it can be disabled by setting the flag cb.m_flags |= btTriangleRaycastCallback::kF_DisableHeightfieldAccelerator;
acceleration is disabled for z axis up.
add btHeightfieldTerrainShape example to example browser
In the btBlockSolver we are experimenting with, we have SI for both multibody and rigid body. I'm currently replacing rigid body SI solver with two smaller SI solvers. The two examples provided by RigidBodyBoxes.h should have the same behavior.
move setup.py back to eglRenderer extension, use pkgutil.get_loader('eglRenderer').get_filename()
disable dlmopen by default, unless B3_USE_DLMOPEN is defined.
Split examples/SharedMemory/b3RobotSimulatorClientAPI_NoGUI.* and move to examples/SharedMemory/b3RobotSimulatorClientAPI_NoGUI.cpp and examples/SharedMemory/b3RobotSimulatorClientAPI_NoDirect.cpp
- threading: adding btSequentialImpulseConstraintSolverMt
- task scheduler: added parallelSum so that parallel solver can compute residuals
- CommonRigidBodyMTBase: add slider for solver least squares residual and allow multithreading without needing OpenMP, TBB, or PPL
- taskScheduler: don't wait for workers to sleep/signal at the end of each parallel block
- parallel solver: convertContacts split into an allocContactConstraints and setupContactConstraints stage, the latter of which is done in parallel
- parallel solver: rolling friction is now interleaved along with normal friction
- parallel solver: batchified split impulse solving + some cleanup
- parallel solver: sorting batches from largest to smallest
- parallel solver: added parallel batch creation
- parallel solver: added warmstartingWriteBackContacts func + other cleanup
- task scheduler: truncate low bits to preserve determinism with parallelSum
- parallel solver: reducing dynamic mem allocs and trying to parallelize more of the batch setup
- parallel solver: parallelize updating constraint batch ids for merging
- parallel solver: adding debug visualization
- task scheduler: make TBB task scheduler parallelSum deterministic
- parallel solver: split batch gen code into separate file; allow selection of batch gen method
- task scheduler: add sleepWorkerThreadsHint() at end of simulation
- parallel solver: added grain size per phase
- task Scheduler: fix for strange threading issue; also no need for main thread to wait for workers to sleep
- base constraint solver: break out joint setup into separate function for profiling/overriding
- parallel solver: allow different batching method for contacts vs joints
- base constraint solver: add convertJoint and convertBodies to make it possible to parallelize joint and body conversion
- parallel solver: convert joints and bodies in parallel now
- parallel solver: speed up batch creation with run-length encoding
- parallel solver: batch gen: run-length expansion in parallel; collect constraint info in parallel
- parallel solver: adding spatial grid batching method
- parallel solver: enhancements to spatial grid batching
- sequential solver: moving code for writing back into functions that derived classes can call
- parallel solver: do write back of bodies and joints in parallel
- parallel solver: removed all batching methods except for spatial grid (others were ineffective)
- parallel solver: added 2D or 3D grid batching options; and a bit of cleanup
- move btDefaultTaskScheduler into LinearMath project
add UDP network connection for physics client <-> server.
also set spinning friction in rolling friction demo (otherwise objects may keep on spinning forever)
- fixing various race conditions throughout (usage of static vars, etc)
- addition of a few lightweight mutexes (which are compiled out by default)
- slight code rearrangement in discreteDynamicsWorld to facilitate multithreading
- PoolAllocator::allocate() can now be called when pool is full without
crashing (null pointer returned)
- PoolAllocator allocate and freeMemory, are OPTIONALLY threadsafe
(default is un-threadsafe)
- CollisionDispatcher no longer checks if the pool allocator is full
before calling allocate(), instead it just calls allocate() and
checks if the return is null -- this avoids a race condition
- SequentialImpulseConstraintSolver OPTIONALLY uses different logic in
getOrInitSolverBody() to avoid a race condition with kinematic bodies
- addition of 2 classes which together allow simulation islands to be run
in parallel:
- btSimulationIslandManagerMt
- btDiscreteDynamicsWorldMt
- MultiThreadedDemo example in the example browser demonstrating use of
OpenMP, Microsoft PPL, and Intel TBB
- use multithreading for other demos
- benchmark demo: add parallel raycasting
-------------------------------------
This commit implements speeding up and slowing down examples. The
example can be influenced by the parameters. A separate example will be
added to show off the capabilities of the TimeWarpBase for other
examples.
The walkers work quite well, a successful evolution was run over night
and reached a walker distance of 7.2m.
URDF/SDF: add a flag to force concave mesh collisiofor static objects. <collision concave="yes" name="pod_collision">
VR: support teleporting using buttong, allow multiple controllers to be used, fast wireframe rendering,
Turn off warnings about deprecated C routine in btScalar.h/b3Scalar.h
Add a dummy return to stop a warning
Expose defaultContactERP in shared memory api/pybullet.
First start to expose IK in shared memory api/pybullet (not working yet)