWorldTransform().getOrigin()).length2();
|
||||
|
||||
if (squareMot0 < col0->getCcdSquareMotionThreshold() &&
|
||||
squareMot1 < col1->getCcdSquareMotionThreshold())
|
||||
return resultFraction;
|
||||
|
||||
|
||||
//An adhoc way of testing the Continuous Collision Detection algorithms
|
||||
//One object is approximated as a sphere, to simplify things
|
||||
//Starting in penetration should report no time of impact
|
||||
//For proper CCD, better accuracy and handling of 'allowed' penetration should be added
|
||||
//also the mainloop of the physics should have a kind of toi queue (something like Brian Mirtich's application of Timewarp for Rigidbodies)
|
||||
|
||||
|
||||
/// Convex0 against sphere for Convex1
|
||||
{
|
||||
btConvexShape* convex0 = static_cast<btConvexShape*>(col0->getCollisionShape());
|
||||
|
||||
btSphereShape sphere1(col1->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
||||
btConvexCast::CastResult result;
|
||||
btVoronoiSimplexSolver voronoiSimplex;
|
||||
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
||||
///Simplification, one object is simplified as a sphere
|
||||
btGjkConvexCast ccd1( convex0 ,&sphere1,&voronoiSimplex);
|
||||
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
||||
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
|
||||
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
|
||||
{
|
||||
|
||||
//store result.m_fraction in both bodies
|
||||
|
||||
if (col0->getHitFraction()> result.m_fraction)
|
||||
col0->setHitFraction( result.m_fraction );
|
||||
|
||||
if (col1->getHitFraction() > result.m_fraction)
|
||||
col1->setHitFraction( result.m_fraction);
|
||||
|
||||
if (resultFraction > result.m_fraction)
|
||||
resultFraction = result.m_fraction;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
/// Sphere (for convex0) against Convex1
|
||||
{
|
||||
btConvexShape* convex1 = static_cast<btConvexShape*>(col1->getCollisionShape());
|
||||
|
||||
btSphereShape sphere0(col0->getCcdSweptSphereRadius()); //todo: allow non-zero sphere sizes, for better approximation
|
||||
btConvexCast::CastResult result;
|
||||
btVoronoiSimplexSolver voronoiSimplex;
|
||||
//SubsimplexConvexCast ccd0(&sphere,min0,&voronoiSimplex);
|
||||
///Simplification, one object is simplified as a sphere
|
||||
btGjkConvexCast ccd1(&sphere0,convex1,&voronoiSimplex);
|
||||
//ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,0);
|
||||
if (ccd1.calcTimeOfImpact(col0->getWorldTransform(),col0->getInterpolationWorldTransform(),
|
||||
col1->getWorldTransform(),col1->getInterpolationWorldTransform(),result))
|
||||
{
|
||||
|
||||
//store result.m_fraction in both bodies
|
||||
|
||||
if (col0->getHitFraction() > result.m_fraction)
|
||||
col0->setHitFraction( result.m_fraction);
|
||||
|
||||
if (col1->getHitFraction() > result.m_fraction)
|
||||
col1->setHitFraction( result.m_fraction);
|
||||
|
||||
if (resultFraction > result.m_fraction)
|
||||
resultFraction = result.m_fraction;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
return resultFraction;
|
||||
|
||||
}
|
||||
|
||||
@@ -0,0 +1,95 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef CONVEX_2D_CONVEX_2D_ALGORITHM_H
|
||||
#define CONVEX_2D_CONVEX_2D_ALGORITHM_H
|
||||
|
||||
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
|
||||
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
||||
#include "LinearMath/btTransformUtil.h" //for btConvexSeparatingDistanceUtil
|
||||
|
||||
class btConvexPenetrationDepthSolver;
|
||||
|
||||
|
||||
///The convex2dConvex2dAlgorithm collision algorithm support 2d collision detection for btConvex2dShape
|
||||
///Currently it requires the btMinkowskiPenetrationDepthSolver, it has support for 2d penetration depth computation
|
||||
class btConvex2dConvex2dAlgorithm : public btActivatingCollisionAlgorithm
|
||||
{
|
||||
btSimplexSolverInterface* m_simplexSolver;
|
||||
btConvexPenetrationDepthSolver* m_pdSolver;
|
||||
|
||||
|
||||
bool m_ownManifold;
|
||||
btPersistentManifold* m_manifoldPtr;
|
||||
bool m_lowLevelOfDetail;
|
||||
|
||||
int m_numPerturbationIterations;
|
||||
int m_minimumPointsPerturbationThreshold;
|
||||
|
||||
public:
|
||||
|
||||
btConvex2dConvex2dAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver, int numPerturbationIterations, int minimumPointsPerturbationThreshold);
|
||||
|
||||
|
||||
virtual ~btConvex2dConvex2dAlgorithm();
|
||||
|
||||
virtual void processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
|
||||
|
||||
virtual void getAllContactManifolds(btManifoldArray& manifoldArray)
|
||||
{
|
||||
///should we use m_ownManifold to avoid adding duplicates?
|
||||
if (m_manifoldPtr && m_ownManifold)
|
||||
manifoldArray.push_back(m_manifoldPtr);
|
||||
}
|
||||
|
||||
|
||||
void setLowLevelOfDetail(bool useLowLevel);
|
||||
|
||||
|
||||
const btPersistentManifold* getManifold()
|
||||
{
|
||||
return m_manifoldPtr;
|
||||
}
|
||||
|
||||
struct CreateFunc :public btCollisionAlgorithmCreateFunc
|
||||
{
|
||||
|
||||
btConvexPenetrationDepthSolver* m_pdSolver;
|
||||
btSimplexSolverInterface* m_simplexSolver;
|
||||
int m_numPerturbationIterations;
|
||||
int m_minimumPointsPerturbationThreshold;
|
||||
|
||||
CreateFunc(btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* pdSolver);
|
||||
|
||||
virtual ~CreateFunc();
|
||||
|
||||
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)
|
||||
{
|
||||
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btConvex2dConvex2dAlgorithm));
|
||||
return new(mem) btConvex2dConvex2dAlgorithm(ci.m_manifold,ci,body0,body1,m_simplexSolver,m_pdSolver,m_numPerturbationIterations,m_minimumPointsPerturbationThreshold);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //CONVEX_2D_CONVEX_2D_ALGORITHM_H
|
||||
42
src/BulletCollision/CollisionShapes/btBox2dShape.cpp
Normal file
42
src/BulletCollision/CollisionShapes/btBox2dShape.cpp
Normal file
@@ -0,0 +1,42 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "btBox2dShape.h"
|
||||
|
||||
|
||||
//{
|
||||
|
||||
|
||||
void btBox2dShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
|
||||
{
|
||||
btTransformAabb(getHalfExtentsWithoutMargin(),getMargin(),t,aabbMin,aabbMax);
|
||||
}
|
||||
|
||||
|
||||
void btBox2dShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
|
||||
{
|
||||
//btScalar margin = btScalar(0.);
|
||||
btVector3 halfExtents = getHalfExtentsWithMargin();
|
||||
|
||||
btScalar lx=btScalar(2.)*(halfExtents.x());
|
||||
btScalar ly=btScalar(2.)*(halfExtents.y());
|
||||
btScalar lz=btScalar(2.)*(halfExtents.z());
|
||||
|
||||
inertia.setValue(mass/(btScalar(12.0)) * (ly*ly + lz*lz),
|
||||
mass/(btScalar(12.0)) * (lx*lx + lz*lz),
|
||||
mass/(btScalar(12.0)) * (lx*lx + ly*ly));
|
||||
|
||||
}
|
||||
|
||||
363
src/BulletCollision/CollisionShapes/btBox2dShape.h
Normal file
363
src/BulletCollision/CollisionShapes/btBox2dShape.h
Normal file
@@ -0,0 +1,363 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef OBB_BOX_2D_SHAPE_H
|
||||
#define OBB_BOX_2D_SHAPE_H
|
||||
|
||||
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
|
||||
#include "BulletCollision/CollisionShapes/btCollisionMargin.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
|
||||
#include "LinearMath/btVector3.h"
|
||||
#include "LinearMath/btMinMax.h"
|
||||
|
||||
///The btBox2dShape is a box primitive around the origin, its sides axis aligned with length specified by half extents, in local shape coordinates. When used as part of a btCollisionObject or btRigidBody it will be an oriented box in world space.
|
||||
class btBox2dShape: public btPolyhedralConvexShape
|
||||
{
|
||||
|
||||
//btVector3 m_boxHalfExtents1; //use m_implicitShapeDimensions instead
|
||||
|
||||
btVector3 m_centroid;
|
||||
btVector3 m_vertices[4];
|
||||
btVector3 m_normals[4];
|
||||
|
||||
public:
|
||||
|
||||
btVector3 getHalfExtentsWithMargin() const
|
||||
{
|
||||
btVector3 halfExtents = getHalfExtentsWithoutMargin();
|
||||
btVector3 margin(getMargin(),getMargin(),getMargin());
|
||||
halfExtents += margin;
|
||||
return halfExtents;
|
||||
}
|
||||
|
||||
const btVector3& getHalfExtentsWithoutMargin() const
|
||||
{
|
||||
return m_implicitShapeDimensions;//changed in Bullet 2.63: assume the scaling and margin are included
|
||||
}
|
||||
|
||||
|
||||
virtual btVector3 localGetSupportingVertex(const btVector3& vec) const
|
||||
{
|
||||
btVector3 halfExtents = getHalfExtentsWithoutMargin();
|
||||
btVector3 margin(getMargin(),getMargin(),getMargin());
|
||||
halfExtents += margin;
|
||||
|
||||
return btVector3(btFsels(vec.x(), halfExtents.x(), -halfExtents.x()),
|
||||
btFsels(vec.y(), halfExtents.y(), -halfExtents.y()),
|
||||
btFsels(vec.z(), halfExtents.z(), -halfExtents.z()));
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const
|
||||
{
|
||||
const btVector3& halfExtents = getHalfExtentsWithoutMargin();
|
||||
|
||||
return btVector3(btFsels(vec.x(), halfExtents.x(), -halfExtents.x()),
|
||||
btFsels(vec.y(), halfExtents.y(), -halfExtents.y()),
|
||||
btFsels(vec.z(), halfExtents.z(), -halfExtents.z()));
|
||||
}
|
||||
|
||||
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
|
||||
{
|
||||
const btVector3& halfExtents = getHalfExtentsWithoutMargin();
|
||||
|
||||
for (int i=0;i<numVectors;i++)
|
||||
{
|
||||
const btVector3& vec = vectors[i];
|
||||
supportVerticesOut[i].setValue(btFsels(vec.x(), halfExtents.x(), -halfExtents.x()),
|
||||
btFsels(vec.y(), halfExtents.y(), -halfExtents.y()),
|
||||
btFsels(vec.z(), halfExtents.z(), -halfExtents.z()));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
btBox2dShape( const btVector3& boxHalfExtents)
|
||||
: btPolyhedralConvexShape(),
|
||||
m_centroid(0,0,0)
|
||||
{
|
||||
m_vertices[0].setValue(-boxHalfExtents.getX(),-boxHalfExtents.getY(),0);
|
||||
m_vertices[1].setValue(boxHalfExtents.getX(),-boxHalfExtents.getY(),0);
|
||||
m_vertices[2].setValue(boxHalfExtents.getX(),boxHalfExtents.getY(),0);
|
||||
m_vertices[3].setValue(-boxHalfExtents.getX(),boxHalfExtents.getY(),0);
|
||||
|
||||
m_normals[0].setValue(0,-1,0);
|
||||
m_normals[1].setValue(1,0,0);
|
||||
m_normals[2].setValue(0,1,0);
|
||||
m_normals[3].setValue(-1,0,0);
|
||||
|
||||
m_shapeType = BOX_2D_SHAPE_PROXYTYPE;
|
||||
btVector3 margin(getMargin(),getMargin(),getMargin());
|
||||
m_implicitShapeDimensions = (boxHalfExtents * m_localScaling) - margin;
|
||||
};
|
||||
|
||||
virtual void setMargin(btScalar collisionMargin)
|
||||
{
|
||||
//correct the m_implicitShapeDimensions for the margin
|
||||
btVector3 oldMargin(getMargin(),getMargin(),getMargin());
|
||||
btVector3 implicitShapeDimensionsWithMargin = m_implicitShapeDimensions+oldMargin;
|
||||
|
||||
btConvexInternalShape::setMargin(collisionMargin);
|
||||
btVector3 newMargin(getMargin(),getMargin(),getMargin());
|
||||
m_implicitShapeDimensions = implicitShapeDimensionsWithMargin - newMargin;
|
||||
|
||||
}
|
||||
virtual void setLocalScaling(const btVector3& scaling)
|
||||
{
|
||||
btVector3 oldMargin(getMargin(),getMargin(),getMargin());
|
||||
btVector3 implicitShapeDimensionsWithMargin = m_implicitShapeDimensions+oldMargin;
|
||||
btVector3 unScaledImplicitShapeDimensionsWithMargin = implicitShapeDimensionsWithMargin / m_localScaling;
|
||||
|
||||
btConvexInternalShape::setLocalScaling(scaling);
|
||||
|
||||
m_implicitShapeDimensions = (unScaledImplicitShapeDimensionsWithMargin * m_localScaling) - oldMargin;
|
||||
|
||||
}
|
||||
|
||||
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
|
||||
|
||||
|
||||
|
||||
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int getVertexCount() const
|
||||
{
|
||||
return 4;
|
||||
}
|
||||
|
||||
virtual int getNumVertices()const
|
||||
{
|
||||
return 4;
|
||||
}
|
||||
|
||||
const btVector3* getVertices() const
|
||||
{
|
||||
return &m_vertices[0];
|
||||
}
|
||||
|
||||
const btVector3* getNormals() const
|
||||
{
|
||||
return &m_normals[0];
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
virtual void getPlane(btVector3& planeNormal,btVector3& planeSupport,int i ) const
|
||||
{
|
||||
//this plane might not be aligned...
|
||||
btVector4 plane ;
|
||||
getPlaneEquation(plane,i);
|
||||
planeNormal = btVector3(plane.getX(),plane.getY(),plane.getZ());
|
||||
planeSupport = localGetSupportingVertex(-planeNormal);
|
||||
}
|
||||
|
||||
|
||||
const btVector3& getCentroid() const
|
||||
{
|
||||
return m_centroid;
|
||||
}
|
||||
|
||||
virtual int getNumPlanes() const
|
||||
{
|
||||
return 6;
|
||||
}
|
||||
|
||||
|
||||
|
||||
virtual int getNumEdges() const
|
||||
{
|
||||
return 12;
|
||||
}
|
||||
|
||||
|
||||
virtual void getVertex(int i,btVector3& vtx) const
|
||||
{
|
||||
btVector3 halfExtents = getHalfExtentsWithoutMargin();
|
||||
|
||||
vtx = btVector3(
|
||||
halfExtents.x() * (1-(i&1)) - halfExtents.x() * (i&1),
|
||||
halfExtents.y() * (1-((i&2)>>1)) - halfExtents.y() * ((i&2)>>1),
|
||||
halfExtents.z() * (1-((i&4)>>2)) - halfExtents.z() * ((i&4)>>2));
|
||||
}
|
||||
|
||||
|
||||
virtual void getPlaneEquation(btVector4& plane,int i) const
|
||||
{
|
||||
btVector3 halfExtents = getHalfExtentsWithoutMargin();
|
||||
|
||||
switch (i)
|
||||
{
|
||||
case 0:
|
||||
plane.setValue(btScalar(1.),btScalar(0.),btScalar(0.),-halfExtents.x());
|
||||
break;
|
||||
case 1:
|
||||
plane.setValue(btScalar(-1.),btScalar(0.),btScalar(0.),-halfExtents.x());
|
||||
break;
|
||||
case 2:
|
||||
plane.setValue(btScalar(0.),btScalar(1.),btScalar(0.),-halfExtents.y());
|
||||
break;
|
||||
case 3:
|
||||
plane.setValue(btScalar(0.),btScalar(-1.),btScalar(0.),-halfExtents.y());
|
||||
break;
|
||||
case 4:
|
||||
plane.setValue(btScalar(0.),btScalar(0.),btScalar(1.),-halfExtents.z());
|
||||
break;
|
||||
case 5:
|
||||
plane.setValue(btScalar(0.),btScalar(0.),btScalar(-1.),-halfExtents.z());
|
||||
break;
|
||||
default:
|
||||
btAssert(0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
virtual void getEdge(int i,btVector3& pa,btVector3& pb) const
|
||||
//virtual void getEdge(int i,Edge& edge) const
|
||||
{
|
||||
int edgeVert0 = 0;
|
||||
int edgeVert1 = 0;
|
||||
|
||||
switch (i)
|
||||
{
|
||||
case 0:
|
||||
edgeVert0 = 0;
|
||||
edgeVert1 = 1;
|
||||
break;
|
||||
case 1:
|
||||
edgeVert0 = 0;
|
||||
edgeVert1 = 2;
|
||||
break;
|
||||
case 2:
|
||||
edgeVert0 = 1;
|
||||
edgeVert1 = 3;
|
||||
|
||||
break;
|
||||
case 3:
|
||||
edgeVert0 = 2;
|
||||
edgeVert1 = 3;
|
||||
break;
|
||||
case 4:
|
||||
edgeVert0 = 0;
|
||||
edgeVert1 = 4;
|
||||
break;
|
||||
case 5:
|
||||
edgeVert0 = 1;
|
||||
edgeVert1 = 5;
|
||||
|
||||
break;
|
||||
case 6:
|
||||
edgeVert0 = 2;
|
||||
edgeVert1 = 6;
|
||||
break;
|
||||
case 7:
|
||||
edgeVert0 = 3;
|
||||
edgeVert1 = 7;
|
||||
break;
|
||||
case 8:
|
||||
edgeVert0 = 4;
|
||||
edgeVert1 = 5;
|
||||
break;
|
||||
case 9:
|
||||
edgeVert0 = 4;
|
||||
edgeVert1 = 6;
|
||||
break;
|
||||
case 10:
|
||||
edgeVert0 = 5;
|
||||
edgeVert1 = 7;
|
||||
break;
|
||||
case 11:
|
||||
edgeVert0 = 6;
|
||||
edgeVert1 = 7;
|
||||
break;
|
||||
default:
|
||||
btAssert(0);
|
||||
|
||||
}
|
||||
|
||||
getVertex(edgeVert0,pa );
|
||||
getVertex(edgeVert1,pb );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
virtual bool isInside(const btVector3& pt,btScalar tolerance) const
|
||||
{
|
||||
btVector3 halfExtents = getHalfExtentsWithoutMargin();
|
||||
|
||||
//btScalar minDist = 2*tolerance;
|
||||
|
||||
bool result = (pt.x() <= (halfExtents.x()+tolerance)) &&
|
||||
(pt.x() >= (-halfExtents.x()-tolerance)) &&
|
||||
(pt.y() <= (halfExtents.y()+tolerance)) &&
|
||||
(pt.y() >= (-halfExtents.y()-tolerance)) &&
|
||||
(pt.z() <= (halfExtents.z()+tolerance)) &&
|
||||
(pt.z() >= (-halfExtents.z()-tolerance));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//debugging
|
||||
virtual const char* getName()const
|
||||
{
|
||||
return "Box2d";
|
||||
}
|
||||
|
||||
virtual int getNumPreferredPenetrationDirections() const
|
||||
{
|
||||
return 6;
|
||||
}
|
||||
|
||||
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
|
||||
{
|
||||
switch (index)
|
||||
{
|
||||
case 0:
|
||||
penetrationVector.setValue(btScalar(1.),btScalar(0.),btScalar(0.));
|
||||
break;
|
||||
case 1:
|
||||
penetrationVector.setValue(btScalar(-1.),btScalar(0.),btScalar(0.));
|
||||
break;
|
||||
case 2:
|
||||
penetrationVector.setValue(btScalar(0.),btScalar(1.),btScalar(0.));
|
||||
break;
|
||||
case 3:
|
||||
penetrationVector.setValue(btScalar(0.),btScalar(-1.),btScalar(0.));
|
||||
break;
|
||||
case 4:
|
||||
penetrationVector.setValue(btScalar(0.),btScalar(0.),btScalar(1.));
|
||||
break;
|
||||
case 5:
|
||||
penetrationVector.setValue(btScalar(0.),btScalar(0.),btScalar(-1.));
|
||||
break;
|
||||
default:
|
||||
btAssert(0);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif //OBB_BOX_2D_SHAPE_H
|
||||
|
||||
|
||||
@@ -60,6 +60,11 @@ public:
|
||||
return btBroadphaseProxy::isPolyhedral(getShapeType());
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE bool isConvex2d() const
|
||||
{
|
||||
return btBroadphaseProxy::isConvex2d(getShapeType());
|
||||
}
|
||||
|
||||
SIMD_FORCE_INLINE bool isConvex() const
|
||||
{
|
||||
return btBroadphaseProxy::isConvex(getShapeType());
|
||||
|
||||
92
src/BulletCollision/CollisionShapes/btConvex2dShape.cpp
Normal file
92
src/BulletCollision/CollisionShapes/btConvex2dShape.cpp
Normal file
@@ -0,0 +1,92 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#include "btConvex2dShape.h"
|
||||
|
||||
btConvex2dShape::btConvex2dShape( btConvexShape* convexChildShape):
|
||||
btConvexShape (), m_childConvexShape(convexChildShape)
|
||||
{
|
||||
m_shapeType = CONVEX_2D_SHAPE_PROXYTYPE;
|
||||
}
|
||||
|
||||
btConvex2dShape::~btConvex2dShape()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
btVector3 btConvex2dShape::localGetSupportingVertexWithoutMargin(const btVector3& vec)const
|
||||
{
|
||||
return m_childConvexShape->localGetSupportingVertexWithoutMargin(vec);
|
||||
}
|
||||
|
||||
void btConvex2dShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const
|
||||
{
|
||||
m_childConvexShape->batchedUnitVectorGetSupportingVertexWithoutMargin(vectors,supportVerticesOut,numVectors);
|
||||
}
|
||||
|
||||
|
||||
btVector3 btConvex2dShape::localGetSupportingVertex(const btVector3& vec)const
|
||||
{
|
||||
return m_childConvexShape->localGetSupportingVertex(vec);
|
||||
}
|
||||
|
||||
|
||||
void btConvex2dShape::calculateLocalInertia(btScalar mass,btVector3& inertia) const
|
||||
{
|
||||
///this linear upscaling is not realistic, but we don't deal with large mass ratios...
|
||||
m_childConvexShape->calculateLocalInertia(mass,inertia);
|
||||
}
|
||||
|
||||
|
||||
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
|
||||
void btConvex2dShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
|
||||
{
|
||||
m_childConvexShape->getAabb(t,aabbMin,aabbMax);
|
||||
}
|
||||
|
||||
void btConvex2dShape::getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
|
||||
{
|
||||
m_childConvexShape->getAabbSlow(t,aabbMin,aabbMax);
|
||||
}
|
||||
|
||||
void btConvex2dShape::setLocalScaling(const btVector3& scaling)
|
||||
{
|
||||
m_childConvexShape->setLocalScaling(scaling);
|
||||
}
|
||||
|
||||
const btVector3& btConvex2dShape::getLocalScaling() const
|
||||
{
|
||||
return m_childConvexShape->getLocalScaling();
|
||||
}
|
||||
|
||||
void btConvex2dShape::setMargin(btScalar margin)
|
||||
{
|
||||
m_childConvexShape->setMargin(margin);
|
||||
}
|
||||
btScalar btConvex2dShape::getMargin() const
|
||||
{
|
||||
return m_childConvexShape->getMargin();
|
||||
}
|
||||
|
||||
int btConvex2dShape::getNumPreferredPenetrationDirections() const
|
||||
{
|
||||
return m_childConvexShape->getNumPreferredPenetrationDirections();
|
||||
}
|
||||
|
||||
void btConvex2dShape::getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const
|
||||
{
|
||||
m_childConvexShape->getPreferredPenetrationDirection(index,penetrationVector);
|
||||
}
|
||||
80
src/BulletCollision/CollisionShapes/btConvex2dShape.h
Normal file
80
src/BulletCollision/CollisionShapes/btConvex2dShape.h
Normal file
@@ -0,0 +1,80 @@
|
||||
/*
|
||||
Bullet Continuous Collision Detection and Physics Library
|
||||
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
|
||||
|
||||
This software is provided 'as-is', without any express or implied warranty.
|
||||
In no event will the authors be held liable for any damages arising from the use of this software.
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it freely,
|
||||
subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
*/
|
||||
|
||||
#ifndef BT_CONVEX_2D_SHAPE_H
|
||||
#define BT_CONVEX_2D_SHAPE_H
|
||||
|
||||
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
||||
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" // for the types
|
||||
|
||||
///The btConvex2dShape allows to use arbitrary convex shapes are 2d convex shapes, with the Z component assumed to be 0.
|
||||
///For 2d boxes, the btBox2dShape is recommended.
|
||||
class btConvex2dShape : public btConvexShape
|
||||
{
|
||||
btConvexShape* m_childConvexShape;
|
||||
|
||||
public:
|
||||
|
||||
btConvex2dShape( btConvexShape* convexChildShape);
|
||||
|
||||
virtual ~btConvex2dShape();
|
||||
|
||||
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3& vec)const;
|
||||
|
||||
virtual btVector3 localGetSupportingVertex(const btVector3& vec)const;
|
||||
|
||||
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors,btVector3* supportVerticesOut,int numVectors) const;
|
||||
|
||||
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const;
|
||||
|
||||
btConvexShape* getChildShape()
|
||||
{
|
||||
return m_childConvexShape;
|
||||
}
|
||||
|
||||
const btConvexShape* getChildShape() const
|
||||
{
|
||||
return m_childConvexShape;
|
||||
}
|
||||
|
||||
virtual const char* getName()const
|
||||
{
|
||||
return "Convex2dShape";
|
||||
}
|
||||
|
||||
|
||||
|
||||
///////////////////////////
|
||||
|
||||
|
||||
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
|
||||
void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
|
||||
|
||||
virtual void getAabbSlow(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
|
||||
|
||||
virtual void setLocalScaling(const btVector3& scaling) ;
|
||||
virtual const btVector3& getLocalScaling() const ;
|
||||
|
||||
virtual void setMargin(btScalar margin);
|
||||
virtual btScalar getMargin() const;
|
||||
|
||||
virtual int getNumPreferredPenetrationDirections() const;
|
||||
|
||||
virtual void getPreferredPenetrationDirection(int index, btVector3& penetrationVector) const;
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif //BT_CONVEX_2D_SHAPE_H
|
||||
@@ -39,7 +39,8 @@ int gNumGjkChecks = 0;
|
||||
|
||||
|
||||
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
|
||||
:m_penetrationDepthSolver(penetrationDepthSolver),
|
||||
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
|
||||
m_penetrationDepthSolver(penetrationDepthSolver),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_minkowskiA(objectA),
|
||||
m_minkowskiB(objectB),
|
||||
@@ -53,7 +54,7 @@ m_catchDegeneracies(1)
|
||||
{
|
||||
}
|
||||
btGjkPairDetector::btGjkPairDetector(const btConvexShape* objectA,const btConvexShape* objectB,int shapeTypeA,int shapeTypeB,btScalar marginA, btScalar marginB, btSimplexSolverInterface* simplexSolver,btConvexPenetrationDepthSolver* penetrationDepthSolver)
|
||||
:m_cachedSeparatingAxis(btScalar(0.),btScalar(0.),btScalar(1.)),
|
||||
:m_cachedSeparatingAxis(btScalar(0.),btScalar(1.),btScalar(0.)),
|
||||
m_penetrationDepthSolver(penetrationDepthSolver),
|
||||
m_simplexSolver(simplexSolver),
|
||||
m_minkowskiA(objectA),
|
||||
@@ -92,6 +93,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
localTransA.getOrigin() -= positionOffset;
|
||||
localTransB.getOrigin() -= positionOffset;
|
||||
|
||||
bool check2d = m_minkowskiA->isConvex2d() && m_minkowskiB->isConvex2d();
|
||||
|
||||
btScalar marginA = m_marginA;
|
||||
btScalar marginB = m_marginB;
|
||||
@@ -171,12 +173,19 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
spu_printf("got local supporting vertices\n");
|
||||
#endif
|
||||
|
||||
if (check2d)
|
||||
{
|
||||
pWorld[2] = 0.f;
|
||||
qWorld[2] = 0.f;
|
||||
}
|
||||
|
||||
btVector3 w = pWorld - qWorld;
|
||||
delta = m_cachedSeparatingAxis.dot(w);
|
||||
|
||||
// potential exit, they don't overlap
|
||||
if ((delta > btScalar(0.0)) && (delta * delta > squaredDistance * input.m_maximumDistanceSquared))
|
||||
{
|
||||
m_degenerateSimplex = 10;
|
||||
checkSimplex=true;
|
||||
//checkPenetration = false;
|
||||
break;
|
||||
@@ -198,6 +207,9 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
if (f0 <= btScalar(0.))
|
||||
{
|
||||
m_degenerateSimplex = 2;
|
||||
} else
|
||||
{
|
||||
m_degenerateSimplex = 11;
|
||||
}
|
||||
checkSimplex = true;
|
||||
break;
|
||||
@@ -231,6 +243,8 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
|
||||
btScalar previousSquaredDistance = squaredDistance;
|
||||
squaredDistance = newCachedSeparatingAxis.length2();
|
||||
#if 0
|
||||
///warning: this termination condition leads to some problems in 2d test case see Bullet/Demos/Box2dDemo
|
||||
if (squaredDistance>previousSquaredDistance)
|
||||
{
|
||||
m_degenerateSimplex = 7;
|
||||
@@ -238,6 +252,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
checkSimplex = false;
|
||||
break;
|
||||
}
|
||||
#endif //
|
||||
|
||||
m_cachedSeparatingAxis = newCachedSeparatingAxis;
|
||||
|
||||
@@ -248,6 +263,8 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
{
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
checkSimplex = true;
|
||||
m_degenerateSimplex = 12;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -278,6 +295,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
{
|
||||
//do we need this backup_closest here ?
|
||||
m_simplexSolver->backup_closest(m_cachedSeparatingAxis);
|
||||
m_degenerateSimplex = 13;
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -286,7 +304,8 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
{
|
||||
m_simplexSolver->compute_points(pointOnA, pointOnB);
|
||||
normalInB = pointOnA-pointOnB;
|
||||
btScalar lenSqr = m_cachedSeparatingAxis.length2();
|
||||
btScalar lenSqr =m_cachedSeparatingAxis.length2();
|
||||
|
||||
//valid normal
|
||||
if (lenSqr < 0.0001)
|
||||
{
|
||||
@@ -390,6 +409,7 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
pointOnA -= m_cachedSeparatingAxis * marginA ;
|
||||
pointOnB += m_cachedSeparatingAxis * marginB ;
|
||||
normalInB = m_cachedSeparatingAxis;
|
||||
normalInB.normalize();
|
||||
isValid = true;
|
||||
m_lastUsedMethod = 6;
|
||||
} else
|
||||
@@ -404,16 +424,19 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
}
|
||||
}
|
||||
|
||||
if (isValid)
|
||||
|
||||
|
||||
if (isValid && ((distance < 0) || (distance*distance < input.m_maximumDistanceSquared)))
|
||||
{
|
||||
#ifdef __SPU__
|
||||
//spu_printf("distance\n");
|
||||
#endif //__CELLOS_LV2__
|
||||
#if 0
|
||||
///some debugging
|
||||
// if (check2d)
|
||||
{
|
||||
printf("n = %2.3f,%2.3f,%2.3f. ",normalInB[0],normalInB[1],normalInB[2]);
|
||||
printf("distance = %2.3f exit=%d deg=%d\n",distance,m_lastUsedMethod,m_degenerateSimplex);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("output 1\n");
|
||||
#endif
|
||||
m_cachedSeparatingAxis = normalInB;
|
||||
m_cachedSeparatingDistance = distance;
|
||||
|
||||
@@ -422,10 +445,6 @@ void btGjkPairDetector::getClosestPointsNonVirtual(const ClosestPointInput& inpu
|
||||
pointOnB+positionOffset,
|
||||
distance);
|
||||
|
||||
#ifdef DEBUG_SPU_COLLISION_DETECTION
|
||||
spu_printf("output 2\n");
|
||||
#endif
|
||||
//printf("gjk add:%f",distance);
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -78,6 +78,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
|
||||
(void)stackAlloc;
|
||||
(void)v;
|
||||
|
||||
bool check2d= convexA->isConvex2d() && convexB->isConvex2d();
|
||||
|
||||
struct btIntermediateResult : public btDiscreteCollisionDetectorInterface::Result
|
||||
{
|
||||
@@ -132,7 +133,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
|
||||
|
||||
for (i=0;i<numSampleDirections;i++)
|
||||
{
|
||||
const btVector3& norm = sPenetrationDirections[i];
|
||||
btVector3 norm = sPenetrationDirections[i];
|
||||
seperatingAxisInABatch[i] = (-norm) * transA.getBasis() ;
|
||||
seperatingAxisInBBatch[i] = norm * transB.getBasis() ;
|
||||
}
|
||||
@@ -173,29 +174,44 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
|
||||
|
||||
|
||||
|
||||
|
||||
convexA->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInABatch,supportVerticesABatch,numSampleDirections);
|
||||
convexB->batchedUnitVectorGetSupportingVertexWithoutMargin(seperatingAxisInBBatch,supportVerticesBBatch,numSampleDirections);
|
||||
|
||||
for (i=0;i<numSampleDirections;i++)
|
||||
{
|
||||
const btVector3& norm = sPenetrationDirections[i];
|
||||
seperatingAxisInA = seperatingAxisInABatch[i];
|
||||
seperatingAxisInB = seperatingAxisInBBatch[i];
|
||||
|
||||
pInA = supportVerticesABatch[i];
|
||||
qInB = supportVerticesBBatch[i];
|
||||
|
||||
pWorld = transA(pInA);
|
||||
qWorld = transB(qInB);
|
||||
w = qWorld - pWorld;
|
||||
btScalar delta = norm.dot(w);
|
||||
//find smallest delta
|
||||
if (delta < minProj)
|
||||
btVector3 norm = sPenetrationDirections[i];
|
||||
if (check2d)
|
||||
{
|
||||
minProj = delta;
|
||||
minNorm = norm;
|
||||
minA = pWorld;
|
||||
minB = qWorld;
|
||||
norm[2] = 0.f;
|
||||
}
|
||||
if (norm.length2()>0.01)
|
||||
{
|
||||
|
||||
seperatingAxisInA = seperatingAxisInABatch[i];
|
||||
seperatingAxisInB = seperatingAxisInBBatch[i];
|
||||
|
||||
pInA = supportVerticesABatch[i];
|
||||
qInB = supportVerticesBBatch[i];
|
||||
|
||||
pWorld = transA(pInA);
|
||||
qWorld = transB(qInB);
|
||||
if (check2d)
|
||||
{
|
||||
pWorld[2] = 0.f;
|
||||
qWorld[2] = 0.f;
|
||||
}
|
||||
|
||||
w = qWorld - pWorld;
|
||||
btScalar delta = norm.dot(w);
|
||||
//find smallest delta
|
||||
if (delta < minProj)
|
||||
{
|
||||
minProj = delta;
|
||||
minNorm = norm;
|
||||
minA = pWorld;
|
||||
minB = qWorld;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
@@ -264,7 +280,8 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
|
||||
if (minProj < btScalar(0.))
|
||||
return false;
|
||||
|
||||
minProj += (convexA->getMarginNonVirtual() + convexB->getMarginNonVirtual());
|
||||
btScalar extraSeparation = 0.5f;///scale dependent
|
||||
minProj += extraSeparation+(convexA->getMarginNonVirtual() + convexB->getMarginNonVirtual());
|
||||
|
||||
|
||||
|
||||
@@ -305,6 +322,7 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
|
||||
input.m_maximumDistanceSquared = btScalar(BT_LARGE_FLOAT);//minProj;
|
||||
|
||||
btIntermediateResult res;
|
||||
gjkdet.setCachedSeperatingAxis(-minNorm);
|
||||
gjkdet.getClosestPoints(input,res,debugDraw);
|
||||
|
||||
btScalar correctedMinNorm = minProj - res.m_depth;
|
||||
@@ -313,12 +331,14 @@ bool btMinkowskiPenetrationDepthSolver::calcPenDepth(btSimplexSolverInterface& s
|
||||
//the penetration depth is over-estimated, relax it
|
||||
btScalar penetration_relaxation= btScalar(1.);
|
||||
minNorm*=penetration_relaxation;
|
||||
|
||||
|
||||
if (res.m_hasResult)
|
||||
{
|
||||
|
||||
pa = res.m_pointInWorld - minNorm * correctedMinNorm;
|
||||
pb = res.m_pointInWorld;
|
||||
v = minNorm;
|
||||
|
||||
#ifdef DEBUG_DRAW
|
||||
if (debugDraw)
|
||||
|
||||
@@ -171,8 +171,8 @@ class btHashMap
|
||||
|
||||
for(i=0;i<curHashtableSize;i++)
|
||||
{
|
||||
const Value& value = m_valueArray[i];
|
||||
const Key& key = m_keyArray[i];
|
||||
//const Value& value = m_valueArray[i];
|
||||
//const Key& key = m_keyArray[i];
|
||||
|
||||
int hashValue = m_keyArray[i].getHash() & (m_valueArray.capacity()-1); // New hash value with new mask
|
||||
m_next[i] = m_hashTable[hashValue];
|
||||
|
||||
Reference in New Issue
Block a user