Add inverse dynamics / mass matrix code from DeepMimic, thanks to Xue Bin (Jason) Peng
Add example how to use stable PD control for humanoid with spherical joints (see humanoidMotionCapture.py)
Fix related to TinyRenderer object transforms not updating when using collision filtering
Add preparation for DeepMimic humanoid environment, replicating parts of https://github.com/xbpeng/DeepMimic
Loading humanoid.urdf and applying motion action: examples/pybullet/gym/pybullet_envs/mimic/humanoid.py
Loading MotionCapture data: examples/pybullet/gym/pybullet_envs/mimic/motion_capture_data.py
Little test: examples/pybullet/gym/pybullet_envs/mimic/humanoid_test.py
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
Use btSetCustomEnterProfileZoneFunc(CProfileManager::Start_Profile) and
btSetCustomLeaveProfileZoneFunc(CProfileManager::Stop_Profile) to get old behavior.
- Limits the maximum number of threads to 64, since btThreadSupportPosix
and btThreadsupportWin32 don't support more than 64 bits at this moment,
due to the use of UINT64 bitmasks. This could be fixed by using
std::bitset or some other alternative.
- Introduces a threadpool class, b3ThreadPool, which is a simple wrapper
around btThreadSupportInterface and uses this instead of the global task
scheduler for parallel raycasting. This is actually quite a bit faster
than the task scheduler (~10-15% in my tests for parallel raycasts),
since the advanced features (parallelFor) are not necessary for the
parallel raycasts.
- Puts 16*1024 of MAX_RAY_INTERSECTION_MAX_SIZE_STREAMING in
parentheses, since it otherwise causes problems with other operators
of equal precedence and introduces a smaller constant for Apple targets.
- Refactors the parallel raycasts code and adds some more profiling.
(and issue with TaskScheduler/btTaskScheduler.cpp, add JobQueue::exit, call it first, since it uses the m_threadSupport which was deleted before the destrucor was called.
Use a hashmap to store user timers, to avoid allocating many identical strings.
reduce 'm_cooldownTime' from 1000 microseconds to 100 microseconds (overhead in raycast is too large)
If needed, we can expose this cooldown time.
Replace malloc by btAlignedObjectArray (going through Bullet's memory allocator)
Adds unit test for the UserData functons.
Changes the char pointer in btHashString to std::string. There were
problems where the object owning the string memory would deallocate the
string, making the btHashString object invalid.
- threading: adding btSequentialImpulseConstraintSolverMt
- task scheduler: added parallelSum so that parallel solver can compute residuals
- CommonRigidBodyMTBase: add slider for solver least squares residual and allow multithreading without needing OpenMP, TBB, or PPL
- taskScheduler: don't wait for workers to sleep/signal at the end of each parallel block
- parallel solver: convertContacts split into an allocContactConstraints and setupContactConstraints stage, the latter of which is done in parallel
- parallel solver: rolling friction is now interleaved along with normal friction
- parallel solver: batchified split impulse solving + some cleanup
- parallel solver: sorting batches from largest to smallest
- parallel solver: added parallel batch creation
- parallel solver: added warmstartingWriteBackContacts func + other cleanup
- task scheduler: truncate low bits to preserve determinism with parallelSum
- parallel solver: reducing dynamic mem allocs and trying to parallelize more of the batch setup
- parallel solver: parallelize updating constraint batch ids for merging
- parallel solver: adding debug visualization
- task scheduler: make TBB task scheduler parallelSum deterministic
- parallel solver: split batch gen code into separate file; allow selection of batch gen method
- task scheduler: add sleepWorkerThreadsHint() at end of simulation
- parallel solver: added grain size per phase
- task Scheduler: fix for strange threading issue; also no need for main thread to wait for workers to sleep
- base constraint solver: break out joint setup into separate function for profiling/overriding
- parallel solver: allow different batching method for contacts vs joints
- base constraint solver: add convertJoint and convertBodies to make it possible to parallelize joint and body conversion
- parallel solver: convert joints and bodies in parallel now
- parallel solver: speed up batch creation with run-length encoding
- parallel solver: batch gen: run-length expansion in parallel; collect constraint info in parallel
- parallel solver: adding spatial grid batching method
- parallel solver: enhancements to spatial grid batching
- sequential solver: moving code for writing back into functions that derived classes can call
- parallel solver: do write back of bodies and joints in parallel
- parallel solver: removed all batching methods except for spatial grid (others were ineffective)
- parallel solver: added 2D or 3D grid batching options; and a bit of cleanup
- move btDefaultTaskScheduler into LinearMath project
Option to de/serialize btPersistentContactManifolds and fix lossy conversion during btMultiBody de/serialization of base world transform
(serialize the quaternion, not the converted 3x3 matrix)
There are still several caches not taken into account, and btMultiBody links/constraints are not deserialized yet etc.
See examples\pybullet\examples\saveRestoreState.py for an example.