Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
This avoids issues with systems with large mass ratios.
Test: add this to BasicDemo/BasicExample.cpp in initPhysics
m_dynamicsWorld->getSolverInfo().m_numIterations = 1000;
m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = 1e-4;
pybullet/C-API, expose linear/angular damping
fix some warnings (param name needs to be same in .h and .cpp)
fix potential startup threading issue (args were deleted in main thread while still possibly use in child thread)
fix for spinning/rolling friction in case of mixing maximal and reduced coordinate btMultiBody+btRigidBody
Bullet C-API b3ChangeDynamicsInfoSetSpinningFriction/RollingFriction/Resitution
b3PhysicsParamSetRestitutionVelocityThreshold, / pybullet.setPhysicsEngineParameter restitutionVelocityThreshold:
if the velocity is below this threshhold, the restitution is zero (this prevents energy buildup at near-resting state)
pybullet restitution.py example.
implement friction anchors, position friction correction, disabled by default. Use colObj->setCollisionFlag(flag | CF_HAS_FRICTION_ANCHOR); See test/RobotClientAPI/SlopeFrictionMain.cpp. In URDF or SDF, add <friction_anchor/> in <contact> section of <link> to enable.
PhysicsServer: properly restore old activation state after releasing picked object
btMultiBodyConstraintSolver: disable flip/flop of contact/friction constraint solving by default (it breaks some internal flaky unit tests)
added test urdf files for minitaur with all fixed joints, or fixed knees.
added some stiffness/damping to minitaur legs (testing)
tiny_obj_loader, don't crash on invalid texture coordinates
btMultiBodyConstraintSolver: sweep back and forward to reduce asymmetry
(for example solverInfo().m_leastSquaresResidualThreshold = 1e-7 and use large m_numSolverIterations
disable sphere-sphere contact cache, it is buggy (some contact point stay in the cache, when sphere penetrates more than total margins)
tweak some gpu demo settings
allow 'useMaximalCoordinates' and 'useFixedBase' in pybullet.loadURDF.
enable split impulse for btRigidBody, even in btMultiBodyDynamicsWorld.
allow initialization of velocity and apply force for btRigidBody in pybullet/shared memory API.
process contact parameters in URDF also for btRigidBody (friction, restitution etc)
add pybullet.setPhysicsEngineParameter with numSolverIterations, useSplitImpulse etc.
rolling friction -> only along the normal, until we have separate rolling friction coefficients on normal and non-normal directions
Don't teleport with grasping controller (VR)
Tune VR grasping a bit.
returns a pylist of contact points. Each point has the following data:
0 int m_contactFlags;//unused for now
1 int m_bodyUniqueIdA;
2 int m_bodyUniqueIdB;
3 int m_linkIndexA;
4 int m_linkIndexB;
5-6-7 double m_positionOnAInWS[3];//contact point location on object A, in world space coordinates
8-9-10 double m_positionOnBInWS[3];//contact point location on object A, in world space coordinates
11-12-13 double m_contactNormalOnBInWS[3];//the separating contact normal, pointing from object B towards object A
14 double m_contactDistance;//negative number is penetration, positive is distance.
15 double m_normalForce;
Fix issue in contact/friction between btMultibody and btRigidBody (external force/torque of btRigidBody was not taken into account during contact/friction setup)
Allow 0.1 mm slop in contact, to avoid loosing contact. Todo: allow contacts with positive distance in multibody solver.
Added demos for rigid and multi body soft (compliant) contact.
Will also add simplified Hertz compliant contact, by dynamically modifying the ERP/CFM to mimic a non-linear spring.
Note that btManifoldPoint is growing too big, we need to implement proper contact constraints derived from btTypedConstraint.
CFM for contacts use world CFM value by default, and can override with custom CFM value using the
BT_CONTACT_FLAG_HAS_CONTACT_CFM stored in m_contactPointFlags.
Boolean m_lateralFrictionInitialized is replaced 'BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED' flag stored in int m_contactPointFlags in btManifoldPoint.
Enable successive over-relaxation parameter (SOR) for contacts. btMLCPSolver uses global CFM.
In one of the next commits, contact softness will be enabled btMultiBody contacts.
Also need to review use of CFM in btMLCPSolvers (only world CFM is used at the moment)
Parse and use colors from URDF file (single rgba color per link, not per visual)
Rename btMultiBody 'stepVelocities' to 'computeAccelerationsArticulatedBodyAlgorithmMultiDof'
btHashMap, add const Value* operator[]
remove a few more obsolete btMultiBody methods (on the non-multi-dof path)
fix spelling typo in fillConstraintJacobianMultiDof (fil -> fill)
Add mention to Jakub Stepien for his work on btMultiBody